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Abstract. Declarative process models define the behaviour of business
processes as a set of constraints. Declarative process discovery aims at
inferring such constraints from event logs. Existing discovery techniques
verify the satisfaction of candidate constraints over the log, but com-
pletely neglect their interactions. As a result, the inferred constraints can
be mutually contradicting and their interplay may lead to an inconsistent
process model that does not accept any trace. In such a case, the output
turns out to be unusable for enactment, simulation or verification pur-
poses. In addition, the discovered model contains, in general, redundan-
cies that are due to complex interactions of several constraints and that
cannot be solved using existing pruning approaches. We address these
problems by proposing a technique that automatically resolves conflicts
within the discovered models and is more powerful than existing prun-
ing techniques to eliminate redundancies. First, we formally define the
problems of constraint redundancy and conflict resolution. Thereafter,
we introduce techniques based on the notion of an automata-product
monoid that guarantee the consistency of the discovered models and, at
the same time, keep the most interesting constraints in the pruned set.
We evaluate the devised techniques on real-world benchmarks.

1 Introduction

The compact and correct representation of behaviour observed in event data
of a business process is one of the major concerns of process mining. Various
techniques have been defined for generating models that balance criteria such as
fitness and completeness. Mutual strengths and weaknesses of declarative and
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procedural models are discussed in terms of capturing the behaviour of the log
in a structured and compact way.

One of the advantages of procedural models such as Petri nets is the rich
set of formal analysis techniques available. These techniques can, for instance,
identify redundancy in terms of implicit places or inconsistencies like deadlocks.
In turn, novel declarative modelling languages like Declare have hardly any-
thing to offer as counterparts. This is a problem for several reasons. First, we are
currently not able to check the consistency of a generated constraint set. Many
algorithms that generate Declare models work with confidence and support,
often set to values smaller than 1 such that potentially inconsistent constraint
sets are returned. Second, it is currently unclear whether a given constraint set
is minimal. Since there are constraint types that imply one another, it is pos-
sible that constraint sets are generated that are partially redundant. The lack
of formal techniques for handling these two issues is unsatisfactory from both a
research and a practical angle. It is also a roadblock for conducting fair compar-
isons in user experiments when a Petri net without deadlocks and implicit places
is compared with a constraint set of unknown consistency and minimality.

In this paper, we address the need for formal analysis of Declare mod-
els. We define the notion of an automata-product monoid as a formal notion
for analysing consistency and local minimality, which is grounded in automata
multiplication. Based on this structure, we devise efficient analysis techniques.
Our formal concepts have been implemented as part of a process mining tool,
which we use for our evaluation. Using event log benchmarks, we are able to
show that inconsistencies and redundancies are indeed likely to occur and that
our technique generates constraints sets that are not only consistent, but also
substantially smaller than sets provided by prior algorithms.

The paper is structured as follows. Section 2 introduces the problem of incon-
sistencies and redundancies. In this context, the major concepts of Declare are
revisited. Section 3 frames the problem. Section 4 defines our formal notion of
an automata-product-space, which offers the basis to formalise techniques for
checking consistency and local minimality. Section 5 gives an overview of our
implementation and the results of our evaluations based on benchmarking data.
Section 6 discusses our contributions in the light of related work. Section 7 con-
cludes the paper.

2 Background

This section describes the consistency and minimality problem and revisits the
Declare concepts.

2.1 The Consistency Problem

In order to illustrate the problem of potential inconsistencies and redundancies,
we utilise the event log set of the BPI Challenge 2012 [9]. The event log per-
tains to an application process for personal loans or overdrafts of a Dutch bank.
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Table 1. Semantics of Declare templates as POSIX regular expressions [18]

It contains 262,200 events distributed across 24 different possible tasks
and 13,087 traces. In general, an event log L is as a collection of
traces ti with i ∈ [1, |L|], which in turn are finite sequences of events
ei,j with i ∈ [1, |L|] and j ∈ [1, |ti|]. Each event refers to a task. The log alphabet
A is the set of symbols identifying all possible tasks and we write a, b, c to refer
to them.

