
Strategy Synthesis for Data-Aware Dynamic Systems with Multiple Actors

Massimiliano de Leoni1 , Paolo Felli2 , Marco Montali2
1University of Padua - Padua, Italy

2Free University of Bozen-Bolzano - Bolzano, Italy
deleoni@math.unipd.it, {pfelli,montali}@unibz.it

Abstract
The integrated modeling and analysis of dynamic systems
and the data they manipulate has been long advocated, on
the one hand, to understand how data and corresponding de-
cisions affect the system execution, and on the other hand
to capture how actions occurring in the systems operate over
data. KR techniques proved successful in handling a variety
of tasks over such integrated models, ranging from verifica-
tion to online monitoring. In this paper, we consider a simple,
yet relevant model for data-aware dynamic systems (DDSs),
consisting of a finite-state control structure defining the exe-
cutability of actions that manipulate a finite set of variables
with an infinite domain. On top of this model, we consider
a data-aware version of reactive synthesis, where execution
strategies are built by guaranteeing the satisfaction of a de-
sired linear temporal property that simultaneously accounts
for the system dynamics and data evolution.

1 Introduction
Many complex systems can be described in terms of their
constituent activities, and how the resulting execution is af-
fected by the data that these activities manipulate. This is the
case of integrated models for business processes and data,
extensively studied in the last two decades within business
process management and database theory (Reichert 2012;
Calvanese, De Giacomo, and Montali 2013). AI techniques
have been extremely successful to handle a variety of rea-
soning tasks over such integrated models, ranging from
static analysis (Bagheri Hariri et al. 2013; De Masellis et al.
2017; Abdulla et al. 2019) to online monitoring (De Masel-
lis, Maggi, and Montali 2014; Maggi et al. 2011).

In parallel with this line of research, a number of weaker
data-aware models were developed, with a twofold inten-
tion: on the one hand, to capture and formally analyze
decision-driven processes operating over non-persistent data
(Batoulis, Haarmann, and Weske 2017); on the other hand,
to identify models that can be learned from event data using
process mining techniques (van der Aalst 2016). This led to
a balanced model for data-aware dynamic systems expres-
sive enough to capture decision-driven processes (de Leoni,
Felli, and Montali 2018), and simple enough to be learned
from event data by combining control-flow discovery and
decision tree mining techniques (Mannhardt et al. 2016). In
this model, a finite-state control structure defines the behav-
ior of the system in terms of the actions that are allowed in

each control state. These actions operate over a finite set of
variables with infinite domain and comparison predicates,
and their executability is also guarded by the current val-
ues of these variables. The evolution of the system is then
nondeterministic when it comes to resolve decision points
with multiple enabled conditions, or to choose which value
to pick when updating the content of a variable. While in re-
ality these different sources of nondeterminism are typically
controlled by multiple, autonomous actors, verification of
these models has so far always adopted the simplifying as-
sumption that these actors cooperate.

In this work, we relax this assumption, and show how
to combine well-established strategy synthesis approaches
for temporal specifications (Vardi 1996; Pnueli and Rosner
1989) with faithful data abstraction methods, towards a con-
structive, readily implementable technique for strategy syn-
thesis in data-aware dynamic systems (DDSs).

Technically, we look at the usual reactive approach
(Pnueli and Rosner 1989) captured as a two-player adver-
sarial setting, which gives us the ability to consider an ac-
tor, operating within the decision-driven processes, which
can only control a subset of the actions and, similarly, is
responsible for updating a subset of the variables. The ob-
jective is to compute a refinement of the DDS which meets
the desired specification on every trace. Such objective is
here captured as the synthesis of strategies that induce these
refinements. Computing refinements is of particular impor-
tance in a data-aware setting, as the interplay of actions and
data may lead to unforeseen results that are not evident on
the model itself. Execution strategies are built by guarantee-
ing the satisfaction of a specification expressed as a linear
temporal property that simultaneously accounts for the sys-
tem dynamics and data evolution. Differently from the usual
case of simple propositional labels, we need to consider here
an alphabet that is composed not only of action symbols but
is also enriched with data conditions including variable-to-
constant and variable-to-variable comparisons. For instance,
we may want to check the formula 3(x > 0) which, intu-
itively, is satisfied by runs of a DDS in which the variable x
eventually takes a positive value. In line with the intuition
that “each system execution must eventually terminate”, we
adopt a finite-trace semantics and consider a temporal lan-
guage that is based on LTLf (De Giacomo and Vardi 2013).

The paper is organised as follows. In Section 2 we discuss

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

315

the relevance of our approach and related work. In Section 3
we formalise DDSs and their executions. In Section 4 we
present our specification language and its semantics, defin-
ing when a DDS satisfies a formula. In Section 5 we in-
troduce our adversarial setting and strategy synthesis task
and in Section 6 we define a finite abstraction of the runs of
a DDS. Finally, we show how to adapt an automata-based
technique to the synthesis of strategies for a given formula.

2 Related Work
The approach studied here has a general applicability, and
the formal verification of temporal specifications in a data-
aware setting is beneficial for and explored in several ap-
plication domains, including Business Process Management
(de Leoni and Mannhardt 2019; van der Aalst 2016; Reichert
2012), Model-driven Engineering (see e.g. (Tikhonova
2017)), or when there is the need to verify the composition
of different machines, e.g., to produce chip wafers (van Gool
et al. 2006). In particular, the verification of data-aware busi-
ness processes is gaining momentum, triggered by the lat-
est standards for modelling data and decisions, such as the
DMN standard (Decision Model and Notation) by OMG (the
Object Management Group, an international not-for-profit
technology standards consortium). Works such as (Yousfi,
Batoulis, and Weske 2019; Maggi et al. 2011; Calvanese,
De Giacomo, and Montali 2013; De Masellis et al. 2017;
de Leoni, Felli, and Montali 2018) are example of this large
repertoire. In spite of the fact that business processes typ-
ically involve multiple, possibly non-cooperating parties,
very little research in this context was dedicated to date to-
wards strategic reasoning. Our model is analogous to exist-
ing models in the literature (Mannhardt et al. 2017), and is
hence directly applicable.

From the logical point of view, our work has connections
with known verification settings such as that of constraint
LTL (CLTL) (Demri and D’Souza 2007) and of gap-order
constraints (e.g., (Bozzelli and Pinchinat 2014)), although
these adopt an infinite-runs semantics.

Transitional gap order constraints systems (Bozzelli and
Pinchinat 2014) are abstract model of counter machines with
infinite branching and constraints of the form x − y < k,
where x, y are integers variables or constants and k is a
natural number. In this setting, decidability results exist
for the satisfiability and verification of fragments of CTL∗,
which are PSPACE-complete. Notwithstanding the distinct
infinite/finite semantics, there are certainly relationships be-
tween our setting and theirs, although the nature of our syn-
thesis task with partial controllability on variables is not ad-
dressed, to the best of our knowledge, by this literature.

The CLTL framework is closer to the model we study
here, hence we provide a more detailed comparison. CLTL
allows one to specify linear temporal properties with con-
straints on variables, such as 3(x < OOx), which intu-
itively expresses that, eventually, the value of a variable x is
smaller than its value in the second-next state. Also for the
case of real-valued variables, CLTL is more expressive than
the logic we consider here, where constraints do not contain
arbitrary LTL temporal operators and can only compare the
current and next values of variables. Notwithstanding the

difference in terms of finite vs infinite semantics, these log-
ics are similar in spirit. Concrete models of CLTL formulae
are sequences of variable valuations that are abstracted by
sequences of frames (i.e., maximally consistent sets of con-
straints), which is a similar idea to the abstraction technique
used in this paper to tame the data dimension. However, the
task considered in (Demri and D’Souza 2007) and follow-
ing work is satisfiability. In order to exploit these results,
one could follow a procedure similar to the one for standard
LTL/LTLf . First, one would need to represent a DDS as a
finite structure whose transitions are labelled by CLTL for-
mulae restricted to depth at most two (such as x = y or
Ox > x), capturing data tests and updates needed for our
purposes, as well as laws of inertia used to preserve the con-
tent of variables that are not updated. Second, one would
need to translate the DDS itself, conceived as an automa-
ton, into a CLTL formula to be conjoined with the prop-
erty to verify (Demri and D’Souza 2007, Sec. 8). However,
this approach would only tackle verification and it would
not be sufficient for operatively computing strategies even
in a single-actor setting. Indeed, the existence of a sequence
of frames (abstracting valuation sequences) does not allow
one to extract a strategy that selects only those valuation se-
quences that are models of the formula. In fact, at each step
one cannot incrementally compute the valuation sequence
(towards building a CLTL model, and in turn a strategy) by
simply selecting a valuation that is a solution of the variable
conditions in the next frame. Instead, one needs to process
the entire frame sequence so as to foresee at once all the
possible future executions.

