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Abstract. MSMAS is a software development methodology that facilities the
design and development of complex distributed systems based on the multiagent
systems paradigm. MSMAS explicitly supports the institutional organisational
structure and follows a declarative modelling style to specify behavioural restric-
tions on the members of the institution, their roles, the business processes reg-
ulating their behavior and the communication protocols regulating their mutual
interactions. All these aspects are visually represented, by adapting the DECLARE
graphical language, proposed for the declarative specification of constraint-based
business processes. In this paper we discuss the main elements of MSMAS, and
show how they can be equipped with a formal, expectation-based semantics, tai-
lored to the SCIFF Abductive Logic Programming-based framework. In particu-
lar, we show how the MSMAS constructs can be formalized in SCIFF, and then
exploit this correspondence to specify and verify formal properties over MSMAS
models, by leveraging on the SCIFF reasoning capabilities.

1 Background

With a growing interest in modelling the social structure of modern distributed sys-
tems and increased research activities around using role norms and institutions as an
organisational type to capture these social aspects, it seems that modelling efforts are
disconnected from implementation at the application level. Some metamodels lack sup-
porting design tools or if not they lack design verification and run-time validation ca-
pabilities. The MSMAS [6,5] methodology aims to establish a link between modelling
and implementation by combining business oriented metamodelling with institution and
role modelling and supports a formal proof mechanism for design and runtime vali-
dation. MSMAS allows multi agent system (MAS) designers to model self-managing
MASs using visual graphic models. Here, we take self-manging to mean the ability
of the system to recognize execution errors or undesired behaviour and the ability to
respond by replanning in order to recover from the failure or to stop the undesired ac-
tivities.MSMAS has three phases: the first phase is to capture the system requirements
through the Use Cases Models and to create the System Goals Model. The second phase
starts with the high level design of the required Business Processes to achieve the sys-
tem goals and the specification of the system organisational structure through the In-
stitutions Models. Then, a detailed design of the business activities, a full specification
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of the System Participants and the specification of Communication Protocols that de-
fines how system participants can coordinate their activities, interact with one another
and exchange information. The third phase concerns implementation, where the user
can export the system specification in either of the two available formats. The first is
the SCIFF formal framework [1], which supports the designer in the assessment of
the produced model, checking its correctness and verifying whether it meets desired
properties, also taking into account possible execution traces produced by the system.
The second format is RDF that offers a basis for transformation to any other execu-
tion languages such as JADE, JASON, etc. Or can be mapped to another RDFs such as
the frame work proposed by Alberola et al[7]. Verifying SCIFF model is good indica-
tor of the correctness of the RDF model, because both models are reflecting the same
MSMAS metamodel.

In MSMAS, the system designer can set constraints on the business processes and/or
their activities, as well as on the system participant roles. Any activity without a con-
straint can be executed an arbitrary number of times in an arbitrary order as long
as its preconditions are satisfied, while the constraints on system participants’ roles
are used to specify the accepted behavioural patterns. To impose dynamic constraints
on the activity execution, MSMAS uses the graphical notation of DECLARE (see
http://www.win.tue.nl/declare/, retrieved 20130627), deriving from the
DecSerFlow/ConDec languages developed by van der Aalst and Pesic [14,13,11]. DE-
CLARE is a declarative language for modelling and enacting constraint-based business
processes. We chose a declarative approach for MSMAS because it is well-suited to the
dynamic nature of MASs, and because DECLARE offers a simple graphical notation
with a powerful and flexible formal representation.

DECLARE takes an open approach where the relationship constraints that are set
between two or more activities can be either positive and negative. Positive relation-
ships are normally used to state that a certain activity is expected to occur when a
certain system state is achieved, while negative relationships state forbid the execution
of activities when a given state of affairs holds. DECLARE offers a number of loosely-
coupled template relations, which go beyond the standard sequential relationships of
classical process specification languages. An example is the responded presence con-
straint, which states that if the source activity A is executed, then the target activity B
must be executed as well, either before or after the execution of activity A.