Process mining tools such as MINERful [8] and Declare Maps Miner [15]
generate declarative process models in Declare from event logs. In essence,
these models define a set of declarative constraints that collectively determine
the allowed and forbidden traces. Each constraint is defined using a template that
captures the semantics of the constraint using generic parameters. We generically
refer to parameters of templates as x, y, z. Table 1 summarises the available
templates. A template is then instantiated by assigning parameters to actual
tasks. For instance, Response(a, b) is a constraint imposing that if a is executed,
then b must be eventually executed in the future. In this example, a and b are
the assigned parameters of Response(x, y). We define C as the set of templates
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and refer to CA as the set of constraints constructed by considering all possible
parameter assignments of the templates in C to the tasks in A.

The main idea of declarative process mining is that overfitting of the dis-
covered models can be avoided by defining thresholds for parameters such as
support. The support (supp) of a constraint is defined as the number of traces
verifying the constraint divided by the total number of traces in the event log.
Additional metrics are confidence (conf ) and interest factor (IF ), which scale
the support by the percentage of traces in which the constraint is triggered, resp.
both parameters occur. By choosing a support threshold smaller than 100%, we
can easily obtain constraint pairs that are supported by different parts of the
log and such that the first contradicts the second. E.g., when using MINER-
ful on the BPIC 2012 event log with a support threshold of 75%, it returns
the constraints NotChainSuccession(A PREACCEPTED, W Completeren aanvrag) and
ChainResponse(A PREACCEPTED, W Completeren aanvrag), which have an empty set
of traces that fulfil both. In fact, the first constraint imposes that A PREACCEPTED

can never be directly followed by W Completeren aanvrag, whereas the second one
requires that if A PREACCEPTED is executed, W Completeren aanvrag must immedi-
ately follow. Clearly, such inconsistent constraint pairs should not be returned.
Models with inconsistencies cannot be used for simulation nor execution, and
process analysts might be confused by these results.

2.2 The Minimality Problem

The second problem next to consistency is minimality. As observed in [8,20],
Declare templates can be organised in a hierarchy of constraints, depending
on a notion of subsumption. Technically, given the names N1 and N2 of two
templates C, C′ ∈ C of the same arity, we say that C is subsumed by C′, written
N1 � N2, if for every trace t over A and every parameter assignment σ from the
parameters of C to tasks in A, whenever t complies with the instantiation of C
determined by σ, then t also complies with the instantiation of C′ determined
by σ. For binary constraints, we write N1 � N−1

2 if the subsumption holds by
inverting the parameters of C′ w.r.t. those in C, i.e., by considering templates
N1(x, y) and N2(y, x).

For example, RespondedExistence(a, b) states that if a occurs in a trace,
then b has to occur in the same trace (either before or after a). Response(a, b)
thus enforces RespondedExistence(a, b) by stating that not only must b be exe-
cuted, but also that it must follow a. By generalising, we have then Response �
RespondedExistence. By the same line of reasoning, we have that Precedence �
RespondedExistence−1.

Based on the concept of subsumption, we can define the notion of relaxation,
R. R is a unary operator that returns the direct parent in the subsumption
hierarchy of a given template. If there exists no parent for the given template,
then R returns a predicate that would hold true for any possible trace, i.e., �.
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Fig. 1. The subsumption map of Declare relation templates

Formally, given a template C ∈ C, we have:

R (C) =

⎧
⎪⎨

⎪⎩

C′ if (i) C′ ∈ C \ {C}, (ii) C � C′, and
(iii) �C′′ ∈ C \ {C, C′} s.t. C � C′′ � C′

� otherwise

We extend the relaxation operator and the subsumption relation also to the
domainof constraints:Hence, e.g.,R (Response(a, b)) = RespondedExistence(a, b).
Figure 1 depicts the subsumption hierarchy for relation templates. The forward
and backward components are specified for coupling templates, and the negative
templates are linked with their negated counterparts. Note that, in addition to
the specified template subsumption, also Init(x) and End(x) are subsumed by
Participation(x).

When using MINERful on BPIC 2012 with a support threshold of 75%, it
returns the constraints ChainResponse(A SUBMITTED, A PARTLYSUBMITTED) and
NotChainSuccession(A SUBMITTED, A ACCEPTED). The latter constraint is clearly
redundant, because the former requires the first task following A SUBMITTED to
be A PARTLYSUBMITTED. Therefore, no other task but A PARTLYSUBMITTED can
directly follow. A fortiori, A SUBMITTED and A ACCEPTED cannot be in direct
succession. Clearly, such redundant constraint pairs should not be returned.
Models that are not minimal are difficult to understand for the process analysts.
Also, redundant constraints do not provide any additional information about the
permitted behaviour.

