Evolution of Knowledge Bases: DL-Lite Case

Evgeny Kharlamov
Free University of Bozen-Bolzano
KRDB Research Centre

Joint work with:
Dmitriy Zheleznyakov,
Diego Calvanese,
Werner Nutt

[KharlamovZheleznyakov’11]
[Calvanese&al’10]

Dagstuhl Seminar
October, 2011
On 12 April 1961, aboard the Vostok 3KA-3 (Vostok 1), Gagarin became both the first human to travel into space, and the first to orbit the earth. His call sign was Kedr (Siberian Pine, Russian: Кедр).[12]

• Two flavors of Web content:
 • Plain text
 • Knowledge = annotated data + ontologies
• Web content is ubiquitously dynamic
• Goal of our study: to understand how to incorporate new knowledge into the old one
Semantic CVS and Evolution

- **CVS** for managing ontologies
- Several people try to edit the same knowledge
- **Problem**: how to incorporate new knowledge into the existing one
Ontologies

- Ontologies are a prime mechanism to bring semantics using:
 - annotations (e.g., date, name, hasHusband)
 - meta annotations (e.g., class, property)
 - classifications of annotations (e.g., subclass-of)
 - properties of annotations (e.g., domain, range)
 - ...

- Semantic Web Technologies behind ontologies
 - Resource description Framework (RDF)
 - Ontology Web Language (OWL): e.g. $\text{OWL2 QL} = \text{DL-Lite}$
 - Rule Languages (e.g. OWL 2 RL)
DL-Lite$_R$ Ontology Language

- **DL-Lite Knowledge Base (KB):** $K = (TBox, ABox)$

<table>
<thead>
<tr>
<th>TBox assertions:</th>
<th>DL formulas:</th>
<th>FO formulas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>role inclusion</td>
<td>$R \sqsubseteq P$</td>
<td>$\forall x, y. (R(x,y) \rightarrow P(x,y))$</td>
</tr>
<tr>
<td>concept inclusions</td>
<td>$A \sqsubseteq B, A \sqsubseteq \exists R$</td>
<td>$\forall x . (A(x) \rightarrow \exists y. R(x,y))$</td>
</tr>
<tr>
<td>concept disjointness</td>
<td>$A \sqsubseteq \neg B, A \sqsubseteq \neg \exists R$</td>
<td>$\forall x . (A(x) \rightarrow \neg B(x))$</td>
</tr>
</tbody>
</table>

- **ABox assertions:** $A(c) \neg B(c), \exists R(c), R(a,c), R^-(a,c)$

- **Properties:**
 - extended **Krom** (2-clauses) **Horn Logic**: existentials in rules’ heads
 - No **real disjunction**: if $K \models A(c) \lor B(d)$ then $K \models A(c)$ and $K \models B(d)$
 - Every KB K has a canonical model (embedible in every model of K)
Knowledge Base: DL-Lite Example

Roles: HasHb

Concepts: Wife, Husband, Single
Priest, Bishop, Cleric

TBox:
- Wife $\equiv \exists$HasHb
- Husband $\equiv \exists$HasHb$^-$
- Husband $\sqsubseteq \neg$Single
- Priest \sqsubseteq Cleric
- Cleric \sqsubseteq Single
- Husband $\sqsubseteq \neg$Priest

ABox:
- Wife(Mary), Husband(John)
- Priest(Adam), Priest(Bob)
- Bishop(Carl)

Diagram:
- Single
- Husband (John)
- Cleric
- Bishop (Carl)
- Priest (Adam, Bob)
- Wife (Mary)
- HasHb
- 1..n
Knowledge Evolution: DL-Lite case

Old Knowledge: K
New Knowledge: N
Evolved Knowledge: $K \bowtie N$

DL-Lite KB:

Evol. Operator: \bowtie

DL-Lite KB:

Evolved knowledge $K \bowtie N$ should

- be consistent - no logical contradictions
 \[\text{Cleric}(Bob) \land \neg \text{Cleric}(Bob)\]
- be coherent - no useless components
 \[\text{Cleric} \subseteq \text{Single} \]
 \[\text{Cleric} \subseteq \neg \text{Single}\]
- preserve important info, e.g. TBox (\sim ABox evol.) or ABox (TBox evol.)
- minimally different from old KB \sim minimality of change principle
Practical Considerations

- **Closure** under evolution:
 Evolution results should be *expressible* in DL-Lite

- **Efficiency**:
 Evolution results should be computable in *PTIME*
Knowledge Evolution: Old Story Again?