Many formal models for agent-based systems have been proposed and they present
useful approaches for building such systems. We believe MSMAS makes a valuable
contribution to this line of research because of its ability to model scenarios, in which
the system components and human participants interact governed by social norms. We
consider this is an important aspect, as modelling only individual agent aspects cannot
cover all the issues that affect how they interact and coordinate their behaviour to allow
the system to achieve its goals; hence considering the social aspects of these individual
agents becomes necessary. Incorporating social and organizational structure compli-
cates the MAS model, however by following the MSMAS methodology and break-
ing down the system into smaller organisations and encoding the different behaviour
patterns into roles, we argue that complication is contained. Furthermore, allowing
the system properties to be assessed during design time with the support of a formal
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framework helps in modelling societally-structured systems and the use of a declarative
style enables monitoring and runtime verification [4,1,10].

2 Formal Model of MSMAS

Formal modelling methods of software comprise two activities: formal specification
and verification. Formal specification permits the deployment of an accurate specifica-
tion of the system behaviour that allows for a precise modelling of the system, while
verification aims at proving that the model of the system complies with the intended
requirements, and meets the desired properties.

Our evaluation of the literature and existing and past approaches, leads us to the
conclusion that MSMAS can be based on just four concepts that are sufficient for a
MAS description to be able to provide answers to the following four questions:

1. What is the purpose of building the system and its individual components? This
question is answered by defining System Goals (SG) as the first core concept.

2. How can the system achieve its goals? The answer lies within the second core
concept which is the system Business Processes (BP ) and their activities.

3. Who or what is responsible for the execution of each business process activity?
This is answered by the third core concept of System Participants (SP ).

4. Through which organisational structures do the system participants interact and
what roles can they play? This is answered by defining System Institutions (SI).

So, in our approach, a MAS is a 4-tuple: MASmsmas = 〈SG,BP, SP, SI〉 and
hence, in order to connect these four concepts, we address the modelling of: (i) System
Participant Institutional Roles, (ii) System Participant Communication Protocols, and
(iii) Business Processes Relationships. The system goals are the main drivers of the
business processes and all activities in MSMAS are goal-directed so the formalisation
above covers the complete MSMAS system view. In the rest of this section we go into
more detail about each of the above concepts.

Institutional Roles. MSMAS requires the explicit statement of the society’s organisa-
tional structure, where the system is organised in a number of institutions each of which
has an associated finite set of roles, and system participants might play one or more of
these roles in one or many of the system institutions. Specifying an organisation can
be done through specifying the inter-agent relationships that exist within this organ-
isation [15]. In MSMAS, these inter-relationships specifications are centered around
the abstract roles the system participants can play and how these roles relate to each
other. Role specification allows for defining behaviour patterns in an abstract way, in-
dependent from each individual system participant. In this sense, roles are considered
as system participant types, so when a system participant takes part in an institution
and plays one of the institution roles, it should conform to that pattern of behaviour. All
system agents that adopt the same role are normally granted the same rights and du-
ties, and are expected to obey to the same restrictions applied to that role. Declarative
specification allows the identification of an arbitrary range of relations, but in MSMAS
we restrict ourselves to the following role types, as seen in the role/role relations in
Figure 1.
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1. Sequential Roles (SR): these are the pairs of roles where the the system participant
is required to play the first role before being allowed to play the second one. An
example from Figure 1 is when an agent has to be Catalogue Manager before being
Stock Manager.

2. Joint Roles (JR): these are pairs of roles where the system participant is required to
play both, but one after another in a specified order, or neither. The first role is con-
sidered a precondition to place the second role. An example is the requirement in a
marketplace that a type of seller should fulfill their customers’ orders themselves,
meaning they have to play the role of Shipper after playing being Seller.

3. Coupled Roles (CR): these are pairs of roles that are coupled together where the
system participant is required to play both or none, but in either order: once one
of them played the other one needs to be played. An example is the requirement
in a marketplace that product meta data provider is the same as the inventory data
provider. CR allows for concurrency where an agent is required to play multiple
roles at the same time.

4. Disjoint Roles (DR): these are mutually exclusive roles, where only one of them
can be played by a system participant at any point of time, and once the system
participant plays that role it can not play the other role. An example of this is when
you have a Coder and Code reviewer, and the requirement that one can not review
his own code (four eyes principle).

5. Amicable Roles (AR): these are the pairs of roles where the system participant can
play one or many of them at the same time without raising any conflict.

The set of all Institutional Roles IR is then represented as: IRmsmas = 〈SR ∪ JR ∪
CR ∪DR ∪AR ∪HR〉 and each role set in turn is defined as: Rinst = 〈inst, R,Rrel〉
where R is the set of roles that belong to institution inst and Rrel is the set of relations
between these roles in R.