Moreover, there are no actions in CLTL. Encoding actions
through either variables or constants, and then labelling tran-
sitions only by constraints, is not a viable approach. In-
deed, this would introduce unwanted nondeterminism, be-
yond that already present in the model (which is due to non-
controllable actions and variable updates). This would both
fail to correctly model the process at hand and also prevent
us from defining controllable executions. Instead of tailoring
a CLTL-based approach to account for these issues, we study
a faithful abstraction that is natively defined over the con-
crete runs of DDSs, so that we can directly solve the more
general problem of strategy synthesis, obtaining results on
verification as a by-product. Local consistency, a fundamen-
tal property assumed for CLTL frame sequences, is here en-
forced during the computation of the abstraction. By adopt-
ing this approach, we are able to describe the exact required
computations (which are directly implementable), following
a well-understood technique, in a modelling framework that
is of direct applicability for real application domains based
on data/decisions and actions.

3 Data-Aware Dynamic Systems
Data-aware dynamic systems (DDSs) consist of a finite-state
structure with state-transitions that are labelled not only by
action symbols, as in regular state-transition systems, but
also by conditions expressed on a finite set of variables.

This is a representation equivalent to that introduced in
previous work (de Leoni, Felli, and Montali 2018; Felli, de
Leoni, and Montali 2019), where bounded Petri nets with

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

316

data are used. It is well known that, when a Petri net is
bounded (i.e., when there is a bound on the number of to-
kens in the places of each reachable marking), by interpret-
ing concurrency as interleaving we can represent the exe-
cution semantics of the net, namely its control-flow, as a
finite-state transition system (Reisig 2013). These Petri nets
with data are known to be as expressive as BPMN (the Busi-
ness Process Model and Notation) with case data and with-
out events and messages. BPMN is the de-facto modelling
standard for the BPM domain for which such nets were de-
vised (Kalenkova et al. 2019).

Before defining the DDSs themselves, we need to define
the shape of data conditions. We restrict to the domain of
reals 〈R, P 〉, where P = {<,>,=, 6=,≤,≥} is a set of bi-
nary comparison predicates on R, although our technique
would seamlessly work with additional finite domains such
as 〈{true, false}, {=, 6=}〉 or further domains that are dense,
e.g. 〈Q, P 〉. This restriction is required to guarantee that,
for each operator � ∈ P that induces a total ordering on
the domain values, if k � k′ then there exists another value
k′′ such that k � k′′ � k′. Intuitively, this property guar-
antees that there is an infinite supply of fresh domain val-
ues in each closed interval (k, k′), a property we require
for our interval-based abstraction when the process we are
modelling is cyclic. Analogous conditions are required for
related approaches in the literature, such as the completion
property in (Demri and D’Souza 2007). For arbitrary ad-
ditional domains we also require the predicates to be effec-
tively computable and closed under negation (as we often
need to negate data conditions).

Given a set V of variables and v ∈ V , we write vr or vw to
denote that v is read (resp., written) by an action, hence we
consider two variable sets V r and V w defined as V r = {vr |
v ∈ V } and V w = {vw | v ∈ V }. This provides the basic
building block for defining data conditions constraining the
evolutions of the DDS, as well as the information on the
current values of such variables. We call the former guards
(data conditions for defining the executability of actions) and
the latter constraints (“static” data conditions).

Definition 1. Given a finite set V , the set GuardsV of pos-
sible guards is the set containing:
• v � k iff v ∈ (V r ∪ V w), k ∈ R and � ∈ P ;
• v1 � v2 iff v1 ∈ (V r ∪ V w), v2 ∈ V r and � ∈ P ;

A guard of the form (vr � k), with k ∈ R, captures a
condition which will be associated to some action (see Defi-
nition 3), requiring that the current value of the variable v is
compared to k through �. For instance, (ar ≥ 0) expresses
that the current value of a is greater or equal to 0. Similarly,
(vw�k) denotes the condition imposing a restriction on the
new value of variable v, that is being written. For instance,
(aw > 0) specifies that the new value of a will be positive.
Guards of the form (vr1 � vr2) and (vw1 � vr2) are analogous,
but compare v1 to the current value of variable v2. In this
paper, k is only used to denote constants.

Variables in V that are read and written by a guard g are
respectively denoted by read(g) and write(g). For exam-
ple, read((ar � br)) = {a, b}, write((aw � br)) = {a},
read((aw � br)) = {b}, write((ar � br)) = ∅.

Definition 2. Given a finite set V , the set CV of possible
constraints is the set containing:
• v � k iff v ∈ V , k ∈ R and � ∈ P ;
• v1 � v2 iff v1, v2 ∈ V and � ∈ P .

A constraint allows to relate a variable with a constant or
with another variable. The distinction between guards and
constraints is only needed to facilitate the technical content
and ease the notation and terminology. Given either a guard
or a constraint c, we denote by ¬c the guard or constraint in
which the predicate in c is replaced by its negation.

A guard variable assignment is a function β : (V r ∪
V w) 7→ R, which assigns a value to read and written vari-
ables. As the name suggests, these assignments are used
to specify the values of variables for evaluating the guards
associated to actions, as we intuitively described above. In
general, this requires to compare previous and current val-
ues. Given a guard variable assignment β and a guard g of
the form (vr � k), we say that g is satisfied when variables
are substituted as per β, i.e., k′ = β(vr) and k′ � k. If the
guard is of the form (vr1 � vr2), this requires that k1 � k2

with k1 = β(vr1), k2 = β(vr2). The case for (vw1 � vr2) is
analogous. This is denoted by writing g[β] = true.

For instance, a guard (vw > vr) imposes that v is updated
with a value greater than its current value. Given a guard
variable assignment β with β(vw) = 3 and β(vr) = 2, we
have that (vw > vr)[β] = true.

A constraint variable assignment is instead a function α :
V 7→ R, which assigns a value to each variable v ∈ V . The
difference with a guard variable assignment β is that while
β is used for evaluating action guards, a constraint variable
assignment holds the current value of each variable in V .

With these notions at hand, we now formally define DDSs
as labelled transition systems equipped with a finite set of
variables and with guards defining data-aware preconditions
and effects attached to the actions.
Definition 3. A DDS B = 〈B, b0,A, T, F, V, α0, guard〉 is
a labelled transition system where:
• B is a finite set of system states, with b0 the initial one;
• A is a finite set of actions;
• T : B × A 7→ B is a transition function, and we denote

that the DDS reaches a new system state b′ through the
execution of a from a system state b by b a−→ b′;

• F ⊆ B is the set of final states, for which we require that
no outgoing transition exists (but not all states without
outgoing transitions must be in F);

• V is a finite set of variables;
• α0 is the initial constraint variable assignment;
• guard : A 7→ GuardsV specifies a guard for each action.

It follows that each action a in a DDS is always assigned
the same guard guard(a). If needed, however, it is always
possible to introduce a fresh copy a′ of a whenever we need
to model distinct guards from distinct system states of the
DDS, i.e., so that guard(a) 6= guard(a′).

Given a ∈ A, as a shorthand we write read(a)
.
= {v ∈

V | v ∈ read(guard(a))}, and analogously write(a)
.
=

{v ∈ V | v ∈ write(guard(a))}.
A system state in F , when reached, indicates the conclu-

sion of the execution. This allows us to model the condi-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

317

0 1 2
3

4choose [numw > 0]

guess [valw ≥ valr] wait

cheat [numw > valr]

win [valr ≥ numr]repeat

Figure 1: A simple DDS B with F = {4}, α0(num) = α0(val) =
0. Guards are between brackets (assuming a tautological guard
when none is specified).

tions, on the control-flow and data variables, under which
the execution may terminate. This is done for simplicity: ar-
bitrary final states as in regular transition systems are possi-
ble, as it is sufficient to introduce additional transitions from
states that are intended to be final to sink final states.

