Supervised Learning
Rule-based Classification
The Principle

- The model learned in Rule-Based classification is represented as set of **IF-THEN** rules.

 IF condition **THEN** conclusion

- Example

 R1: **IF** age=youth AND student=yes **THEN** buys_computer=yes

- Terminology

 - The “IF” part is known as the **rule antecedent** or **precondition**: consists in one or more attributes.

 - The “THEN” part is known as **rule consequent**: contains a class prediction.

 - If the condition in a rule antecedent holds true we say the condition is **satisfied** or the rule **covers** the tuple.
Example

<table>
<thead>
<tr>
<th>RID</th>
<th>age</th>
<th>student</th>
<th>credit-rating</th>
<th>Class: buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>youth</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>middle-aged</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>senior</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>senior</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
</tbody>
</table>

R1: IF age=youth AND student=yes THEN buys_computer=yes

The condition is satisfied = The rule covers the tuple
A rule R can be assessed by
- Coverage
- Accuracy

Methodology
- Class labeled dataset D (a set of tuples)

Consider
- n_{covers}: the number of tuples covered by R
- n_{correct}: the number of tuples correctly classified by R
- $|D|$: the total number of tuples in D

\[
\text{coverage}(R) = \frac{n_{\text{covers}}}{|D|} \\
\text{accuracy}(R) = \frac{n_{\text{correct}}}{n_{\text{covers}}}
\]
Example

<table>
<thead>
<tr>
<th>RID</th>
<th>age</th>
<th>student</th>
<th>credit-rating</th>
<th>Class: buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>youth</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>middle-aged</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>senior</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>senior</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
</tbody>
</table>

R1: IF age=youth AND student=yes THEN buys_computer=yes

n_{covers} = ?
n_{correct} = ?
Example

<table>
<thead>
<tr>
<th>RID</th>
<th>age</th>
<th>student</th>
<th>credit-rating</th>
<th>Class: buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>youth</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>middle-aged</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>senior</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>senior</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
</tbody>
</table>

R1: \(\text{IF} \) age=youth \(\text{AND} \) student=yes \(\text{THEN} \) buys_computer=yes

\(n_{\text{covers}} = 3 \)
\(n_{\text{correct}} = ? \)
Example

<table>
<thead>
<tr>
<th>RID</th>
<th>age</th>
<th>student</th>
<th>credit-rating</th>
<th>Class: buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>youth</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>youth</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>middle-aged</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>senior</td>
<td>yes</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>senior</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
</tbody>
</table>

R1: IF age=youth AND student=yes THEN buys_computer=yes

\[n_{\text{covers}} = 3 \]
\[n_{\text{correct}} = 2 \]

\[\text{coverage}(R1) = \frac{n_{\text{covers}}}{|D|} = \frac{3}{7} \]
\[\text{accuracy}(R1) = \frac{n_{\text{correct}}}{n_{\text{covers}}} = \frac{2}{3} \]
How to use Rules for Classification

- Predict the class label for tuple X
 - If a rule R is satisfied by X, the rule is said to be **triggered**
 - If a rule R is the only one satisfied by X, the rule **fires** by returning the class prediction of X

- **Important**
 - Triggering ≠ Firing
 - More than one rule can be satisfied

- **Problems**
 - What if no rule is satisfied by X?
 - **Solution**: use a default rule that fires, for example, the most frequent class
 - If more than one rule are triggered, what if each rule specifies a different class?
Conflicting Rules

R1: IF age=youth AND student=yes THEN buys_computer=yes

R2: IF income=low THEN buys_computer=no

- Need a conflict resolution strategy
 - Size ordering approach
 - Give priority to the rule having the toughest requirement
 - Toughness is measured by the rule antecedent size
 - The triggering rule with the most attribute sets is fired
 - Rule ordering approach
 - Prioritize the rules beforehand
 - Class-based ordering
 - Rule-based ordering
Rule Extraction From a Decision Tree

- One rule is created for each path from the root to a leave node.
- Each splitting criterion along a given path is logically ANDed to form the rule antecedent (IF part).
- The leaf node holds the class prediction (the rule consequent).