Business Processes. In MSMAS there are two types of business processes models:
(i) Composite Business Process (CBP)1: which is a System Conceptual Plan (SCP)
that describes which business processes and/or business activities are needed for the
achievement of a Composite System Goal (CSG)23, and (ii) Basic Business Process
(BBP): which contains the detailed specifications of the actual business activities that
lead to the achievement of a Basic System Goal (BSG)4. Each BSG goal can be achieved
through the execution of one or more activities as defined through the system de-
sign.MSMAS allows designers to assign any DECLARE-style constraint/relation to any
pair of business activities within any BBP 5. Relations within the context of CBPs how-
ever are limited to only four types, as shown in Figure 1 BP/BP relations, where we
identify the following types for CBPs as conceptual plans:

1. Sequential Business Processes (SBP): these are the pairs of business processes/
activities that must be executed consecutively.

1 Composite Business Process was called in previous publications as Specific Business Process.
2 Composite System Goal was called in previous publications as Specific System Goal.
3 Composite System Goal: is a functional goal achievable by one or more business process.
4 Basic System Goal: leaf of system goals tree, achievable by one or more business activities.
5 All the DECLARE relation formulae, notation and SCIFF mapping appears in [10].
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2. Joint Business Processes (JBP): these are pairs of business processes/activities
where both are required to be executed, but one after another in a specified order.

3. Coupled Business Processes (CBP ): these are pairs of business processes/
activities where both are required to be executed, but in no specific order.

4. Disjoint Business Processes (DBP ): these are mutually exclusive business pro-
cesses/activities, where only one may be executed, and once this has occurred the
other process/activity can not be executed.

5. Amicable Business Processes (ABP ): these are the pairs of business processes/
activities that can be executed freely without raising any conflict.

The set of all possible Business Processes/Activities SBP is represented as:
SBPmsmas = 〈SCPmsmas ∪ SEPmsmas〉

where the set of all MSMAS System Business Process CBP is the set of both System
Conceptual Plans SCP and the set of System Executable Plans SEP :

SCPmsmas =〈CBP ,SBA,SCPrel,CSG〉
SEPmsmas =〈SBA,SEPrel,BSG〉

where SBA is the set of business activities that lead to the achievement of the System
Basic Goals BSG and SEPrel is the set of relations between these system activities.

Communications Protocols. A communication protocol in MSMAS is a set of one or
more messages sent from one system participant to another. We define three types of
communication messages:

1. Inform Message (IM ): where a system participant sends information in some form
such as a belief, a file, etc to another; the sender does not expect a response and the
recipient does not expect to replyThis message type is useful for lightweight com-
munications scenarios where acknowledging delivery is not required or essential.

2. Offer Message (OM ): where a system participant offers to send some information
such as a belief, a file, etc to another system participant. The recipient is expected to
respond by accepting or rejecting this offer; if accepted an inform message should
to follow.

3. Request Message (RM ): where a system participant asks for some information
from another. A response is required accepting or rejecting the request: either way
the response is an inform message or another request message.

In MSMAS a communication protocol CommuProt is defined as:
CommuProtmsmas = 〈Msgprot,Msgrel, IRprot〉

where a communication protocol CommuProtmsmas is the set of communication mes-
sages Msgprot that are exchanged between the system participants playing the insti-
tutional IRprot roles according to the constraints set by the set of relations Msgrel
between the pairs of these messages and:

Msgmsmas =〈IM ∪ OM ∪ RM 〉
where msgmsmas =〈sender , recipient ,msgContent , timeStamp〉

3 The SCIFF Framework

SCIFF is a logic programming framework originally proposed by Alberti et al [1]. It
is based on Abductive Logic Programming (ALP) [9]. An ALP is a triple 〈P,A, IC〉,
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DECLARE
Notation

DECLARE
Visual notation

MSMAS Role/Role 
Relation

Succession Relationship:
every execution of A should be
followed by the execution of B and
each B should be preceded by A

Joint Roles:
The system participant must play
Role B after playing Role A, and
must have played Role A in order
to play Role B

A B

Coexistence Relationship:
If either A or B is performed, the
other one has to be executed as
well.

Coupled Roles:
The system participant has to play
both Role A and Role B

A B

Not Coexistence
Relationship:
If one of A or B is performed, the
other one can not be executed.

Disjoint Roles:
If the system participant plays
Role A then Role B can not be
played, and vice versa.