Let us consider as an example the simple DDS in Figure 1.
A number is arbitrarily chosen and assigned to variable num
by executing an action choose, then a second number is
guessed and assigned to variable val via an action guess,
with the condition that the chosen value for val is greater
or equal to the current value of this variable (i.e., greater or
equal to the value chosen in the last iteration, if this exists,
or 0 if no previous iteration exists). If the guessed number
is indeed at least as large as the chosen number, then some
prize is won by executing an action win. Before this test,
however, an action cheat can be executed to make the guess
always wrong. An action wait can be executed instead of
cheating, with no effect on variables.

Next, we define the runs of a DDS. The set of possible
configurations of B is the set of all pairs (b, α) where b is
a system state of B and α is the (current) constraint vari-
able assignment. Intuitively, from a configuration (b, α),
an action a can be executed reaching the new configura-
tion (b′, α′) if: (i) the guard associated to a is satisfied,
(ii) b a−→ b′, and (iii) the new values of variables specified by
α′ result from updating the variables according to the guard
of a. A pair (a, β) where a ∈ A and β is a guard variable
assignment is called action firing.

Definition 4. A DDS B = 〈B, b0,A, T, F, V, α0, guard〉
evolves from configuration (b, α) to configuration (b′, α′) by
action firing (a, β) iff b a−→ b′ and:
• β(vr) = α(v) for every variable v ∈ read(a) that is read,

i.e., the value assigned by the guard variable assignment
β must coincide with that in (b, α);

• the new constraint variable assignment α′ is as α but up-
dated as per β for the variables that are written. Namely,
for all v ∈ V , we have α′(v) = α(v) if v 6∈ write(a),
otherwise α′(v) = β(vw);

• guard(a)[β] = true: the guard of a is satisfied by β.

Essentially, an action firing fully specifies an action ex-
ecution: it specifies the action label and all the variable
values before and after the action is executed. For in-
stance, referring again to Figure 1, from the initial config-
uration (0, {α(num) = 0, α(val) = 0}), the action firing
(choose, β) so that β(numw) = 7 results in the new config-
uration (1, {α′(num) = 7, α′(val) = 0}).

An action firing (a, β) as in Definition 4 is termed legal
in (b, α) because, intutively, β “agrees with” α. We denote a
legal action firing (a, β) from a configuration (b, α) to a con-

figuration (b′, α′) by writing (b, α) a,β−−→ (b′, α′). We also
extend this definition to runs of the form ρ = (b0, α0) a1,β1−−−→
. . . an,βn−−−−→ (bn, αn). A run of B is a run as above starting
from (b0, α0). As we consider runs of unbounded length but
finite, we denote the length of a run ρ by length(ρ). We
also denote the positions of a run ρ, i.e., the configurations
traversed by ρ, as ρ[i], provided that i ∈ [0, length(ρ)−1].
We use the abbreviation last(ρ)

.
= length(ρ)−1.

Finally, we characterize all possible evolutions of a given
DDS by considering all its possible runs.
Definition 5. Given a DDS B = 〈B, b0,A, T, F, V, α0,
guard〉, the reachability graph of B is the graph RGB =

〈W,w0, E〉 where:
• W is the (possibly infinite) set of configurations reachable

by legal runs from w0 = (b0, α0);
• E is a transition function so that (b, α) a,β−−→ (b′, α′) is an

edge iff (a, β) is a legal action firing from (b, α) in B.
From now on, we use sets of constraints as in Defini-

tion 2 (henceforth called constraint sets), to encode con-
ditions on the variables of the DDS, at each step. A
solution of a constraint set C is a constraint variable assign-
ment α such that for each (v � k) ∈ C we have α(v) � k
and, for each (v1 � v2) ∈ C, we have α(v1)� α(v2).

4 Specification Language
Given a DDS B, let LB be the language with grammar:
ψ = true | C | b | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | 〈a〉ψ |3ψ |2ψ
where a ∈ A, C is a constraint set over the variables in B
and b ∈ B is a system state of B. We now give the semantics
on finite runs on RGB, for expressing properties on these
runs. For brevity, in what follows it is often convenient to
represent a constraint variable assignment α as a constraint
set. Hence we define Cα

.
=
⋃
v∈V {(v = α(v))}.

Intuitively, a formula ψ = C is true when C is satisfiable
together with the current constraint variable assignment α
in the run of RGB, i.e., constraint variable assignment is a
solution of C (C ∪ Cα is satisfiable). Similarly, an atomic
formula b requires the current system state to be b. 〈a〉ψ
requires that ψ is true in the run after executing action a (in
the next configuration, which must exist). 2 and 3 are read
as ‘for each step in the run’ and ‘eventually in the run’.
Definition 6. Given a run ρ in RGB and a formula ψ in
LB, we say that ρ satisfies ψ, written ρ |= ψ, iff ρ, 0 |= ψ
according to the following semantics, where i ∈ [0, last(ρ)]:
ρ, i |= true
ρ, i |= C iff α is a solution of C, with ρ[i] = (b, α)
ρ, i |= b iff ρ[i] = (b, α) for some α
ρ, i |= ¬ψ iff ρ, i 6|= ψ
ρ, i |= ψ1 ∧ ψ2 iff ρ, i |= ψ1 and ρ, i |= ψ2

ρ, i |= ψ1 ∨ ψ2 iff ρ, i |= ψ1 or ρ, i |= ψ2

ρ, i |= 〈a〉ψ iff ρ[i] a,β−−→ ρ[i+1] and ρ, i+1 |= ψ
ρ, i |= 3ψ iff ∃j s.t. i ≤ j ≤ last(ρ) and ρ, j |= ψ
ρ, i |= 2ψ iff ∀j s.t. i ≤ j ≤ last(ρ) we have ρ, j |= ψ

A run ρ of RGB is terminal iff it ends in a configuration
(b, α) so that b ∈ F . As final system states in B have no
outgoing edges, terminal runs cannot be extended further.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

318

A witness for a formula ψ in the reachability graph RGB
is a terminal run of RGB satisfying ψ.

A verification problem is a pair 〈B, ψ〉 where B is a DDS
and ψ is the formula in LB which we want to verify. Hence
our first reasoning task, denoted as T1 , is the following:
Definition 7. Given a verification problem 〈B, ψ〉, (T1 :)
check whether there exists a witness for ψ in RGB.

Further, we define when a formula is true in RGB. This
brings together the usual notion of satisfaction of linear tem-
poral formulae with a correctness requirement for DDSs in-
spired to that of “possibility of termination” for data-aware
processes (Felli, de Leoni, and Montali 2019), i.e., that a
final system state can always be reached.
Definition 8. Given RGB, we say that ψ ∈ LB is true in
RGB, written RGB |= ψ, iff every run in RGB is a prefix of
a terminal run, and ρ |= ψ for every terminal run ρ inRGB.

5 Adversarial Setting
Before detailing our technique, we introduce a further rea-
soning task (T2), then show that the very same approach
works for both T1 and T2 . We first give an intuition. As-
sume that the system is in fact a multi-agent system with
a single-agent perspective, i.e., consider an agent (actor) ag
that has some control on the execution of the DDS, so that all
other aspects that cannot be controlled by ag are considered
as controlled by the environment (an abstract antagonist).
Our objective is to: (i) characterise which are the fragments
(or refinements) of RGB that ag can enforce; (ii) represent
such fragments as execution strategies for ag; (iii) define
that ag can force a formula to be true in RGB when such
formula is true in a possible fragment that ag can enforce.

Formally, consider a subset Aag ⊆ A of actions and a
subset Vag ⊆ V of variables that are under the control of
ag. Intuitively, only actor ag can decide to execute actions
in Aag and similarly it is the responsibility of actor ag to
decide the new value of variables in Vag whenever these are
written. To avoid conflicts, we impose one restriction on
DDSs: all actions available from any system state b ∈ B
(i.e. the set {a | b a−→ b′ ∈ T}) are controlled either by the
actor or by the environment. We refer to the former case
by saying that ag controls b, and similarly we say that ag
controls (b, α) in RGB iff ag controls b.
Definition 9. Given B, the actor ag can enforce a set of
action firings X from a configuration (b, α) of RGB iff:
• if ag controls (b, α) then for all (a, β) ∈ X either:

– write(a) = ∅ or write(a) ⊆ Vag or
– for every β′, (b, α) a,β′

−−→ w implies (a, β′) ∈ X;
• if ag does not control (b, α) then for all (a, β) ∈ X either:

– write(a) ⊆ Vag , or
– for every β′, (b, α) a,β′

−−→ w implies (a, β′) ∈ X;
and there is no action a′ so that (b, α) a′,·−−→ w for which
there is no β′ so that (a′, β′) ∈ X .

