
A Framework for Defining and Verifying Clinical
Guidelines: A Case Study on Cancer Screening

Federico Chesani1, Pietro De Matteis2, Paola Mello1,
Marco Montali1, and Sergio Storari3

1 DEIS, University of Bologna, Bologna, Italy
{fchesani, pmello, mmontali}@deis.unibo.it

2 NOEMALIFE, Bologna, Italy
pgdematteis@dianoema.it

3 ENDIF, University of Ferrara, Ferrara, Italy
strsrg@unife.it

Abstract. Medical guidelines are clinical behaviour recommendations used to
help and support physicians in the definition of the most appropriate diagnosis
and/or therapy within determinate clinical circumstances. Due to the intrinsic
complexity of such guidelines, their application is not a trivial task; hence it is
important to verify if health-care workers behave in a conform manner w.r.t. the
intended model, and to evaluate how much their behaviour differs.

In this paper we present the GPROVE framework that we are developing
within a regional project to describe medical guidelines in a visual way and to
automatically perform the conformance verification.

1 Introduction

Medical guidelines are clinical behaviours recommendations used to help and support
physicians in the definition of the most appropriate diagnosis and/or therapy within de-
terminate clinical circumstances. These guidelines, usually represented as flow-charts,
are intrinsically complex; moreover, their application in real cases becomes even more
problematic. Hence, it is very important to verify if health-care workers applying them
are conform with the intended models, and to evaluate how much their applications
differ.

The sanitary organization of the Emilia Romagna region (Italy) uses these guidelines
to describe and to manage cancer screening programs, in particular screening about cer-
vical, breast and colorectal cancers. These guidelines are used to organize the screening,
support test execution, analyze the conformance of the health-care workers behavior
and evaluate how well the screening model “fits” the real screening application. Due to
the management complexity of these screening programs, the Emilia Romagna sanitary
organization is interested in software systems capable to support all these tasks.

In this paper we present the Guideline PRocess cOnformance VErification frame-
work (GPROVE) that we are developing within the SPRING PRRITT regional project.
Several software tools already address the guideline representation and execution issues
but, to the best of our knowledge, no one deeply explores the aspect of conformance ver-
ification. Indeed, the SPRING PRRITT project aims to develop a system for supporting

F. Esposito et al. (Eds.): ISMIS 2006, LNAI 4203, pp. 338–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Framework for Defining and Verifying Clinical Guidelines 339

health-care workers involved in the cancer screening programs, covering both manage-
ment and conformance verification issues. To this purpose, the GPROVE framework
proposes a new visual representation language and a way to integrate it within a formal
framework, based on computational logic, originally developed in the context of SOCS
European project [1].

2 Formalization of the Colorectal Cancer Screening Guideline

As a case study for exploiting GPROVE potentialities we choose the colorectal cancer
screening guideline proposed by the sanitary organization of the Emilia Romagna re-
gion [2]. Colorectal cancer is a disease in which malignant (cancer) cells form in the
tissues of the colon or the rectum. Conformance verification for this screening is useful
to compute statistics about the screening process used by the board of the sanitary or-
ganization, to monitor the progress of the screening program and to eventually propose
changes.

Fig. 1. A fragment of the screening guideline in GOSPEL: the invitation phase

The guideline describes the screening program as composed by six phases: (1)
Screening Planning, (2) Invitation Management, (3) First Level Test with Fecal Oc-
cult Blood Test, (4) Second Level Test with Colonoscopy, (5) Second Level Test with
Opaque Clisma and (6) Therapeutic Treatment. Thanks to the GOSpeL language we
have developed a prototype representation of this guideline (the methodology and the
language used are described in Section 3). Figure 1 shows, for example, the GOSpeL
flow chart diagram of phase (1).

3 Architecture and Modules of the GPROVE Framework

GPROVE offers several functionalities that allow an easy graphical guideline repre-
sentation and the automatic translation of such language to a formal one. Thanks to
this formal representation of the guideline knowledge, it is possible to perform several
analysis on the behavior of the subjects involved in the process described by the guide-
line. The framework architecture, shown in Figure 2, is composed by four modules:
the GOSpeL Editor, the Translation Module, the Verification Module and the Event
Mapping Module.

340 F. Chesani et al.

The GOSpeL Language and Editor. GOSpeL is a graphical language, inspired by
flow charts, for the specification and representation of all the activities that belong to
a process and their flow inside it. The GOSpeL representation of a guideline consists
of two different parts: a flow chart, which models the process evolution, and an ontol-
ogy, which describes at a fixed level of abstraction the application domain and gives a
semantics to the diagram.