A B

A BNo constraint
Amicable Roles:
The system participant can play
any or both of Role A and Role B
without any restriction

Precedence Relationship:
If B Is performed A should have been
performed before it

Sequential Roles:
The system participant has to play
Role B only after playing Role A

A B

MSMAS BP/BP 
Relation

Joint BPs:
BP B must be executed after the
execution of BP A, and BP A
must have been executed to start
executing BP B

Coupled BPs:
Both BP A and BP B have to be
executed

Disjoint BPs:
If BP A has been executed then
BP B can not be executed, and
vice versa.

Amicable BPs:
Any or both of BP A and BP B can
be executed without any restriction
as long as their specified pre
conditions -if any- are met

Sequential BPs:
BP B has to be executed only
after the execution of BP A

Fig. 1. DECLARE Notation and its Mapping to MSMAS Role/Role relation concepts

where A is a set of predicates, named abducibles, P is a logic program that uses predi-
cates in A but does not define them, and IC is a set of integrity constraints.

Reasoning in abductive logic programming is a goal-directed task (G, a goal), and
amounts to finding an explanation set Δ of (ground) abducible predicates, such that:
P ∪Δ |= G and P ∪Δ is consistent. The set IC of integrity constraints constrains the
explanations Δ for the goal G, through the additional requirement P ∪Δ |= IC.

SCIFF leverages on ALP to constrain the dynamics of an event-based system, such
as the interaction between multiple agents [1] or the execution of a business process
[12]. In particular, SCIFF instantiates the ALP triple 〈P,A, IC〉 as follows:

– A is constituted by special predicates denoting expectations about (un)desired
events;

– P is a knowledge base used to capture the static knowledge of the targeted system;
– IC is used to relate the occurrence of events to expected events, thus defining which

are the events that are expected to occur when a certain trace of events is observed.

Events. In SCIFF there is a clear distinction between the description of an event and
the occurrence of said event. In fact, an event is represented as a term, whereas an event
that has happened is an atom H(Event, T ime) where Event is a Term and T ime
is an integer denoting the time at which that event happened. Ground happened events
are used to represent a (partial) execution trace of the system, enumerating the relevant
events and their timestamps, whereas happened events with variables are used to de-
note a class of matching ground happened events. For example, H(inform(john,mary,
call code(123 )), 5 ) denotes that john informed mary at time 5 that the call code has
value 123. Whereas, H(inform(X ,mary, call code(C )),T ) models that some agent
X informed mary at a certain time T that the call code has value C.

As well as happened events, SCIFF supports the modelling of (un)desired courses
of interaction by introducing the notion of expected events, making it possible to ex-
plicitly describe what is expected (not) to happen. Expectations can be either positive
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E(Event, T ime) or negative EN(Event, T ime). The intuitive quantification for the
variables possibly contained in the expectations is existential for positive expectations,
and universal for negative expectations. For example, E(inform(X ,mary,
call code(C )),T ) models that it is expected that someone informsmary about the call
code at some point in time, whereas EN(inform(X ,mary, call code(C )),T ) means
that no agent can ever inform mary about call codes. The full SCIFF event syntax
appears in [1].

SCIFF Integrity Constraints. In the SCIFF framework, integrity constraints (ICs)
are used to express behavioural rules interconnecting happened events with expec-
tations, to represent the expected and forbidden courses of interaction when a given
pattern of happened events is found in the current system trace. Technically, they are
(forward) implications of the form β(X) → γ(X,Y ), where β(X) is a conjunction
of literals, i.e., of (partially grounded) happened/expected events and other predicates,
and γ(X,Y ) is a disjunction or conjunction of expectations and other predicates. In-
tuitively, variables X are universally quantified with the entire implication as scope,
whereas variables Y are existentially or universally quantified depending on whether
they appear inside positive or negative expectations (for a full account of quantification,
see [1]). Predicates are used to constrain further the matching events, and include Con-
straint logic programming (CLP)6 constraints. When applied to time variables, CLP
constraints are particularly useful for imposing metric temporal conditions on hap-
pened/expected events. For example, the integrity constraint:

H(create call(X ,C ),T )∧friend(X ,Y ) →
E(inform(X ,Y , call code(C )),T2 ) ∧ T2 < T + 10

states that whenever agent X creates a call with code C, X is expected to inform each
of her friends about the value of the call code within 10 time units. Once again, for the
full SCIFFsocial integrity constraint syntax, see [1].