Intuitively, the actor can always act so that, no matter how
the environment evolves, the selected action firing will be in
X . Since action firings are deterministic, this implies that
the actor can force the next configuration to be in a certain

subset. We denote the set of all sets of action firings that
can be enforced by ag from a configuration w (of the form
(b, α)) as Ctrlwag . Note that it is often possible that the set of
action firings that can be enforced by ag from a configura-
tion w is not unique (i.e., |Ctrlwag| > 1) but it is closed under
union. Finally, Ctrlwag does not depend on the sequence of
configurations (called history) that led to w.

Then, we turn to define the executions that an actor can
enforce. We can model this as a system strategy for ag: it is
a partial function strat which, given the history w0, . . . , wn
of configurations of RGB, either returns a set of legal action
firings that can be enforced by ag or it is undefined (if wn is
terminal). If we define CtrlWa

.
= {Ctrlwag | w ∈ W} then

strat : W ∗ 7→ CtrlWa so that strat(w0, . . . , wn) ∈ Ctrlwn
ag .

We denote by RGstratB the (refined) reachability graph
obtained by executing strat on RGB, that is, so that a
run w0

a1,β1−−−→ · · · an,βn−−−−→ wn of RGB is in RGstratB iff
(ai+1, βi+1) ∈ strat(w0, . . . , wi) for i ∈ [0, n−1]. Since
multiple functions stratmay exist then multiple refinements
are possible, but we do not need to actually compute them.
They are needed to define task T2 : an adversarial problem
is a tuple 〈B, ψ, Vag, Aag〉 where 〈B, ψ〉 is a verification
problem, Vag ⊆ V and Aag ⊆ A.

Definition 10. Given 〈B, Vag, Aag, ψ〉 (T2:) compute a sys-
tem strategy strat for ag so that RGstratB |= ψ (see Def. 8).

For instance, in Fig. 1 we might be interested in checking
whether the actor ag can win with (i) a guess smaller than
3 and (ii) with num = val. Clearly, if ag controls actions
wait and cheat, and variable val, then (ii) is possible. For
(i), the actor also needs to control at least num, so that it can
choose its value to be smaller than 3. However, we cannot
compute strategies onRGB because this structure is infinite-
state in general (its runs are infinite in number and in length).

6 Constraint Graph
In this section we provide a finite, faithful representation of
all the possible runs in RGB, adopting a form of interval
abstraction for the domain of variables, so that we can solve
our tasks on such abstraction rather than on RGB.

First, in order to model the effects of action firings on the
current values of variables, we need a procedure to update
constraint sets according to the guard g = guard(a) of the
selected action a. We denote such operation as C ′ = C ⊕ g
and we give a simple pseudocode in Algorithm 1.

In the algorithm we write saturate(C) to denote a sat-
uration procedure that returns another constraint set C ′ con-
taining all the constraints logically implied by C (using only
variables and constants inC). Note thatC ′ = C⊕g is a con-
straint set, as it does not contain guards. As the constraint
language is based on comparisons, it follows that finitely
many constraints can be added. To guarantee uniqueness,
we assume a canonical ordering of variables and constraints.

Algorithm 1 is as follows: if the guard does not involve
written variables, the constraint corresponding to g is sim-
ply added. If it involves a written variable (line 6) then we
temporarily add to C a new constraint in which we use a

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

319

Algorithm 1: Procedure for computing C ′ .= C ⊕ g
1 input: constraint set C and guard g
2 if g = (vr � k) then
3 C′ ← C ∪ {(v � k)}
4 else if g = (vr1 � vr2) then
5 C′ ← C ∪ {(v1 � v2)}
6 else if g = (vw � k) or g = (vw � vr2) then
7 if g = (vw � k) then
8 C′ ← C ∪ {(v̄ � k)}
9 else if g = (vw � vr2) then

10 C′ ← C ∪ {(v̄ � v2)}
11 C′ ← saturate(C′)
12 foreach c = (v � x) or c = (x� v) in C′ do
13 C′ ← C′ \ {c}
14 foreach (v̄ � x) in C′ do
15 C′ ← C′ \ {(v̄ � x)}
16 if x 6= v then C′ ← C′ ∪ {(v � x)}
17 return C′

18 return saturate(C′)

distinguishable, “primed” copy v̄ of variable v and then re-
move from C all constraints that mention v (here x is used
to denote either a variable or a constant). This is needed
to properly reason on guards of the form (vw � vr). After
saturating, we remove all the previous constraints on v and
replace all occurrences of v̄ with v, unless x is v (as this
would generate a constraint (v � v) – see line 16).

Let us denote by ConstB the set of constants appearing
in the guard of at least one action in B: ConstB = {k ∈
R | ∃a ∈ A, v ∈ V. guard(a) is either (vw�k) or (vr�k)}.
Also, let Const+B

.
= ConstB∪{+∞,−∞}, which we assume

ordered. For B as in Figure 1, Const+B = {−∞, 0,+∞}.
We now define the set of intervals partitioning the domain

of variables, which we will use for our interval abstraction.

Definition 11. The representative intervals for a DDS B and
a variable v is the set of all constraint sets that capture a
partitioning of all possible values of v. It is denoted by
IntervalsvB, defined as the union of {(v = k)} for each
k ∈ ConstB and {(v > k1), (v < k2)} for any two succes-
sive k1, k2 ∈ Const+B .

For the simple DDS in Figure 1, the set IntervalsvB, for
each v, is {{(v < 0)}, {(v = 0)}, {(v > 0})}. Note that
this set is the same for each v ∈ V , but one could optimise
by analysing the structure of B (see end of section).

Definition 12. The set of two-variable constraint sets of a
DDS B is the set C2

B of all satisfiable constraint sets C in
which, for each action a so that guard(a) is of the form (vr1�
vr2), either (v1 � v2) or ¬(v1 � v2) is in C.

Intuitively, this set of constraint sets simply represents all
possible (consistent) ways in which all guards of the form
(vr1 � vr2), associated to actions in B, can be guessed to
be either true of false. For the simple DDS in Figure 1,
C2
B = {{(val ≥ num)}, {(val < num)}}. We will use

these constraint sets to explicitly reason by cases, by guess-
ing all possible combinations of values of these guards.

Finally, we finitely represent the reachability graph RGB

choose

guess cheat wait

guess
cheat

wait

guess
cheat wait

win

0

{
num = 0
val = 0

}
1

{
num > 0
val = 0
val < num

}
2

{
num > 0
val = 0
val < num

}
3 {· · ·}

2

{
num > 0
val > 0
val < num

}
3

{
val > 0

num > val

}
3

{· · ·}

2

{
num > 0
val > 0
val ≥ num

}
3

{· · ·}

4

{· · ·}

Figure 2: CGB for B as in Figure 1 (constraint sets not minimised).
Dots denote unchanged sets. The action repeat is omitted.

of DDS B as a so-called constraint graph where constraints
are used in place of constraint variable assignments.

Definition 13. Given B = 〈B, b0,A, T, F, V, α0, guard〉,
the constraint graph CGB of B is a tuple 〈S, s0, γB〉 where:
• S ⊆ B × 2CV is a set of states, called nodes to dis-

ambiguate the terminology w.r.t configurations in RGB.
Each (b, C) holds the current system state b and a con-
straint set C capturing the current conditions on data;

• s0 = (b0, C0) ∈ S is the initial node, with C0 = Cα0
;

• γB ⊆ S×A×S is the set of arcs, defined with S by mutual
induction as follows. A transition ((b, C), a, (b′, C ′)) is in
γB iff b a−→ b′ and one of the following cases applies:
– (i) write(a) = {v};

(ii) there exists C ′′ ∈ IntervalsvB and C ′′′ ∈ C2
B

s.t.C ′ = (C⊕guard(a))∪C ′′∪C ′′′ is satisfiable.
– (i) write(a) = ∅;

(ii) C ′ = C ⊕ guard(a) is satisfiable.

Intuitively, in the first case an edge exists inCGB for each
possible way in which a representative interval and a two-
variable constraint set can be selected (guessed), so that the
new set is satisfiable. Analogously toRGB, a run of CGB is
a sequence ρ = (s0, C0) a1−→ · · · an−−→ (sn, Cn). The graph
above is finite-state: the second component of the state space
is always bounded by construction, as a DDS has finitely
many guards, inducing finitely many constraints.