3 Framing the Problem

In Section 2, we have informally introduced the issues of consistency and
redundancy in declarative process discovery. We now specify the problem more
precisely. Our goal is to define effective post-processing techniques that, given a
previously discovered Declare model M possibly containing inconsistencies and
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redundancies, manipulate it by removing inconsistencies and reducing redundan-
cies, but still retaining as much as possible its original structure. In this respect,
the post-processing is completely agnostic to the process mining algorithm used
to generate the model, as well as to the input event log.

This latter assumption makes it impossible to understand how much a vari-
ant of the discovered model “fits” with the log. However, we can at least assume
that each single constraint in M retains the support, confidence, and interest
factor that were calculated during the discovery phase. These values can be
used to decide which constraints have to be preferred, and ultimately decide
whether a variant M ′ of M has to be preferred over another one M ′′. Still,
notice that by no means such values can be composed to calculate a global sup-
port/confidence/interest factor for the whole model M ′. This is only possible if the
original log is considered. To see this, consider the case of two constraints C1, C2,
with support s1, s2 < 100%. When the two constraints are considered together,
the global support could range from 0 to the minimum of s1 and s2, and the exact
value could only be determined by computing it directly over the log.

In principle, we could obtain an optimal solution by exhaustive enumeration,
executing the following steps. 1. The vocabulary Σ of M is extracted. 2. The set
CΣ of all possible candidate constraints is built. 3. The set PCΣ of all possible
subsets of CΣ , i.e., of all possible Declare models using constraints in CΣ , is
computed. 4. A set K of candidate models is obtained from PCΣ , by filtering
away those models that are inconsistent or contain redundant constraints. 5. A
ranking of the models in K is established, considering their similarity to the
original, discovered model M .

However, this exhaustive enumeration is in general unfeasible, given the fact
that it requires to iterate over the exponentially many models in PCΣ , a too huge
state space. Consequently, we devise a heuristic algorithm that mediates between
optimality of the solution, and performance. In summary, its main features are:

– It produces as output a consistent variant of the initial model M . This is a
strict, necessary requirement.

– The algorithm works in an incremental fashion, i.e., it constructs the variant
of M by iteratively selecting constraints, and once a constraint is added, it
is never retracted from the model. This is done by iterating through can-
didate constraints in decreasing order of “suitability” w.r.t. the input log,
which is computed by considering the support/confidence/interest factor of
such constraints. On the one hand, this drives our algorithm to favour more
suitable constraints, and remove less suitable constraints in the case of an
inconsistency. On the other hand, this has a positive effect on performance,
and also guarantees that the algorithm is deterministic.

– Due to incrementality, the algorithm is not guaranteed to produce a final
variant that is optimal in size, but we obtain a local minimum. However, our
experimental findings show that the algorithm is able to significantly reduce
the number of redundant constraints.
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4 The Approach

This section describes how we tackle the problem of finding a non-redundant
consistent Declare model in a way that reduces the intractable theoretical
complexity. First, we present the algebraic structure on top of which the check
of redundancies and conflicts is performed: It bases upon the mapping of the
conjunction of Declare constraints to the product of finite state automata
(FSAs). Thereafter, we define and discuss the algorithm that allows us to pursue
our objective. In particular, we rely on the associativity of the product of FSAs.
This property allows us to check every constraint one at a time and include it
in a temporary solution. This is done by saving the product of the constraints
checked so far with the current one. For the selection of the next candidate
constraint to check, we make use of a greedy heuristic, that explores the search
space by gathering at every step the constraint that has the highest support, or
is most likely to imply the highest number of other constraints. The algorithm
proceeds without visiting the same node in the search space twice.

4.1 Declare Models as Automata

As already shown in [7], Declare constraints can be formulated as regular
expressions (REs) over the log alphabet. The assumption is that every task in
the log alphabet is bi-univocally identified by a character. Thus, traces can be
assimilated to finite sequences of characters (i.e., strings) and regular languages
represent the traces allowed by a Declare model.