Fig. 2. Architecture and modules of the GPROVE framework

Like many other flow-chart languages, GOSpeL describes the guideline evolution us-
ing blocks and relations between blocks. These blocks are grouped into four families (as
shown in Table 1): activities, blocks which represent guideline activities at the desired
abstraction level; gateways, blocks that are used to manage the convergence (merge-
block) and the divergence (split-block) of control flows; start blocks, start points of
(sub)processes; end blocks, end points of (sub)processes. Due to the lack of space, we
omit the detailed description of the GOSpeL language: the interested reader can refer
to [3].

Table 1. GOSpeL elements

activities gateways start blocks end blocks
atomic complex iteration while exclusive deferred parallel parallel start cyclic return end
activity activity choice choice fork join start

In the example of the GOSpeL diagram used to represent the invitation management
phase, shown in Figure 1, the DeliveryResult(. . .) action block expresses that after the
invitation, the screening center waits for the invitation delivery result (DEL RESULT)
and if the delivery fails (e.g. due to a wrong address) the invitation is repeated while if
the patient is emigrated or died the screening process is aborted. In order to know which
path should be followed, variable DEL RESULT is used. For example, the invitation

A Framework for Defining and Verifying Clinical Guidelines 341

repetition case is represented by an arrow which connects the deferred choice to the
cyclic start and is labeled by the logical condition DEL RESULT = ’retry’.

In the editing phase, a semantics is given to the model by means of a domain on-
tology. This ontology is mainly composed by two taxonomies: one is developed by
knowledge experts to model activities of interest, whereas a second taxonomy describes
domain’s entities, namely actors, objects and terms. Each ontological activity is asso-
ciated with one or more ontological entities that are involved in its execution. Each
atomic activity block in the GOSpeL language is semantically specified by assigning it
an ontological activity and a set of formal participant of the requested type.

Participants are introduced within macroblocks giving them a unique name; mac-
roblocks define also precise visibility rules of participants. When specifying an activity,
visible participants can be associated to the selected ontological activity. During the
execution, each participant will be grounded to a concrete instance. E.g., the activity
block DeliveryResult in Figure 1 is associated with the correspondent DeliveryResult
ontological concept. Its formal participants, like Pat and Center, are associated with on-
tological entities too (e.g., Patient and Place respectively). Creation and management
of ontologies is performed through the Protege [4] tool.

The Formal Language and the Translation Module. The formal language used in
the framework is a simplified version of the one proposed by Alberti et al. in the SOCS
European project for the specification and verification of interaction protocols (see [5]
for a complete description). The ongoing social participants behaviour is represented
by a set of (ground) facts called events and denotated by the functor H(that stands
for “happened”). For example, H(invitation(strsrg, center1, lab1, ’10-02-06’, 300), 7)
represents the fact that center1 has sent the invitation with ID 300 to strsrg at time 7.

Even if the participants behavior is unpredictable, once interaction protocols are de-
fined we are able to determine what are the possible expectations about future events.
Events expected to happen are indicated by the functor E. Expectations have the same
format as events, but they will, typically, contain variables, to indicate that expected
events are not completely specified. CLP constraints [6] can be imposed on variables
to restrict their domain. For instance, E(DeliveryResult(Center, Pat, Lab, T, INV ID,
DEL RESULT), Te)∧Te ≤ 15 represents the expectation for Center to verify the deliv-
ery result of the invitation of Pat at a certain time Te, whose value must be lower than
15 (i.e., a deadline has been imposed on Te).

The way expectations are generated, given the happened events and the current ex-
pectations, is specified by means of Social Integrity Constraints (ICS). An IC has the
form of body → head, expressing that when body becomes true then it is supposed that
the events specified in head will happen. In this way, we are able to define protocols as
sets of forward rules, relating events to expectations.

During the translation phase, atomic activity blocks are treated as observable and
relevant events, whereas merge and split blocks determine how events are composed
within an integrity constraint. Start and end blocks map to special events used to identify
the initial and the final step of a (sub)process.

The translation algorithm operates in two steps: in the first one, it partitions the dia-
gram in special sub-sets called minimal windows; in the second one, it translates each
minimal window to an IC. Interested readers can refer to [3] for a detailed description of

342 F. Chesani et al.

the translation algorithm. Equation 1 has been generated automatically by the transla-
tion module, applied on the guideline of Figure 1. It states that, when a screening center
Center verifies the invitation delivery status DEL RESULT, then one among three next
events are expected, depending on the value of DEL RESULT.

H(DeliveryResult(Center, Pat, Lab, T, INV ID, DEL RESULT), Tres)

→E(AnswerV erification(Center, Pat, Lab, T, INV ID, V ER RESULT), Tver)

∧ DEL RESULT = ‘ok‘ ∧ Tver > Tres

∨E(start(invitation), Ts) ∧ DEL RESULT = ‘retry‘ ∧ Ts > Tres

∨E(abort(), Ta) ∧ DEL RESULT $= ‘ok‘ ∧ DEL RESULT $= ‘retry‘ ∧ Ta > Tres

(1)

The Verification Module. The conformance verification is performed by means of the
operational counterpart of ICS , i.e. the SCIFF abductive proof procedure [7]. Given
the partial or the complete history of a specific execution (i.e., the set of already hap-
pened events recorded in a event log), SCIFF generates expectations about participants
behaviour so as to comply with ICS . A distinctive feature of SCIFF is its ability to
check that the generated expectations are fulfilled by the actual participants behaviour
(i.e., that events expected to happen have actually happened). If a participant does not
behave as expected w.r.t. the model, the proof procedure detects such discrepancy and
raises a violation.