An example is shown in Figure 2. At each step, it con-
siders explicitly all possible intervals for the values of writ-
ten variables, as well as the truth value of two-variable con-
straints. The latter are guessed when variables are written
(e.g., three possible outcomes exist for action guess), al-
though one could easily optimise the computation to avoid
considering guesses on variables that cannot affect the ex-
ecution. This would require defining a dependency graph
between variables, and we regard it as an optimisation.

6.1 Verification of Constraint Graphs
We now define a new semantics for the specification lan-
guage LB in Section 4, using CGB as interpretation struc-
ture. Differently from the previous case, a run here traverses
nodes, each of the form (b, C). Accordingly, the semantics
of a formula differs because each such constraint set C ac-
counts for a set of possible solutions (i.e., a set of possible

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

320

b0 b1 b2a1[aw ≥ 0] a2[ar ≥ 0]

(b0, {(a = 0)}) (b1, {(a ≥ 0)}) (b2, {(a ≥ 0)})
a1 a2

Figure 3: A simple DDS B (above) and its CGB (below).

constraint variable assignments α). As we will show, there
is a relationship between the formulae that RGB and CGB
satisfy, giving us a practical way of verifying formulae on
RGB by means of CGB, which is finite-state.

In the semantics below we also resort to a constraint
set (denoted by A) to hold all the “assumptions”, initially
empty, that are “collected” along a run ρ. We provide an
explanation after the definition. Finally, we use 〈-〉ψ as a
shorthand for

∨
a∈A〈a〉ψ.

Definition 14. Given a run ρ in CGB and a formula ψ ∈
LB, we say that ρ satisfies ψ, written ρ |= ψ, iff ρ, 0 |=∅ ψ,
where i ∈ [0, last(ρ)] and A is a constraint set, with:
ρ, i |=A true iff A is satisfiable
ρ, i |=A C iff ρ[i] = (b, C ′) and C ∪A ∪ C ′ is satisfiable
ρ, i |=A b iff ρ[i] = (b, C) and C ∪A is satisfiable
ρ, i |=A ¬ψ iff ρ, i 6|=A ψ
ρ, i |=A C ∧ ψ iff ρ, i |=A C and ρ, i |=A∪C ψ
ρ, i |=A ψ1 ∧ ψ2 iff ρ, i |=A ψ1 and ρ, i |=A ψ2

ρ, i |=A ψ1 ∨ ψ2 iff ρ, i |=A ψ1 or ρ, i |=A ψ2

ρ, i |=A 〈a〉ψ iff ρ[i] a−→ ρ[i+1] and ρ, i+1 |=A⊕guard(a) ψ
ρ, i |=A 3ψ iff ρ, i |=A ψ or (i<last(ρ) and ρ, i |=A 〈-〉3ψ)
ρ, i |=A 2ψ iff ρ, i |=A ψ and (i=last(ρ) or ρ, i |=A 〈-〉2ψ)

As explained before the definition, the set A is the con-
straint set encoding the “assumptions”, initially empty, that
are “collected” along the run ρ, as formalised above. Intu-
itively, whenever a constraint set C is in conjunction with a
subformula (cf. the case for ρ, i |=A C ∧ ψ), the constraints
are first checked to be consistent with the current constraint
set C ′ in the node of CGB (together with the assumptions A
collected so far); then ψ is evaluated by adding C to A.

For an example clarifying this point, consider the very
simple DDS B as in Figure 3, shown with its corresponding
constraint graph CGB. Assume V = {a} and α0(a) = 0.
Consider now a formula ψ = 〈a1〉((a = 2) ∧ 〈a2〉(a = 3)).
It is intuitively evident that this formula must be false: action
a2 does not update the value of a after this is written by
a1, so a cannot be equal to 2 and then, next, be equal to
3. A naive approach, which would simply check the two
constraints (a = 2) and (a = 3), independently from each
other, against the constraint sets in the second and third node
of CGB would erroneously deduce that the formula is true.
Indeed {(a = 2), (a ≥ 0)} and {(a = 3), (a ≥ 0)} are both
satisfiable. Instead, by applying the semantics, in order to
check that ρ, 0 |=∅ ψ we first add guard(a1) to the (empty)
set of assumptions, then verify that ρ, 1 |={(a≥0)} {(a =
2)}, which is true. Then, we add (a = 2) to the assumptions,
i.e. compute A′ = {(a ≥ 0)} ∪ {(a = 2)}, and check
whether ρ, 2 |=A′ {(a = 3)}, which is false.

The justification for the case ρ, i |=A 〈a〉ψ is analogous:
the set A cannot just be incrementally updated, because as-
sumptions must be dropped when they become obsolete af-

ter a variable update. We enforce this by adding (via ⊕) the
guard of the actions that are executed at each step along the
run. As one can verify on Algorithm 1, this removes any cur-
rent information about the variables that are updated. This
is also the reason why the semantics of the operators 3 and
2 is given using this inductive, next-step case.

If ρ |= ψ in CGB then there exists at least one run of
RGB that satisfies ψ and which is, intuitively, abstracted by
ρ (informally, it has the same action symbols and traverses
configurations with a constraint variable assignment that is,
step by step, a solution of the constraint set in the nodes of
CGB – see the proof of Thm. 1).

Analogously to RGB, a run ρ of CGB is terminal iff it
ends in a node (b, C) so that b ∈ F . As final system states in
B have no outgoing edges, terminal runs cannot be extended.
We redefine accordingly the notion of witness for a formula
ψ on CGB: it is a terminal run of CGB satisfying ψ.
Theorem 1. There exists a witness for ψ in RGB iff there
exists a witness for ψ in CGB.

Proof. (sketch) We can show that, when only consider-
ing the actions available at each step, RGB and CGB are
bisimilar. Moreover, an ad-hoc variant of bisimulation ex-
ists so that (b, α) and (b′, C) are bisimilar (being action-
deterministic, this implies b = b′) iff, in addition, α is a
solution of C. Hence each node of CGB corresponds to a
set of configurations in RGB and, similarly, a run in CGB
corresponds to a set of runs in RGB.

The theorem then is a direct consequence of such result.
The complete proof is omitted here due to lack of space, but
we include the definition of the variant of bisimulation. This
requires R ⊆ S ×W to be such that: 〈(b, C), (b′, α)〉 ∈ R
implies that (1) b = b′ and α is a solution of C; (2)

for any (b′, α) a,β−−→ (b′′, α′) there exists in CGB an edge
(b, C) a−→ (b′′, C ′) and 〈(b′′, C ′), (b′′, α′)〉 ∈ R; (3) for any
edge (b, C) a−→ (b′, C ′) in CGB there exists (b′, α) a,β−−→
(b′′, α′) in RGB and ((b′, C ′), (b′′, α′)) ∈ R. One can eas-
ily show by induction from the initial configuration and node
that one such R always exists, and thus that RGB and CGB
are bisimilar according to this definition. As a consequence,
(i) these structures have the same branching structure when
one only considers action symbols; and (ii) it is always pos-

sible to find a witness ρ′ = (s0, C0) a′1−→ · · · a
′
n−−→ (sn, Cn) of

ψ for CGB which is so that one such relation R holds step-
by-step w.r.t. the corresponding witnesses ρ = (b0, α0) a1−→
· · · an−−→ (bn, αn) on RGB. Formally, R as above exists s.t.
〈ρ[i], ρ′[i]〉 ∈ R and ai = a′i for each 0 ≤ i ≤ |ρ|. For each
witness on CGB multiple witnesses may exist in RGB.

7 A Technique for Computing Strategies
We first describe all the required steps, then we detail and ex-
emplify each of them. The procedure is based on a classical
synthesis approach using deterministic and nondeterminis-
tic finite-state automata (DFA and NFA), which in our case
have a more complex, “data-aware” alphabet:
1. Transform the formula ψ into an equivalent DFA Dψ;
2. Transform CGB into a DFA DB;
3. Compute a (special) product, denoted DB ./ Dψ;

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

321

4. Define two DFA games, introduced later, on DB ./ Dψ ,
so that there exists a witness for ψ (T1) iff the first game
can be won and there exists a strategy strat for ag with
RGstratB |= ψ iff the second game can be won (T2).