SCIFF Knowledge Base. SCIFF ICs can capture the dynamic aspects of a system
by interconnecting the observed and expected courses of interaction. However, they
are not meant to represent the static knowledge that might be needed to describe the
system independently of its dynamics. The SCIFF framework allows the definition of
this type of knowledge inside a knowledge base (KB). The KB can be used to list facts
known about the domain under study (such as the extension of the friend predicate used
in the aforementioned sample integrity constraint), or to encode complex derivation
rules modeled as logic programming clauses. Such derivation rules could also employ
happened and expected events to provide a-priori definitions for knowledge related to
the system dynamics. The full syntax for SCIFF knowledge base terms is given in [1].

Compliance in SCIFF. We now describe the declarative semantics of SCIFF, which
builds upon the semantics of ALP and extends it so as to capture the meaning of ex-
pectations. In particular, SCIFF declaratively captures the notion of compliance of a
system execution trace with the modelled specification. This is done by considering
positive and negative expectations as abducible predicates, and by introducing the no-
tion of fulfillment. Starting from the knowledge base and the set of happened events

6 A Constraint Logic Program is a logic program that contains constraints in the body of clauses.
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contained in the analyzed trace of the system (which extends the knowledge base with
information about the dynamics), expectations are hypothesized consistently with the
ICs and with an expectation-consistency rule stating that no event can be expected to
happen and not to happen at the same time. A positive (respectively negative) expec-
tation is then judged as fulfilled (respectively violated) if there exists a corresponding
matching happened event in the trace. This can be considered as a sort of hypothesis
confirmation step, where the hypothesized courses of execution match with an actual
behaviour.

This declarative notion of compliance has an operational counterpart in the SCIFF
proof procedure, which concretely realizes an inference mechanism to 1. dynamically
acquire happened events reporting about the evolution of the system dynamics, 2. use
the modeled knowledge base and integrity constraints so as to generate expectations
about the courses of execution, and 3. match expectations with happened events, de-
ciding their fulfillment. Execution traces which fulfill all the generated expectations are
then deemed as compliant with the specification.

An extension of the SCIFF proof procedure, called g-SCIFF, can be used to prove
properties of the model at design time, i.e., without having an explicit trace of the system
[12]. Given a property, g-SCIFF tries to generate a (partially specified) trace showing
that the property can be satisfied while respecting all the modeled ICs. Intuitively,
this is done by transforming every pending positive expectation into a corresponding
happened event, checking that no negative expectation becomes violated.

Finally, we observe that while termination of the proof procedures cannot be guaran-
teed in general, all the techniques developed to check termination of (abductive) logic
programs can be seamlessly applied to SCIFF (see, e.g., [12,10] for a discussion on
termination conditions when reasoning on extended DECLARE.

4 MSMAS Semantics in SCIFF

In this section we establish a correspondence between MSMAS and SCIFF, conse-
quently enabling the exploitation of the reasoning capabilities of the SCIFF framework
to systems modelled with MSMAS. The translation is inspired by [11,10].

4.1 Events in MSMAS

In MSMAS, events reflect the execution of business processes, as well as the dynamics
of institutions and of agent interaction. In particular, a system execution is understood
by MSMAS in terms of the following events.
Institutional events are triggered when a system participant plays a defined institu-
tional role. For example:

playRole(Agent1, (marketplaceInstitution, seller)))

where the agent (Agent1) plays the role (seller) within the defined institution
(marketplaceInstitution).
Communications events are triggered when a system participant sends a message
within a defined communication protocol. For example:

requestMsg((buyProductProtocol, customer1, seller5,
getprice(ean : 9782735638938)))
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where the (customer1) agent sends request message which is part of
(buyProductProtocol) communication protocol to get the price of product with
ID/EAN (9784431540816) to get the price from (seller5) agent.

Business process events are triggered when a system participant starts/ends the execu-
tion of an activity within a defined basic business process. For example:

startActivity(checkForNewSSL(updateF ileBP, (updateAvailabilityCP )),
Agent1, (updateF ileBSG, flase), (timeForUpdate, true))))

where the (Agent1) agent starts the execution of (checkForNewSSL) activity within
the defined basic process (updateF ileBP ) which in turn is a step in the conceptual
plan (updateAvailabilityCP ) to achieve the basic system goal (updateF ileBSG)
with inputs/preconditions (T imeForUpdate) with value (true). or

endActivity(checkForNewSSL(updateF ileBP, (updateAvailabilityCP )),
Agent1, (updateF ileBSG, false), (fileFound, true))))

where the agent Agent1 ends the execution of activity checkForNewSSL within the
defined basic process updateF ileBP , which in turn is a step in the conceptual plan
set CP, that contains conceptual plan updateAvailabilityCP , to achieve basic system
goal updateF ileBSG with outputs/postconditions fileFound with value true.