Using the POSIX wildcards, we can express, e.g., Init(a) as a.*, and
Response(a, b) as [^a]*(a.*b)*[^a]*. The comprehensive list of transpositions
for Declare templates is listed in Table 1 and explained in [18]. Henceforth, we
will refer to such mapping as EReg (C), which takes as input a constraint C and
returns the corresponding RE: E.g., EReg (Response(a, b))=[^a]*(a.*b)*[^a]*.
Defining the operations of conjunction between Declare constraints (∧)
and intersection between REs (&&), EReg is a monoid homomorphism
w.r.t. ∧ and &&. In other words, given two constraints C and C ′,
EReg (C ∧ C ′) = EReg (C) && EReg (C ′), preserving closure, associativity and the
identity element (resp., � and .*).

Since regular grammars are recognisable through REs [5], an RE can always
be associated to a deterministic labelled FSA, which accepts all and only those
finite strings that match the RE. Formally, an FSA is a tuple S = 〈Σ,S, s0, δ, S

f 〉,
where: Σ is the alphabet; S is the finite non-empty set of states; s0 ∈ S is the
initial state; δ : S × Σ → S is the transition function; Sf ⊆ S is the set of
final states. Naming as A the operation leading from an RE to an FSA, we thus
have that a Declare constraint can be associated with its corresponding FSA,
AC = A (EReg (C)). Henceforth, we also call AC the C-automaton. We remark
that, by applying A to the RE of a conjunction of constraints, we obtain an FSA
that exactly corresponds to the product × of the FSAs for the individual con-
straints [12]: A (EReg (C ∧ C ′)) = A (EReg (C)) × A (EReg (C ′)). Also, we recall
that the identity element for FSAs is a single-state automaton whose unique
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state is both initial and accepting, and has a self-loop for each character in the
considered alphabet.

Given a model M =
{
C1, . . . , C|M |

}
, we can therefore implicitly describe the

set of traces that comply with M as the language accepted by the product of
all Ci-automata (for i ∈ [1, |M |]). The language accepted by an FSA A will
be denoted as L (A). In the light of this discussion, our approach searches a
solution to the problem of finding a non-redundant consistent Declare model
within the automata-product monoid, i.e., the associative algebraic structure
with identity element (the universe-set of FSAs) and product operation ×. For
the automata-product monoid, the property of commutativity also holds.

4.2 The Algorithm

Algorithm 1 outlines the pseudocode of our technique. Its input is a Declare
model, M , intended as a set of constraints C1, . . . , C|M |. For every C ∈ M , we
assume that its support, confidence and interest factor are given too, which is
the usual condition when M is the output of mining algorithms such as Declare
Maps Miner or MINERful. Table 2a shows an example of M , defined on the

Algorithm 1. Procedure makeConsistent (M), returning the suboptimal
solution to the problem of finding a minimal set of non-conflicting con-
straints in a Declare model.

Input: A log alphabet A, and a Declare model M defined over A. M is a set of constraints
for which support, confidence and interest factor are given

Output: Set of non-conflicting constraint MR

1 M ′ ← removeSubsumptionHierarchyRedundancies(M)

2 MS ← {
C ∈ M ′ : supp (C) = 1.0

}
// Non-conflicting constraints

3 MU ← M ′ \ MS // Potentially conflicting constraints

4 A ← 〈
A, {s0} , s0,

{⋃
σ∈A 〈s0, σ, s0〉, {s0}}〉 // Automaton accepting any sequence of tasks

5 MR ← ∅ // Set of returned constraints

6 MV ← ∅ // Set of checked constraints

/* Pruning of redundant constraints from the set of non-conflicting ones */

7 MS
list ← sortBySupportCategoryConfidenceIF(MS)

8 foreach CMS
i ∈ MS

list, with i ∈ [1, |MS
list|] do

9 MV ← MV⋃
{

CMS
i

}
// Record that CMS

i has been checked

10 ACMS
i ← A

(
EReg

(
CMS

i

))
// Build the constraint-automaton of CMS

i

11 if L (A) ⊃ L

(
ACMS

i

)
then // If CMS

i is not redundant

12 A ← A × ACMS
i // Merge the CMS

i -automaton with the main FSA

13 MR ← MR⋃
{

CMS
i

}
// Include CMS

i in the set of returned constraints

/* Pruning of conflicting constraints */

14 MU
list ← sortBySupportCategoryConfidenceIF(MU)

15 foreach CMU
i ∈ MU

list, with i ∈ [1, |MU
list|] do

16 resolveConflictAndRedundancy
(

A, MR, CMU
i , MV

)

17 return removeSubsumptionHierarchyRedundancies(MR)
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Algorithm 2. Procedure resolveConflictAndRedundancy
(
A,MR, C,MV

)
,

adding constraint C to the set of constraint MR, if it has not already been
checked (and thus included in set MV), and is not conflicting with the
already added constraints, as verified over the corresponding FSA A.