1. DFA for a formula. Any formula ψ ∈ LB can be trans-
formed into an equivalent LTLf (De Giacomo and Vardi
2013) formula over the alphabet Σ, defined as the union of
the system state symbols B that appear in ψ (and their nega-
tion), of the action symbols in A that appear in ψ (and their
negation) and the set of constraints that encode intervals for
each variable of the DDS, considering the constants of ψ, i.e.
the set:

⋃
v∈V Intervals

v
ψ , where Intervalsvψ is computed

similarly to Def. 11 but with respect to the set of constants
{k | k appears in a constraint of ψ}. Σ is clearly finite.

To obtain the automaton, we use the following algorithm.
First, the formula is taken as a formula in LTLf where all
symbols in Σ are treated as propositional symbols. To han-
dle our next operator, we rewrite any subformula of the form
〈a〉ψ′ as #(a ∧ ψ′), where # is the (strong) next operator.
Similarly, 〈-〉ψ′ becomes #ψ′. Second, we compute a NFA
as for LTLf , with size at most exponential in the size of the
formula (De Giacomo and Vardi 2013). Third, the NFA is
determinized, which is again an exponential step (Rabin and
Scott 1959). Importantly, we require this automaton to be
complete: from each configuration, a transition is defined
for every possible propositional interpretation of the alpha-
bet, i.e., every symbol appears in its positive or negated form
(note that negated constraints are still constraints).

Finally, we operate two transformations: we remove spu-
rious edges labelled with more than one non-negated action
or system state symbol to reduce the size. Then, we replace
each edge in the DFA that is labelled with constraints by a
set of edges as follows. These edges are obtained by substi-
tuting to the set of constraints C ′ of the form (v � k), for
the same v (where k is a constant and thus is used to com-
pute Intervalsvψ), a set C ∈ Intervalsvψ so that C ∪ C ′ is
satisfiable, in any possible way. We can optimise again by
removing edges labelled with unsatisfiable sets.
2. DFA for the constraint graph. Similarly, we trans-
form CGB = 〈S, s0, γB〉, with s0 = (s0, C0), into a DFA
DB = 〈2Σ, SB, s

0
B, δB, FB〉. The objective of this construc-

tion is for this DFA to have the same alphabet of Dψ , so that
a special, “data-preserving” product can be computed. To
achieve this, we take each node (b, C) of CGB as the label
of each edge in the DFA that is reaching that node (we add an
initial dummy state from which an edge towards s0 exists).
DB is computed as follows: Σ is as above, with the addition
of a special symbol init to A (assuming write(init) = ∅);
the set of states SB of the DFA is the set S ∪ {s0

B} of nodes
of the constraint graph plus the dummy initial state s0

B; the
transition function is δB : SB × 2Σ 7→ SB, so that:
• (s0, C0) = δ(s0

B, {init, b0} ∪ C0);
• for any other state: (b′, C ′) = δ((b, C), ςB) iff:

– (b, C) a−→ (b′, C ′) is in CGB;
– ςB = {a, b′} ∪ C ′

• final states FB are the nodes (b, C) with b ∈ F in B.
This is a DFA, since a successor node is encoded in full in

the transition label ςB: DB reads the action and the resulting

system state and constraint set.
3. Product. Finally, we compute a special product DB ./
Dψ , where each state encodes the state of both automata,
with the addition of a third component that holds a set of as-
sumptions (about constraint variable assignments). The in-
tuition is that we need to take as assumptions the constraints
labelling edges of Dψ , which must be assumed to hold in
following steps (see the semantics in Def. 14, which is also
based on assumptions). Technically, the product DB ./ Dψ
is a DFA 〈2ΣΣΣ, S, s0, δδδ,F〉 obtained as follows:
• ΣΣΣ is the alphabet of symbols, constructively defined be-

low. It includes the set A of DDS actions and a finite set
of symbols of the form pick(·), defined by mutual induc-
tion with the transition function δδδ;

• S = Sψ × SB × CV , i.e. a state 〈sψ, sB, A〉 encodes the
current states of Dψ and DB, and assumptions A – recall
that CV is the set of possible constraint sets;

• s0 = 〈s0
ψ, s

0
B, ∅〉 is the initial state;

• δδδ : S× 2ΣΣΣ 7→ S is defined such that an arc 〈s′ψ, s′B, A′〉 =

δδδ(〈sψ, sB, A〉, ς) exists iff the following holds:
– ςψ and ςB exist s.t. s′ψ = δψ(sψ, ςψ), s′B = δB(sB, ςB);
– constr(ςψ ∪ ςB), denoting the set of constraints only

(excluding other symbols in ΣΣΣ), is satisfiable;
– if (ςψ ∩A) 6= ∅ then (ςψ ∩A) = (ςB ∩A) = {a}, i.e.,
a is the only action symbol labelling the edges of Dψ
and of DB. Moreover, if a ∈ ςB then ¬a 6∈ ςψ;

– if (ςB∩A) = {a} thenA∪C∪{guard(a)} is satisfiable,
with (b, C) = sB. This requires that the assumptions
A do not contradict guard(a), since guard(a) ∪ C is
satisfiable by construction and A∪C is satisfiable (this
is true for s0 and for any reachable state: see next);

– the new set of assumptions is:

A′ =

{
(A⊕ guard(a)) ∪ constr(ςψ) if write(a) 6= ∅
A ∪ constr(ςψ) otherwise

with {a} = ς ∩A. The set A is first updated to remove
assumptions that are made obsolete by the action, then
updated with constraints labeling the edge of Dψ;

– A′ ∪ C ′ is satisfiable, for (b′, C ′) = s′B, i.e., the new
set of assumptions A′ is compatible with the new con-
straint set in DB;

– Finally, the set of symbols ς labelling the transition of
the product is as follows: ς = {a} if write(a) = ∅, oth-
erwise ς = {a, pick(v, C ′∪A′)}with {v} = write(a).
In other words, whenever a variable v is written by a,
we label the transition not only by a but also by a sym-
bol pick(v, C ′ ∪ A′) which makes explicit the new set
of constraints that are in the next state of this product.

• F = S∩(Fψ×FB×CV): if the components corresponding
to states ofDψ andDB are both final then the state is final.

4. DFA game. Next, we adapt the general form of syn-
thesis to our setting, resorting to a DFA game between two
players, called the environment and the controller, where the
latter represents the actor ag. In this kind of games, we as-
sume a set X of uncontrollable propositions (i.e., which are
under the control of the environment player), and a set Y
of controllable propositions that are under the control of the

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

322

a b c

· · ·

{(num < 3),win, (num = val)}
{(num < 3),win, (num 6= val)}
{(num < 3),¬win, (num = val)}
{(num < 3),¬win, (num 6= val)}

{(num ≥ 3),¬win, (num = val)}
{(num ≥ 3),¬win, (num 6= val)} · · ·

{(num ≥ 3),win, (num = val)}
{(num < 3),win, (num = val)}

· · · a−

{ } { }
a0

{
num = 0
val = 0

}

{ } b1

 num > 0
val = 0
val < num

{

num < 3
num 6= val

}
a1

 num > 0
val = 0
val < num

{

num ≥ 3
num 6= val

}

b2

 num > 0
val = 0

val < num

{

num < 3
num 6= val

}
b2

 num > 0
val > 0
val < num

{

num < 3
num 6= val

}

b2

 num > 0
val > 0
val ≥ num

{

num < 3
num = val

}

b2

 num > 0
val > 0
val ≥ num

{

num < 3
num 6= val

}

b3 num > 0
val > 0
val ≥ num

{

num < 3
num = val

}

a3

{
val > 0
num > val

}num > val
num ≥ 3
num 6= val

b3

{
val > 0
num > val

}num > val
num < 3
num 6= val

c4

 num > 0
val > 0
val ≥ num

{

num < 3
num = val

}

· · ·
wait, cheat

· · ·
wait, cheat

· · ·
wait, cheat

· · ·
guess

init choose guess

cheat

cheat

wait win

Figure 4: Left: Dψ for ψ = 3((num < 3) ∧ 〈win〉(val = num)), requiring the chosen real to be smaller than 3 and next (by executing win)
the guess to be exact. Dots are used for labels not already labelling other outgoing edges. Right: a fragment of the game (with only action
symbols labelling arcs) showing a winning run. States are associated to two constraint sets, not minimised for clarity, i.e., the constraint set C
as inDB and the constraint set A. State labels refer to the states ofDψ andDB. Note how the action guess generates four possible outcomes,
although only three are in CGB (see Figure 2): two outcomes disambiguate between the cases in which either num = val or num 6= val
is added to the set of assumptions A. A winning strategy exists if at least num, val ∈ Vag and wait, cheat ∈ Aag . Trivially, a sequence of
controller game moves guaranteeing to satisfy ψ is {}, {pick(num, {num > 0, num < 3, . . .})}, {pick(val, {num = val, . . .})}, {wait}, {}.

controller (with X ∩ Y = ∅). The objective is to control, at
each step, the values of variables in Y in such a way that for
all possible values of those in X a certain formula is true.