4.2 Institutional Role/Role Relation Formalisation

Given a MSMAS model, each Role/Role relation present in the model is captured
as a corresponding fact of the type: role role relation(A,B, Type) For exam-
ple, role role relation(Registered User, Seller, sequential roles), expresses that
a precedence/sequential role relation holds between Registered User and Seller
roles. All these facts are grouped together inside an “institution” knowledge base
KBinst.

The Role/Role relations described in Table 1 are then formalized by means of ICs
that follow the DECLARE to SCIFF translation presented in [11,10]. Such constraints
are grouped together into an integrity constraint set ICinst.

Sequential Roles. A sequential role relation is represented by the following IC:
role role relation(A,B, sequential roles)
∧ H(play role(SystemParticipant, (Institution,B), TB))

→ E(play role(SystemParticipant, (Institution,A), TA)) ∧ TA < TB.

Notice that the constraint is instantiated for every Role/Role relation of type
sequential roles contained into KBinst.

Joint Roles can be formalised using the following ICs:
role role relation(A,B, joint roles)
∧ H(play role(SystemParticipant, (Institution,A), TA))

→ E(play role(SystemParticipant, (Institution,B), TB)) ∧ TB > TA.
role role relation(A,B, joint roles)
∧ H(play role(SystemParticipant, (Institution,B), TB))

→ E(play role(SystemParticipant, (Institution,A), TA)) ∧ TA < TB.



Verifying MSMAS Model Using SCIFF 53

Coupled Roles can be captured as joint roles, but without imposing any ordering con-
straint on the event timestamps:

role role relation(A,B, coupled roles)
∧ H(play role(SystemParticipant, (Institution,A), TA))

→ E(play role(SystemParticipant, (Institution,B), TB)).
role role relation(A,B, coupled roles)
∧ H(play role(SystemParticipant, (Institution,B), TB))

→ E(play role(SystemParticipant, (Institution,A), TA)).

Disjoint Roles are formalized by means of negative expectations:
role role relation(A,B, disjoint roles)
∧ H(play role(SystemParticipant, (Institution,A), TA))

→ EN(play role(SystemParticipant, (Institution,B), TB)).

4.3 Business Processes and Business Activities Relation Formalisation

In MSMAS, the modelling of Composite Business Processes (CBPs) means represent-
ing the conceptual plans broken down into the necessary steps to achieve one specific
system goal. Meanwhile the actual executable plans are those that are modelled as
Basic Business Processes (BBPs), where the plan steps are business activities (BAs).
We allow the system designer to set constraints between BP/BP, BP/BA, and BA/BA at
any level, whether part of a conceptual plan or of an executable plan: the only difference
is that a BP/BP or BP/BA relationship at the conceptual plan level is inherited all
the way down through all sub-processes/sub-plans. BP/BP or BP/BA relations are
restricted to the types described in §2 (Sequential Business Processes, Joint Business
Processes, Coupled Business Processes, and Disjoint Business Processes) and are
formalised in the KBSCP as a fact of the type: scp scp relation(A,B, Type).
For example, scp scp relation(checkForNewSSL, publishSupplierUpdate,
sequential business process), expresses a sequential business process relation
between the checkForNewSSL and publishSupplierUpdate business processes.

The formalisation of the relations as integrity constraints follow the same method
as for role/role relations in section 4.2. An interesting pattern is the one of sequential
processes, which can be represented by means of a DECLARE chain response, in turn
captured in SCIFF as follows:

scp scp relation(A,B, sequential business process)
∧ H(execute(BPA, SystemParticipant,Beliefs), TA)

→ E(execute(BPB, SystemParticipant,Beliefs), TB) ∧ TB > TA

∧ EN(execute( , , ), Tx) ∧ Tx > TA ∧ Tx < TB .

The full set of DECLARE constraints are supported at the BA/BA level, where these
business activities are steps within an executable plan. For a comprehensive treatment
of such constraints in SCIFF, see [10].