Input: An FSA A, a set of non-conflicting constraints MR, a constraint C, and a list of
already checked constraints MV

1 if C /∈ MV then // If C was not already checked

2 MV ← MV⋃ {C} // Record that C has been checked

3 AC ← A (EReg (C)) // Build the C-automaton

4 if L (A) ⊃ L
(

AC
)

then // If C is not redundant

5 if L
(

A × AC
)


= ∅ then // If C is not conflicting

6 A ← A × AC // Merge the C-automaton with the main FSA

7 MR ← MR⋃ {C} // Include C in the set of returned constraints

8 else // Otherwise, resolve the conflict
9 if R (C) 
= � then // If a relaxation of C, i.e., R (C), exists

10 resolveConflictAndRedundancy
(

A, MR,R (C) , MV
)

11 if C is a coupling constraint then

12 resolveConflictAndRedundancy
(

A, MR, fw (C) , MV
)

13 resolveConflictAndRedundancy
(

A, MR, bw(C), MV
)

log alphabet {a, b, c, d}. We also assume that the same metrics are defined for
those constraints that are not in M , yet are either their subsuming, negated,
forward or backward version. Again, this is common in the output of the afore-
mentioned algorithms. For the sake of readability, these additional constraints
are not reported in Table 2a. Table 2b shows the output that corresponds to the
post-processing of Table 2a. Constraints that are considered as redundant are
coloured in grey. Struck-out constraints are those that are in conflict with the
others and thus dropped from the returned set.

Given M , the first operation “removeSubsumptionHierarchyRedundancies”
prunes out redundant constraints based on the subsumption hierarchy. The pro-
cedure considers a removal of the subsuming constraints such that their support
is less than or equal to the subsumed one, and the elimination of forward and
backward constraints if the related coupling constraint has an equivalent sup-
port. Detail of this operations have already been described in [8]. The usefulness
of this procedure resides in the fact that it reduces the number of candidate
constraints to be considered, thus reducing the number of iterations performed
by the algorithm. In Table 2b, this operation is responsible for the dropping of
Participation(a), due to the fact that Init(a) is known to hold true.

Thereafter, we partition M into two subsets, i.e.: (i) MS, consisting of those
constraints that are verified over the entire event log (i.e., having a support of
1.0), and (ii) MU, containing the remaining constraints. The reason for doing
this is that the former is guaranteed to have no conflict: Given the fact that
constraints are mined using the alphabet of the event log, those that have a
support of 1.0 can be conjoined, giving raise to a consistent constraint model.
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Table 2. An example of input constraint set processing

(a) Input (b) Processed output

Even though constraints in MS are guaranteed to be conflict-free, they could
still contain redundancies. Therefore, the following part of the algorithm is ded-
icated to the elimination of redundant constraints from this set. To check redun-
dancies, we employ the characterisation of constraints in terms of FSAs. Instead,
constraints in MU may contain both redundancies and inconsistencies. Table 2b
presents the partition of M into MS and MU.

First, we initialise an FSA A to be the identity element w.r.t. automata prod-
uct. In other words, A is initialised to accept any sequence of events that map
to a task in the log alphabet. This automata incrementally incorporates those
constraints that are maintained in the filtered model. To set up the redundancy
elimination in MS as well as the redundancy and inconsistency elimination in
MU, we then order their constitutive constraints according the the following
criteria (in descending order of priority): (i) descending support (this is trivial
for MS, since all constraints have a support of 1.0);(ii) category – consider first
existence constraints, then positive relation constraints, and finally negative con-
straints; (iii) descending confidence; (iv) descending interest factor. This ranking
is of utmost importance, as it determines the priority with which constraints are
analysed. The priority, in turn, implicitly defines the “survival expectation” of a
constraint, as constraints that come later in the list are more likely to be pruned
if they are either redundant or conflicting.