R1: IF age=youth AND student=no
R2: IF age=youth AND student=yes
R3: IF age=middle-aged
R4: IF age=senior AND credit_rating=excellent
R5: IF age=senior AND credit_rating=fair
Characteristics of Decision Tree Rules

- Decision tree rules are mutually **exclusive** and **exhaustive**

- **Exclusive**
 - No rule conflict, no two rules triggered for the same tuple
 - One rule per leaf and any tuple is mapped to only one leaf

- **Exhaustive**
 - One rule for each attribute-value combination
 - The set of rules does not require a default rule

Note: The order of rules does not matter when extracted from a decision tree

- **Pruning Rules**
 - Any rule that does not improve accuracy can be pruned
 - Pruning may generate non Mutually exclusive and non exhaustive rules: C4.5 uses class-based ordering
Sequential Covering Algorithm

- IF-THEN rules are **directly** extracted from training data

- Rules are learned sequentially (one at a time)

 Note: In decision trees rules are learned simultaneously

- Each rule for a given class ideally covers many tuples of that class and hopefully no tuples from other classes

- When a rule is learned, the tuples covered by the rule are removed (need of accurate rules but not necessarily high coverage)

- The process repeats on the remaining tuples until a stopping condition:
 - No tuples left
 - The quality measure of a rule is below a threshold
How Are Rules learned?

- In a **general-to-specific** manner

Example
- In loan-application data, costumers have *(age, income, education level, residence, credit-rating, and term of the loan)*
- Two classes: loan_decision=accept and loan_decision=reject

- Start with a general rule for class accept:

 \[
 \text{IF} \quad \text{income} = \text{high} \quad \text{AND} \quad \text{credit_rating} = \text{excellent} \\
 \text{THEN} \quad \text{loan_decision} = \text{accept}
 \]

- Consider each possible attribute test that may be added to the rule
- Adopt a greedy depth-first strategy choosing the rule with high quality (use beam search where the k best attributes are maintained)
- Repeat the process till the rule reached an acceptable quality level
Accuracy seems to be natural as a quality measure, but

- R1: correctly classifies 18 tuples out of 20 (accuracy=90%)
- R2: correctly classifies 2 tuples out of 2 (accuracy=100%)

Accuracy alone is not enough.
Coverage alone is not enough (cover many tuples of ≠ classes)
Use **Entropy**
Rule Quality Measure

- Using **Entropy** (Information Gain)

 \[R: \text{IF condition THEN class=c} \]

- If logically ANDing a given attribute test to **condition** we obtain **condition’**

 \[R’: \text{IF condition’ THEN class=c} \]

- Test the potential rule **R’** using entropy
- Compute the **entropy** based on probabilities \(p_i \), where \(p_i \) is the probability of a class \(C_i \) in \(D \)
- \(D \) is the set of tuples covered by **R’**
- Entropy prefers conditions that cover a large number of tuples of a single class and few tuples of other classes
Rule Quality Measures

- Using **FOIL_Gain (First Order Inductive Learner- Gain)**

\[R: \text{IF condition THEN class}=c \]

- If logically ANDing a given attribute test to **condition** we obtain **condition’**

\[R’: \text{IF condition’ THEN class}=c \]

- The FOIL Gain is computed by

\[
FOIL_Gain = pos' \times \left(\log_2 \frac{pos'}{pos'+neg'} - \log_2 \frac{pos}{pos + neg} \right)
\]

- **pos, pos’**: the number of positive tuples covered by R and R’
- **neg, neg’**: the number of negative tuples covered by R and R’

- It favors rules that have high accuracy and cover many positive tuples
Summary

- Rule-based classification builds a model that is a set of rules.

- Rules can be extracted from a decision tree or directly from training data.

- Rule quality measures are important to assess the rules and to define orders for conflict resolution.