Two kinds of guideline conformance violations are detected by the Verification Mod-
ule: the first violation type happens when SCIFF does not find in the log an event that
was expected (E(event) without the relative H(event)); the second violation type is
detected when it finds an event that was not expected (H(event) without the relative
E(event)): if an event is not explicitly expected, then it is automatically considered as
prohibited.

At the moment, we are interested in verifying “a posteriori” if the event log of a
guideline process case is conformant w.r.t. the model. However, since SCIFF is able to
perform both off-line and run-time verification, we are also investigating the possibil-
ity to check during the guideline application if participants behave in a conform manner.

Event Mapping Module. The proposed event mapping module is capable to map on-
tological activities to a concrete DBMS and interact with it in order to extract the corre-
sponding events and create an event log. Events are actively sent to the event mapping
module by the DBMS (i.e. by triggers) or can be acquired via query statements.

4 Conclusions and Future Works

In this paper we have described a new framework, named GPROVE, for specifying
medical guidelines and for verifying the conformance of the guideline execution w.r.t
the specification. This framework is composed by four modules, that allow the user
to graphically specify the guidelines (by means of the GOSpeL language and editor),
to translate the specification into a formal language, to capture the events associated
with the guideline execution and to verify the conformance of such executions w.r.t. the
guideline. GPROVE is currently developed in the context of an Italian regional project

A Framework for Defining and Verifying Clinical Guidelines 343

on cancer screening management. The feasibility of the approach has been exploited on
the real scenario of the colorectal cancer screening.

The literature proposes many systems related to the GPROVE framework. GLARE [8]
and PROforma [9], to cite some, are powerful tools for supporting both representation
and execution of medical guidelines. GPROVE, at the moment, is not integrated with an
execution engine. However, it addresses the conformance verification issue that, as far as
we know, neither GLARE nor PROforma tackle (indeed, GLARE deals only with time
constraint conformance).Hence GPROVE can be considered a complementary approach
w.r.t the ones proposed by GLARE and PROforma. Moreover, GPROVE can be used to
model processes in different application domains, by means of different ontologies.

The conformance verification issue is addressed in [10], where the authors define the
conformance verification of a process model on a event log as an analysis that involves
two aspects: underfitting and overfitting. In our framework, the SCIFF proof procedure
identifies both of them even if with a limited set of conformance statistics that will be
improved soon.

In the future we plan to complete the development of the GPROVE modules and to
extend the expressive power of GOSpeL, maintaining at the same time a valid mapping
to the formalism. We will also deal with conformance verification at execution time.

Acknowledgments. This work has been partially supported by NOEMALIFE under
the regional PRRITT project “Screening PRotocol INtelligent Government (SPRING)”
and by the PRIN 2005 project “Specification and verification of agent interaction
protocols”.

References

1. Societies Of ComputeeS (SOCS), IST-2001-32530, http://lia.deis.unibo.it/research/socs/
(2006)

2. Emila Romagna, Colorectal cancer screening in the Emilia Romagna region of Italy,
http://www.saluter.it/colon/documentazione.htm (2006)

3. Chesani, F., Ciampolini, A., Mello, P., Montali, M., Storari, S.: Testing guidelines con-
formance by translating a graphical language to computational logic. In: To appear in the
proceedings of the ECAI 2006 workshop on AI techniques in healthcare: evidence-based
guidelines and protocols. (2006)

4. Protege, http://stanford.protege.org (2006)
5. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and verifica-

tion of agent interactions using social integrity constraints. Electronic Notes in Theoretical
Computer Science 85(2) (2003)

6. Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. of Logic Programming
19-20 (1994) 503–582

7. The SCIFF Abductive Proof Procedure, http://lia.deis.unibo.it/research/sciff/ (2006)
8. Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Correndo, G.: The glare

approach to clinical guidelines: main features. Stud. Health Tech. Inf. 101 (2004) 162–166
9. Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge-the proforma ap-

proach. Artificial Intelligence in Medicine 14 (1998) 157–181
10. van der Aalst, W.M.P.: Business alignment: Using process mining as a tool for delta analysis

and conformance testing. To appear in Requirements Engineering Journal (2006)

	Introduction
	Formalization of the Colorectal Cancer Screening Guideline
	Architecture and Modules of the GPROVE Framework
	Conclusions and Future Works