We briefly explain the reason for this multi-dimensional ranking. Support is
the first criterion adopted, because we prefer to preserve those constraints that
are satisfied in the most part of the log. The category criterion is instead driven
by the expertise acquired in the last years in the context of Declare mining
[15,20]. In particular, we tend to preserve those constraints that have the poten-
tial of inducing the removal of a massive amount of other constraints, due to
redundancy. As an example, consider the case of the Init template: Given ρ ∈ A,
if Init(ρ) holds true, then also the relation constraint Precedence(ρ, σ) is guaran-
teed to hold true, for every σ ∈ A\{ρ}. This means that, in the best case, |A|−1
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constraints will be removed because they are all redundant with Init(ρ). Sim-
ilarly, consider the positive relation constraint ChainResponse(ρ, σ): It implies
NotChainSuccession(ρ, σ′) for every σ′ ∈ A \ {ρ, σ}. Thus, ChainResponse(ρ, σ)
has the potential of triggering the removal of |A| − 2 negative constraints due
to redundancy. The last criteria adopted pertain confidence and interest fac-
tor, in order to prefer those constraints whose parameters occur in most traces.
In Algorithm 1, the computation of this ranking is encapsulated inside func-
tion “sortBySupportCategoryConfidenceIF”, which returns a list of constraints
ordered according to the aforementioned criteria. In Table 2b, the result of the
sorting is reported.

After the sorting, constraints are iteratively considered for inclusion in the
refined model, by iterating through the corresponding ranked lists. Constraints
in the list of MS, i.e., CMS

i ∈ MS
list, are only checked for redundancy, whereas con-

straints in MU, CMU

i ∈ MU
list, are checked for both redundancy and consistency.

For every constraint CMS

i ∈ MS
list, redundancy is checked by leveraging language-

inclusion. In particular, this is done by computing the FSA ACMS
i for CMS

i ,

and then checking whether its generated language L
(
ACMS

i

)
is included inside

L (A), which considers the contribution of all constraints maintained so far. If
this is the case, then the constraint is dropped. Otherwise, A is extended with
the contribution of this new constraint (by computing the product A × ACMS

i ),
and CMS

i is added to the set MR of constraints to be returned. In the example
of Table 2b, CoExistence(a, d) is analysed after the existence constraints Init(a)
and End(d), based on the preliminary sorting operation. It thus turns out to be
redundant, because Init(a) and End(d) already specify that both a and d will
occur in every trace. Therefore, they will necessarily always co-occur.

Redundancy and consistency checking of the constraints CMU

i ∈ MU
list is

performed by the “resolveConflictAndRedundancy” procedure (Algorithm 2).
The procedure checks the consistency of those constraints that are not redun-
dant. The redundancy is, again, checked based on the language inclusion of the
language generated by the currently analyzed constraint L

(
ACMU

i

)
in L (A),

where A is the automaton that accumulates the contribution of all constraints
that have been kept so far. The consistency is checked through a language
emptiness test, performed over the intersection of L

(
ACMU

i

)
and L (A). This

is done by checking that L
(
A × ACMU

i

)

= ∅. In case a conflict is detected,

we do not immediately drop the conflicting constraint, but we try, instead, to
find a more relaxed constraint that retains its intended semantics as much as
possible, but does not incur in a conflict. To do so, we employ the constraint
subsumption hierarchy (cf. Section 2.2). In particular, we employ the relax-
ation operator to retrieve the parent constraint of the conflicting one, and
we recursively invoke the “resolveConflictAndRedundancy” procedure over the
parent. The recursion terminates when the first non-conflicting ancestor of the
conflicting constraint is found, or when the top of the hierarchy is reached.
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The two cases are resp. covered in the example of
Table 2b by ChainResponse(b, a), replaced by AlternateResponse(b, a), and by
NotChainSuccession(a, d), which is removed because a non-conflicting ancestor
does not exists. Note that NotChainSuccession(a, d) is to be eliminated because
of the interplay of the other two NotChainSuccession constraints, Init(a) and
End(d). ChainResponse(b, a) is in conflict with ChainResponse(b, c).