- Knowledge evolution - old problem in AI
- Was primarily studied for Propositional Logics
- We study:
 - whether propositional approaches make sense for DLs
 - new, DL specific approaches

- Two main approaches to evolution of prop. theories:
 1. **Model-Based Approaches** (MBA): return a set of models
 2. **Formula-Based Approaches** (FBA): return set of formulas
Outline

- Knowledge evolution and DL-Lite
- Model-Based approaches and Issues for DL-Lite
- ABox Evolution in restricted DL-Lite
- ABox Evolution in full DL-Lite
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

New Knowledge N:

Diagram showing relationships and entities.
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

\[\text{Single} \rightarrow \text{Husband (John)} \]

\[\text{Wife (Mary)} \]

\[\text{HasHb} \rightarrow 1..n \]

New Knowledge N:

\[\text{Cleric} \]

\[\text{Minister (Carl)} \]

\[\text{Priest (Adam, Bob)} \]

\[\text{Mod}(K) \rightarrow \text{Mod}(N) \]
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

New Knowledge N:
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge \(K \):

New Knowledge \(N \):
Local Model-Based Approaches

• Important information for preservation: new knowledge

Old Knowledge K:

New Knowledge N:

\[\text{Mod}(K) \]

\[\text{Mininal distance} \]

\[\text{Mod}(N) \]

\[\checkmark \]
Local Model-Based Approaches

• Important information for preservation: new knowledge

Old Knowledge K:

\[\text{Mod}(K) \]

New Knowledge N:

\[\text{Mod}(N) \]
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

<table>
<thead>
<tr>
<th>Single</th>
<th>Husband</th>
<th>John</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HasHb</td>
<td>1..n</td>
</tr>
<tr>
<td>Wife</td>
<td>Mary</td>
<td></td>
</tr>
</tbody>
</table>

New Knowledge N:

Old Knowledge K:

$\text{Mod}(K)$

New Knowledge N:

$\text{Mod}(N)$

HasHb

Single

Husband

John

Wife

Mary

Minister

Carl

Priest

Adam, Bob
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

[Diagram showing relationships between Single, Husband (John), Wife (Mary), and HasHb (1..n)]

New Knowledge N:

[Diagram showing relationships between Cleric, Minister (Carl), Priest (Adam, Bob), and Mod(K) and Mod(N) with check marks]

- Minimal distance
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

New Knowledge N:

- Important information for preservation: new knowledge
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

- Single
- Husband John
- HasHb
- Wife Mary

New Knowledge N:

- Cleric
- Minister Carl
- Priest Adam, Bob

Mod(K)

Mod(N)

$\sqrt{\text{Local Model-Based Approaches}}$

$\sqrt{\text{New Knowledge}}$

$\sqrt{\text{Old Knowledge}}$
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

Single ------- x ------- Husband

John

HasHb

$1..n$

Wife

Mary

New Knowledge N:

Cleric

Minister

Carl

Priest

Adam, Bob

Local Model-Based Approaches

$\text{Mod}(K)$

$\text{Mod}(N)$

minimal distance

minimal distance

√

√

√
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

```
Single
X Husband John
HasHb
1..n Wife Mary
```

New Knowledge N:

```
Cleric
Minister Carl
Priest Adam, Bob
```

$\text{Mod}(K)$

$\text{Mod}(N)$

\[
\sqrt{\text{Mod}(K)}
\]

\[
\sqrt{\text{Mod}(N)}
\]

• Important information for preservation: new knowledge

Local Model-Based Approaches
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge \(K \):

New Knowledge \(N \):

The result of evolution:
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

- Single
- Husband: John

Representation?