4.4 Communication Protocols Relation Formalisation

Communication protocols serve as a vehicle for enabling the development of inter-
operable agents and they mainly facilitate negotiation, cooperations and coordination
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among all different system participants according the the system design. In MSMAS
as explained in Section 2, using the the identified three types of messages the system
designer can create any custom communication protocol of any length of a finite set of
messages. Only Offer Message and Request Message types do require a response when
sent, so effectively a request message has a succession relationship with a response
message i.e. it is a Joint Relationship between two messages that can be formalised in
the KBMSG as a fact of the type: msg msg relation(protocol, A,B, T ype). For ex-
ample,msg msg relation(getPrices, submitF ileUpdate, submitSecurityT oken,
joint message), expresses a joint message relation between submitF ileUpdate
and submitSecurityT oken messages in the communication protocol getPrices.

The formalisation of the relations as integrity constraints follow the same method as
per previous examples in previous sections. Joint Communication Messages can be
formalised using the following integrity constraints:

msg msg relation(prot1, requestMsg, informMsg, joint message)
∧ H(requestMsg(prot1, SystemParticipantA, SystemParticipantB , Content), TA)
→ E(informMsg(prot1, SystemParticipantB , SystemParticipantA, Content), TB)
∧ TB > TA.

msg msg relation(prot1, requestMsg, informMsg, joint message)
∧ H(informMsg(prot1, SystemParticipantB , SystemParticipantA, Content), TB)
→ E(requestMsg(prot1, SystemParticipantA, SystemParticipantB , Content), TA)
∧ TA < TB .

4.5 Reasoning about MSMAS Models

By putting together the translation principles presented above, we obtain a full SCIFF
specification constructed as follows:

Pmsmas ≡〈KBmsmas, {E/2,EN/2}, ICmsmas〉
where KBmsmas �KBinst ∪ KBprot ∪ KBact

and ICmsmas �ICinst ∪ ICprot ∪ ICact

The SCIFF and g-SCIFF proof procedure can consequently be applied to reason
about MSMAS models. Notably, the joint application of these proof procedures cov-
ers the entire lifecycle of a system: at design time, the SCIFF proof procedure can be
used to check compliance of simulated event traces, while g-SCIFF can be applied to
verify whether the MSMAS model of the system meets some desired properties; at run-
time, the SCIFF proof procedure can be employed to monitor the running system and
check whether it fulfils the generated expectations; a-posteriori, the same approach can
be employed to analyze complete traces representing past system executions.

More specifically, the correspondence between MSMAS and SCIFF gives an
expectation-based declarative semantic for MSMAS, providing a formal notion of com-
pliance between an execution trace of the system (also called instance of the specifi-
cation) and the constraints obtained from the MSMAS model. Intuitively, given a set
HAP of happened events, Pmsmas leads to formulate an abductive set EXP that con-
tain positive and negative expectations, which reflect the events that are expected (not)
to occur in the state of affairs obtained after the execution of the events in HAP. In this
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Fig. 2. MSMAS example models

respect, we take advantage of the declarative semantics of SCIFF to tackle three basic
reasoning tasks: consistency, fulfillment, and conformance.

Consistency states that a MSMAS event cannot be expected to happen and expected
not to happen at the same time. Technically, for each (ground) MSMAS event e and
timestamp t, consistency requires that {E(e, t),EN(e, t)} � EXP. Notice that consis-
tency is not checked by the proof procedures by effectively grounding the expectations,
but by using variables and CLP constraints to maintain an intensional, “symbolic” repre-
sentation of (classes of) expectations, using constraint-solving to detect clashes between
positive and negative expectations.

Fulfillment expresses the semantics of expectations. In particular, we say that a pos-
itive expectation E(e, t) ∈ EXP is fulfilled by a set HAP of happened events if and
only if H(e, t) ∈ HAP, i.e., a corresponding happened event has occurred. Specifically,
a negative expectation EN(e, t) ∈ EXP is fulfilled by a set HAP of happened events if
H(e, t) �∈ HAP, i.e., no corresponding happened event has occurred. Furthermore, we
say that EXP is fulfilled by HAP if every expectation in EXP is fulfilled by HAP.