If the constraint under analysis is a coupling constraint, then we know that
it is constituted by the conjunction of a corresponding pair of forward and
backward constraints. In this situation, it could be the case that all the relax-
ations of the coupling constraint along the subsumption hierarchy continue to be
conflicting, but the conflict would be removed by just considering either its for-
ward or backward component (or a relaxation thereof). Consequently, we also
recursively invoke the “resolveConflictAndRedundancy” procedure on these two
components.

Finally, a last complete pass over constraints in MR is done, to check again
whether there are subsumption-hierarchy redundancies. If so, MR is pruned
accordingly.

5 Experiments and Results

Our experimentation is based on the application of the proposed approach to
the event log provided for the BPI challenge 2012. In the first set of experi-
ments, we use MINERful to mine the log. We discover the set of constraints
with a support higher than 75%, a confidence higher than 12.5%, and an inter-
est factor higher than 12.5%. The discovered constraints are 306. The total
execution time is of 9,171 milliseconds. By applying the proposed algorithm,
we obtain 130 constraints in total. In the original set of 306 there are 2 con-
flicting constraints that make the entire model inconsistent. These constraints
are NotChainSuccession(A PREACCEPTED, W Completeren aanvrag), conflicting with
ChainResponse(A PREACCEPTED, W Completeren aanvrag),
and NotChainSuccession(W Completeren aanvraag, A ACCEPTED), conflicting with
ChainResponse(W Completeren aanvraag, A ACCEPTED) for similar reasons. Note
that the percentage of reduction over the set of discovered constraints (that
was already pruned based on the subsumption hierarchy) is of 58%.

In the second set of experiments, we have applied the Declare Maps Miner
to mine the log. We discovered the set of constraints with a support higher
than 75% confidence higher than 12.5% and interest factor higher than 12.5%.
The set of discovered constraints pruned based on the diverse pruning techniques
provided by the tool contains 69 constraints. By applying the proposed algorithm
starting from this set, we obtain 41 constraints (with an execution time of 2,764
milliseconds). The percentage of reduction is still of around 40%.

Figure 2 shows the number of discovered constraints using MINERful. In
particular, the plot shows the percentage of templates that are redundant and
then pruned by the proposed algorithm and the ones that are not redundant and,
therefore, discovered. For some templates, it is easy to explain why a high per-
centage of constraints become redundant. For example, CoExistence constraints
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Fig. 2. Redundancy reduction w.r.t. templates

are more often pruned because they are weaker than others and are transitive so
that very often their transitive closures become redundant [16]. For example, if
CoExistence(a, b), CoExistence(b, c), and CoExistence(a, c) are valid, one of them
is always redundant. On the other hand, other constraints, like the ones based
on “chain” templates are stronger and not transitive and then pruned less often.

In general, redundant constraints can be pruned based on very com-
plex reduction rules. For example, from our experiments, we derived that
AtMostOne(A FINALIZED) becomes redundant due to the presence in combina-
tion of AtMostOne(A PARTLYSUBMITTED), Participation(A PARTLYSUBMITTED),
and AlternatePrecedence(A PARTLYSUBMITTED, A FINALIZED). Indeed,
Participation(A PARTLYSUBMITTED) and AtMostOne(A PARTLYSUBMITTED) com-
bined ensure that A PARTLYSUBMITTED occurs exactly once.
Then AlternatePrecedence(A PARTLYSUBMITTED, A FINALIZED) ensures that either
A FINALIZED does not occur or if it occurs it is preceded by the unique occurrence of
A PARTLYSUBMITTED without the possibilities of other occurrences of A FINALIZED

in between. Another example is NotSuccession(W Nabellen offertes, A SUBMITTED),
which is redundant with the combination of Init(A SUBMITTED),
AtMostOne(A PARTLYSUBMITTED), Participation(A PARTLYSUBMITTED),
and ChainSuccession(A SUBMITTED, A PARTLYSUBMITTED). Indeed,
AtMostOne(A PARTLYSUBMITTED) and Participation(A PARTLYSUBMITTED) com-
bined ensure that A PARTLYSUBMITTED occurs exactly once. This constraint
in combination with ChainSuccession(A SUBMITTED, A PARTLYSUBMITTED) and
Init(A SUBMITTED) ensures that A SUBMITTED occurs only once at the beginning
of every trace and, therefore, it can never occur after any other activity.
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All experiments were run on a machine equipped with an Intel Core i5-3320M,
CPU at 2.60GHz, quad-core, Ubuntu Linux 12.04 operating system. The tool has
been implemented in Java SE 7 and integrated with the MINERful declarative
process miner. It can be downloaded at: www.github.com/cdc08x/MINERful.