Formally, the specification of the game is given by a DFA
G of the form G = (2X∪Y , Q, q0, γ,QF), where: (i) Q are
the states of the game and q0 is the initial state; (ii) γ : Q×
2X∪Y 7→ Q is the (partial) transition function so that, given
the current state q and a choiceX and Y of propositions inX
and Y , respectively, for the environment and the controller,
then γ(q,X ∪Y) is the resulting game state; (iii)QF are the
final states, which are winning for the controller.

The game evolves as follows: from a current state q
(initially, q0) the controller chooses values Y for which
γ(q,X ∪ Y) is defined for at least one propositional inter-
pretation of variables in X , then the environment choses X
among these. A play is a word in (2X∪Y)∗. Plays of the
game are of the form π = (X1, Y1)(X2, Y2) · · · (Xn, Yn),
where (Xi, Yi) stand for the propositional interpretation at
the i-th position in π. Given π, the corresponding game run
ρπ is the sequence of game states q0

X1∪Y1−−−−→ · · · Xn∪Yn−−−−−→ qn
so that γ(qi, Xi ∪ Yi) = qi+1, for i ∈ [0, n−1].
Definition 15. A strategy for the controller is a function f :

(2X)∗ 7→ 2Y that, given X1, . . . , Xn with Xi ⊆ X for i ∈
[1, n], decides which propositions in Y to set to true next.

A play π as above is induced by a strategy f iff Y1 = f(ε̄)
and Yi = f(X1, . . . , Xi−1) for i ∈ [1, n], where ε̄ denotes
the empty sequence. A play π is winning if ρπ ends in a
state in QF . A winning strategy is a strategy f inducing
only plays that are winning.

We now give a sound and complete technique to solve
realizability for these games. The controllable preimage
Prec(Q′) of a set Q′ of states Q′ ⊆ Q is the set of states
such that there exists a choice of values for symbols in Y
such that for all choices of values for those in X (for which
a successor exists), the game progresses to states in Q′.
This notion can be seen as the counterpart of the notion
of ‘enforcing’ in Def. 9. Formally, Prec(Y,Q′) = {q ∈
Q | ∀X ∈ 2X . if q′ = γ(q,X ∪ Y) then q′ ∈ Q′} is the

set of game states from where, if the controller chooses Y ,
then no matter how the environment chooses X the result-
ing game state will be in Q′. Then, let Prec(Q′) be the set
{q ∈ Q | ∃Y,X. γ(q,X ∪ Y) ∧ q ∈ Prec(Y,Q′)}, i.e., the
set of states from which the controller can force the game to
reach a state in Q′ (by choosing some Y).

We define the set Win(G) of winning states of a DFA
game G as the least fixpoint Win(G)

.
= µZ.(QF ∪

Prec(Z)), which captures the reachability of final states
in QF . This gives rise to the computation: Win0 =
QF , Wini+1 = Wini ∪ Prec(Wini), Win(G) =⋃
i≤|Q|Wini. Intuitively, from the states in Win(G) the

controller player can force the game to eventually reach a
state inQF , i.e., a terminal state (final for bothDψ andDB).
Theorem 2. G admits a winning strategy iff q0 ∈Win(G).

We now define DFA games for capturing T1 -T2 . In fact,
we can elegantly capture a variety of scenarios, assigning
symbols (for actions and variables) to either player.

Given DB ./ Dψ represented as 〈2ΣΣΣ, S, s0, δδδ,F〉, we de-
fine the DFA game Gψ = (2X∪Y , S, s0, δδδ,F), with Y = ΣΣΣ
and X = ∅. Intuitively, the controller has full control on the
execution of B, selecting both the actions and the conditions
on the written variables.
Theorem 3. Given 〈B, ψ〉, there exists a witness for ψ in
RGB iff there exists a winning strategy for game Gψ .

Proof. (sketch) If there is no winning strategy then ag can-
not enforce winning paths in the game (as they are maximal:
final states in DB have no outgoing edges). By construction
of the product automaton, game paths correspond to runs in
CGB and in turn these abstract runs in RGB (see the proof
sketch of Thm. 1). Then no witness for ψ can exist. In fact,
it can be shown by induction on the structure of the formula
ψ that there exists a run ρ of CGB that corresponds to a
game run ofGψ ending in an accepting state iff ρ |= ψ. This
is obvious if one considers that the game is obtained as the
product of the two automata for CGB and φ. Here, ‘corre-
sponds’ means that the game run is simply projected on the

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

323

constraint graph. The other direction follows by the fact that
runs of CGB abstract runs of RGB (again, by Thm 1).

Finally, given an adversarial problem 〈B, ψ, Vag, Aag〉
and DB ./ Dψ as before, let Gaψ be the game equal to Gψ ,
but with Y = Aag ∪ {pick(v, ·) | v ∈ Vag} and X = ΣΣΣ \ Y .
Namely, the controller is given control of the actions in Aag
and variables in Vag , while the environment controls the rest.

Theorem 4. Given 〈B, ψ, Vag, Aag〉 as before, there exists
strat s.t. RGstratB |= ψ iff a winning strategy forGagψ exists.

Proof. (sketch) This result follows from the fact that the
controller player only controls symbols in ΣΣΣ for actions in
Aag and symbols pick(v, ·) for each variable v ∈ Vag . Intu-
itively, if ψ mentions a two-variable constraint then this will
appear “as is” inDψ , whereas other constraints will induce a
discretisation of the intervals of values. Then, we can show
(i) that a winning strategy f for Gagψ can be readily trans-
formed into a system strategy strat; then (ii) that this strat
induces a set of runs of RGB, corresponding to the game
paths selected by f , which satisfy the following: at each
step (with history ending in a configuration w of RGB), the
set of action firings returned by strat is a set in Ctrlwag as
defined in Def. 9. These steps are commented below.

How to compute a winning strategy when q0 ∈ Win(G),
where G is either Gψ or Gagψ , and how to relate it to system
strategies strat? The first step is to extract f fromWin(G),
assuming q0 ∈ Win(G). Since Win(G) simply captures
a winning region characterised by a reachability property,
we are guaranteed that, if q0 ∈ Win(G), then there ex-
ists a way for the actor ag (the controller player) to reach
a state in QF irrespective of the choices made by the envi-
ronment (since Prec is used to define Win(G)). In fact,
Win(G) encodes any possible way to do so. By applying
f we need to progress by stratification, i.e., from a member
of Wini+1 \Wini, for some i ≥ 0, to a member of Wini.
Thus, we can chose the strategy f in any possible way such
that, for a game play π = (X1, Y1) · · · (Xn−1, Yn−1), then
f(X1, . . . , Xn−1) = Yn implies that for any Xn for which
π′ = π · (Xn, Yn) is a game play, then if last(ρπ) ∈
(Wini+1 \ Wini) then last(ρπ′) ∈ Wini. This is done
by annotating states with the index j by which they are first
included in a set Wini, for j = i.

The second step is, given a winning strategy f for G, to
compute the corresponding system strategy strat for RGB.
One way is to relate f to the runs of RGB that correspond
to runs in G induced by f . This however is impractical
and requires lengthy definitions. More operatively, we di-
rectly apply f to the current game run ρπ and compute
f(X1, . . . , Xn−1) = Y , so that the game play π · (X,Y) re-
sults from the selection of X by the environment. For both
tasks (T1 -T2), depending on the membership in Aag and
Vag , either the actor or the environment chooses the action a
which is the only action symbol in Y ∪X (this is unique by
the construction of the product). Similarly, if write(a) 6= ∅
then either of them chooses a guard variable assignment β
so that the resulting constraint variable assignment (as in
Def. 4) is a solution of C ∪ A, with pick(write(a), C ∪ A)

in Y ∪X . If needed, one can then obtain the system strategy
strat by returning at each step all possible couples (a, β)
that can be obtained in this way, although this is not neces-
sary for the execution of f .