Conformance combines the notion of consistency and fulfillment to characterize
whether a trace of the system respects all the constraints imposed by the MSMAS
model. In particular, given a goal G and a complete trace of the system HAP, we say
that HAP conforms to the MSMAS model satisfying G if:

KBmsmas ∪ HAP ∪ EXP |= G
KBmsmas ∪ HAP ∪ EXP |= ICmsmas

EXP is consistent
EXP is fulfilled by HAP

Looking closely at the sample institution model in Figure 2, we observe that the speci-
fications of WarehouseManager , Supervisor and Picker eventually lead to an incon-
sistency as soon as an agent start to play one of these roles: WarehouseManager and
Supervisor are joint roles, and so are WarehouseManager and Picker , which implies
that also Supervisor and Picker have to be joint roles, while the model constrains them
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to be disjoint. This inconsistency can be detected by the SCIFF proof procedure when a
partial trace of the system is analyzed. With g-SCIFF, instead, the problem can, e.g., be
detected when the modeller asks the following query: is it possible for an agent to play
the role of Picker? Observe that a negative answer to this query would seriously ques-
tion the correctness of the MSMAS model, because it would attest that Picker is always
an “empty” role in any possible execution. In g-SCIFF, such a query can be expressed
in terms of the goal: E(playrole(SP, (I, picker), T )). To answer this query, g-SCIFF
tries to generate a (partially specified) trace that conforms to the MSMAS model and at
the same time satisfies the goal. In particular, starting from the expectation mentioned
in the goal, the proof procedure generates a happened event that fulfils the expecta-
tion: H(play role(SP, (I, picker), T )). This event states that at some time T , an agent
SP will indeed play the Picker role in the context of some institution I . Due to the
two constraints attached to the Picker role in Figure 2(a), this in turn triggers the gen-
eration of two expectations: one stating that the WarehouseManager role must also
be played by that agent (E(play role(SP, (I, warehouse manager), T2))), and the
other stating that the Supervisor role can never be played by that agent (EN(play role
(SP, (I, supervisor), T3)), where T3 is universally quantified). To fulfill the first ex-
pectation, g-SCIFF generates a corresponding happened event, which however triggers
a further positive expectation about the fact that the agent must also play, sooner or later,
the Supervisor role (E(play role(SP, (I, supervisor), T4)), where T4 is existentially
quantified). This expectation clashes with the negative expectation generated before,
leading to inconsistency and, in turn, to a negative answer for the posed query.

5 Discussion and Future Work

As far as this presentation is concerned, we do make some simplifying assumptions
about scenarios being modelled of which we highlight: (i) all system goals are compat-
ible in that they lead to the achievement of the general goal of the system. The designer
can add conflicting goals if the intention is to construct a competitive, however MSMAS
and its tool does not currently support the identification of conflicting system goals and
does not provide any guidance as yet, on how to resolve such issues. (ii) it is the de-
signer’s responsibility to specify how to manage the registration and deregistration of
system participants with respect to an institution. The registration process is normally
used as a mechanism for declaring the role(s) that a system participant intends to play
and by so doing, the institution governor may validate the participant’s eligibility, prior
to starting any activity with that role.

Meta-models for norm-aware MAS are an active research area as an incomplete
selection from the literature demonstrates. The Alive project [2] used model-driven
development to deploy agents and services in the context of an organizational model
defined in Opera, which expresses norms in terms of states to be maintained or avoided.
However, Opera lacks an activity model, making run-time validation difficult. The very
detailed formalisation of EIDE [3] takes what is arguably a more low-level approach
to capturing the quite complex semantics, particularly those associated with scenes and
transitions, using the Z specification language. While this provides a high degree of
precision, there is no associated meta-model, so although there are tools to generate
code automatically, they do not have that formal backing. A further issue is the rel-
atively stylised nature of EIDE agents, whose actions have historically been highly
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constrained through the use of governors that ensure non-compliant actions never oc-
cur. Ghorbani [8] provides a different perspective, in which a meta-model is defined and
used for model-driven development in the context of agent-based simulations, informed
by Ostrom’s IAD framework. While this emphasizes the role of norm and institution in
the governance of agent behaviour, the meta-model reflects the research objectives of
modelling social structures and their evolution. Against this background – and much lit-
erature for which there is not room here – we suggest that (i) the novel combination of
a business-oriented institutional meta-model, designed to support self-management in
use, (ii) with a design- and run-time formal proof mechanism, (iii) provides a new per-
spective on formal software engineering of MAS and contributes towards the evolution
of and the debate on the application of meta-models and model-driven development in
MAS. Future plans for MSMAS include the enhancement of its metamodel to be Model
Driven Development (MDD) compliant and to investigate and include the modelling of
multiple organisations/institution interactions.
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