6 Related Work

Our research relates to three streams of research: Consistency checking for knowl-
edge bases, research on process mining, and specifically research on Declare.
Research in the area of knowledge representation has considered the issue of con-
sistency checking. In particular, in the context of Knowledge-based configuration
systems, Felfernig et al. [10] have challenged the problem of finding the core cause
of inconsistencies within the knowledge base during its update test, in terms of
minimal conflict sets (the so-called diagnosis). The proposed solution relies on
the recursive partitioning of the (extended) CSP problem into subproblems, skip-
ping those that do not contain an element of the propagation-specific conflict [13].
In the same research context, the work described in [11] focuses on the detection
of non-redundant constraint sets. The approach is again based on a divide-and-
conquer approach, that favours however those constraints that are ranked higher
in a lexicographical order. Differently from such works, we tend to exploit the char-
acteristics of Declare templates in a sequential exploration of possible solutions.
As in their proposed solutions, though, we base upon a preference-oriented rank-
ing when deciding which constraints to keep in the returned set.

The problem of consistency arises in process mining when working with
behavioural constraints. Constraint sets as those of the α algorithm [1] and
its extension [23] or behavioural profiles [21,22] are per construction consistent.
DCR graphs are not directly discussed from the perspective of consistency [19],
but benefit from our work due to their grounding in Büchi automata.

More specifically, our work is related to research on Declare and strate-
gies to keep sets small and consistent. In [17], the authors present an approach
based on the instantiation of a set of candidate Declare constraints that are
checked with respect to the log to identify the ones that are satisfied in a higher
percentage of traces. This approach has been improved in [15] by reducing the
number of candidates to be checked through an apriori algorithm. In [16], the
same approach has been applied for the repair of Declare models based on
log and for guiding the discovery task based on apriori knowledge provided in
different forms. In this work, some simple reduction rules are presented. These
reduction rules are, however, not sufficient to detect redundancies due to com-
plex interactions among constraints in a discovered model as demonstrated in
our experimentation.

In [2,3], the authors present an approach for the mining of declarative process
models expressed through a probabilistic logic. The approach first extract a set
of integrity constraints from a log. Then, the learned constraints are translated
into Markov Logic formulas that allow for a probabilistic classification of the
traces. In [4,14], the authors present an approach based on Inductive Logic Pro-
gramming techniques to discover Declare process models. These approaches

http://www.github.com/cdc08x/MINERful
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are not equipped with techniques for the analysis of the discovered models like
the one presented in this paper.

In [7,8], the authors introduce a two-step algorithm for the discovery of
Declare constraints. As a first step, a knowledge base is built, with informa-
tion about temporal statistics gathered from logs. Then, the statistical support
of constraints is computed, by querying that knowledge base. Also these works
introduce a basic way to deal with redundancy based on the subsumption hier-
archy of Declare templates that is non capable to deal with redundancies due
to complex interactions of constraints.

In [6], the authors propose an extension of the approach presented in [7,8]
to discover target-branched Declare constraints, i.e., constraints in which the
target parameter is replaced by a disjunction of actual tasks. Here, as well as
redundancy reductions based on the subsumption hierarchy of Declare con-
straints, also different aspects of redundancy are taken into consideration that
are characteristic of target-branched Declare, such as set-dominance.

7 Conclusion

In this paper, we addressed the problems of redundant and inconsistent constraint
sets that are potentially generated by declarative process mining tools. We for-
malised the problem based on the notion of automata-product monoid and devised
the corresponding analysis algorithms. The evaluation based on our prototypi-
cal implementation shows that typical constraint sets can be further pruned such
that the result is consistent and locally minimal. Our contribution complements
research on declarative process execution and simulation and provides the basis
for a fair comparison of procedural and declarative representations.

In future research, we aim at extending our work towards other perspectives
of processes. When mining declarative constraints with references to data and
resources, one of the challenges will be to identify comparable notions of sub-
sumption and causes of inconsistency. We also plan to follow up on experimental
research comparing Petri nets and Declare. The notions defined in this paper
help design declarative and procedural process models that are equally consistent
and minimal, such that an unbiased comparison would be feasible.
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