The procedure is correct, and it shows how to apply the
same synthesis technique to T1 -T2 , as 〈B, ψ〉 is equivalent
to the adversarial problem 〈B, ψ, V,A〉. The computed strat-
egy always induces terminal runs of RGB that satisfy ψ.
Theorem 5. Given a winning strategy f for Gψ or Gagψ , the
strategy strat computed as above is s.t. RGstratB |= ψ.

This follows from the fact that, being f based on Prec,
no subset of game edges can be enforced by f unless such
edges correspond, in RGB, to a set of action firings that can
be enforced by ag. Indeed, in the definition of DB ./ Dψ
each edge is either labelled by an action a, when no variable
is written, or it is labelled by {a, pick(write(a), C∪A)} for
some a,A,C. Four cases then exist for each such action a,
depending on whether ag controls a and write(a). These are
the same cases as in Definition 9. Clearly, a single winning
strategy f computed as above is so that, when executed on
RGB, a single action a ∈ Aag at the time will be selected
from states controlled by ag.
Complexity. Regarding complexity, the hardness of the
problem is given by the synthesis problem for LTLf on
nondeterministic domains, which corresponds to the special
case in which ψ has no variables, V 6= ∅ and Vag = ∅. This
is doubly exponential in the formula – see, e.g., (De Gia-
como and Rubin 2018). Likewise, computing Dψ in our ap-
proach has cost doubly exponential in the size of ψ and DB
has size linear in B although at most exponential in |V | (the
number of possible constraint sets). DB ./ Dψ is obtained
by a polynomial cross-product of these structures, although
we require a number of calls to a constraint solver for deter-
mining whether a transition exists in the product, according
to the definition in Section 7.

8 Conclusions
We have illustrated an automata-based technique for com-
puting winning strategies for data-aware dynamic systems,
for temporal specifications that also capture constraints on
the data that these systems manipulate. We achieved this by
combining interval-based data abstraction techniques with
standard automata-based constructions for verification. The
novelty is not related to the use of automata-based tech-
niques for two-player adversarial games, but in the enrich-
ment of these techniques with a ‘data-aware’ feature. This
setting is relevant for several application domains, such as
Business Process Management, that do not allow the data
aspects to be simply abstracted away upfront.

The construction used in this paper can be directly im-
plemented. In future work we will implement the approach,
study possible optimisations, and evaluate it in practical ap-
plication domains. As our model of the system representa-
tion is analogous to data-aware process models in the lit-
erature (cf., e.g., (de Leoni and Mannhardt 2019)), natu-
ral candidates are data-aware models for business processes,
for which state-of-the-art “forward” execution and analysis
tools exist, but not verification nor strategy synthesis tools.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

324

Acknowledgments
This work has been partially supported by the unibz CRC
project DACoMan and the unibz project VERBA.

References
Abdulla, P. A.; Aiswarya, C.; Atig, M. F.; and Montali, M.
2019. Reachability in database-driven systems with numeri-
cal attributes under recency bounding. In Proceedings of the
38th ACM SIGMOD-SIGACT-SIGAI Symposium on Princi-
ples of Database Systems, PODS ’19, 335–352. ACM.
Bagheri Hariri, B.; Calvanese, D.; De Giacomo, G.;
Deutsch, A.; and Montali, M. 2013. Verification of rela-
tional data-centric dynamic systems with external services.
In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’13,
163–174. ACM.
Batoulis, K.; Haarmann, S.; and Weske, M. 2017. Various
notions of soundness for decision-aware business processes.
In ER, volume 10650 of Lecture Notes in Computer Science,
403–418. Springer.
Bozzelli, L., and Pinchinat, S. 2014. Verification of gap-
order constraint abstractions of counter systems. Theoretical
Computer Science 523:1–36.
Calvanese, D.; De Giacomo, G.; and Montali, M. 2013.
Foundations of data-aware process analysis: A database the-
ory perspective. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, PODS ’13, 1–12. ACM.
De Giacomo, G., and Rubin, S. 2018. Automata-theoretic
foundations of FOND planning for LTLf and LDLf goals. In
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI ’18, 4729–4735. AAAI Press.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proceed-
ings of the Twenty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’13, 854–860. AAAI Press.
de Leoni, M., and Mannhardt, F. 2019. Decision discovery
in business processes. In Sakr, S., and Zomaya, A. Y., eds.,
Encyclopedia of Big Data Technologies. Springer.
de Leoni, M.; Felli, P.; and Montali, M. 2018. A holistic ap-
proach for soundness verification of decision-aware process
models. In ER, volume 11157 of Lecture Notes in Computer
Science, 219–235. Springer.
De Masellis, R.; Di Francescomarino, C.; Ghidini, C.; Mon-
tali, M.; and Tessaris, S. 2017. Add data into business pro-
cess verification: Bridging the gap between theory and prac-
tice. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI ’17, 1091–1099. AAAI Press.
De Masellis, R.; Maggi, F. M.; and Montali, M. 2014. Mon-
itoring data-aware business constraints with finite state au-
tomata. In Proceedings of the 2014 International Confer-
ence on Software and System Process, ICSSP ’14, 134–143.
Association for Computing Machinery.
Demri, S., and D’Souza, D. 2007. An automata-theoretic
approach to constraint LTL. Information and Computation
205(3):380–415.

Felli, P.; de Leoni, M.; and Montali, M. 2019. Soundness
verification of decision-aware process models with variable-
to-variable conditions. In 19th International Conference on
Application of Concurrency to System Design, ACSD 2019,
Aachen, Germany, June 23-28, 2019, 82–91. IEEE.
Kalenkova, A.; Burattin, A.; de Leoni, M.; van der Aalst,
W. M. P.; and Sperduti, A. 2019. Discovering high-level
BPMN process models from event data. Business Process
Management Journal 25(5):995–1019.
Maggi, F. M.; Montali, M.; Westergaard, M.; and van der
Aalst, W. M. P. 2011. Monitoring business constraints with
linear temporal logic: An approach based on colored au-
tomata. In BPM, volume 6896 of Lecture Notes in Computer
Science, 132–147. Springer.
Mannhardt, F.; de Leoni, M.; Reijers, H. A.; and van der
Aalst, W. M. P. 2016. Decision mining revisited - discov-
ering overlapping rules. In CAiSE, volume 9694 of Lecture
Notes in Computer Science, 377–392. Springer.
Mannhardt, F.; de Leoni, M.; Reijers, H. A.; and van der
Aalst, W. M. P. 2017. Data-driven process discovery - re-
vealing conditional infrequent behavior from event logs. In
CAiSE, volume 10253 of Lecture Notes in Computer Sci-
ence, 545–560. Springer.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’89, 179–190. Association for Computing
Machinery.
Rabin, M. O., and Scott, D. S. 1959. Finite automata and
their decision problems. IBM Journal of Research and De-
velopment 3(2):114–125.
Reichert, M. 2012. Process and data: Two sides of the same
coin? In On the Move to Meaningful Internet Systems: OTM
2012, 2–19. Berlin, Heidelberg: Springer Berlin Heidelberg.
Reisig, W. 2013. Understanding Petri Nets - Modeling Tech-
niques, Analysis Methods, Case Studies. Springer.
Tikhonova, U. 2017. Engineering the dynamic semantics of
domain specific languages. Ph.D. Dissertation, Department
of Mathematics and Computer Science. Proefschrift.
van der Aalst, W. M. P. 2016. Process Mining - Data Science
in Action, Second Edition. Springer.
van Gool, L.; Punter, T.; Hamilton, M.; and van Engelen,
R. 2006. Compositional mda. In Nierstrasz, O.; Whittle,
J.; Harel, D.; and Reggio, G., eds., Model Driven Engineer-
ing Languages and Systems, 126–139. Berlin, Heidelberg:
Springer Berlin Heidelberg.
Vardi, M. Y. 1996. An automata-theoretic approach to lin-
ear temporal logic. Berlin, Heidelberg: Springer Berlin Hei-
delberg. 238–266.
Yousfi, A.; Batoulis, K.; and Weske, M. 2019. Achiev-
ing business process improvement via ubiquitous decision-
aware business processes. ACM Transactions on Internet
Technology 19(1):14:1–14:19.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

325

	Introduction
	Related Work
	Data-Aware Dynamic Systems
	Specification Language
	Adversarial Setting
	Constraint Graph
	Verification of Constraint Graphs

	A Technique for Computing Strategies
	Conclusions