The result of evolution:

- ✔ ✔ ✔
- ✗
Local Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge \mathbf{K}:

Evolved KB $\mathbf{K'}$:
Global Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

New Knowledge N:
Global Model-Based Approaches

• Important information for preservation: new knowledge

Old Knowledge K:

New Knowledge N:
Global Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

$$\text{Single} \quad \times \quad \text{Husband} \quad \text{John}$$

$\text{Wife} \quad \text{Mary}$

$\text{HasHb} \quad 1..n$

$$\text{Mod}(K)$$

New Knowledge N:

$$\text{Cleric}$$

$$\text{Minister} \quad \text{Carl}$$

$$\text{Priest} \quad \text{Adam, Bob}$$

$$\text{Mod}(N)$$
Global Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

\[
\begin{array}{c}
\text{Single} \\
\times \\
\text{Husband} \\
\text{John} \\
\triangledown \\
\text{HasHb} \\
\downarrow \text{1..n} \\
\text{Wife} \\
\text{Mary}
\end{array}
\]

New Knowledge N:

\[
\begin{array}{c}
\text{Cleric} \\
\text{Minister} \\
\text{Carl} \\
\text{Priest} \\
\text{Adam, Bob}
\end{array}
\]
Global Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

- Single
- Husband: John
- Wife: Mary
- HasHb
- 1..n

New Knowledge N:

- Cleric
- Minister: Carl
- Priest: Adam, Bob

The result of evolution:

- ✓ ✓
- ✗ ✗
Global Model-Based Approaches

- Important information for preservation: new knowledge

Old Knowledge K:

```
Single  Married
      ×
  Husband  John
```

```
Wife  Mary
```

```
HasHb
1..n
```

Mod(K)

```
Representational ?
```

Evolved KB K':

```
Single  Married
      ×
  Husband  John
```

```
Cleric
Carl  Adam, Bob
```

```
Wife  Mary
```

```
HasHb
1..n
```

Mod(K')

The result of evolution:

- ✓
- ✓
- ×
- ×
Distances Between Models

- All MBAs are based on
 - distances between interpretations
 - order on the distances to find minimums
- Distance for Propositional Logic
 - distance as a set \(\text{dist}_\cup(\mathcal{I}, \mathcal{J}) = \mathcal{I} \cup \mathcal{J} \)
 - distance as a number \(\text{dist}_{|\cup|}(\mathcal{I}, \mathcal{J}) = |\mathcal{I} \cup \mathcal{J}| \)
- Example:
 \[
 \mathcal{I} = \{p, q, r\} \quad \text{dist}_\cup(\mathcal{I}, \mathcal{J}) = \{q, r, s\}
 \]
 \[
 \mathcal{J} = \{p, s\} \quad \text{dist}_{|\cup|}(\mathcal{I}, \mathcal{J}) = 3
 \]
Distances Between Models: First Order Case

\[\mathcal{I} = \{A(a), A(b), C(a)\} \quad \text{atom-based} \]

\[\mathcal{J} = \{A(a), A(c), A(d), C(a)\} \quad \text{(relational) symbol-based} \]

\[\text{dist}^a_\emptyset (\mathcal{I}, \mathcal{J}) = \{A(b), A(c), A(d)\} \]

\[\text{dist}^a_{\emptyset \overline{\emptyset}} (\mathcal{I}, \mathcal{J}) = 3 \]

\[\text{dist}^s_\emptyset (\mathcal{I}, \mathcal{J}) = \{A\} \]

\[\text{dist}^s_{\emptyset \overline{\emptyset}} (\mathcal{I}, \mathcal{J}) = 1 \]
Space of Model-Based Approaches

Approach

global: G
local: L

set: \emptyset
number: $|\emptyset|$
symbols: s
atoms: a

Examples of Semantics:

G^a_{\emptyset} $G^a_{\mid\emptyset\mid}$ L^s_{\emptyset}

Distance is built upon

Theorem: DL-Lite is not closed under every of the 8 MBAs: For every MBA there are K, N s.t. $K \diamond N$ is not DL-Lite axiomatizable

- E.g. of issues: capturing evolution requires at least disjunction
Inexpressibility: ABox evolution (TBox is fixed)

New Knowledge: Single(John)

What happens with Mary?

Intuition: two cases are most likely
1. Mary is also single
2. Mary is married to another guy

MBAs gives another case:
3. Mary is married to either Bob or Adam but not to both

Drawback 1: counterintuitive

Drawback 2: inexpressible in DL-Lite

$$K \diamond N \not\models Priest(Adam) \lor Priest(Bob)$$

$$K \diamond N \not\models Priest(Adam)$$

$$K \diamond N \not\models Priest(Bob)$$
Inexpressibility: TBox evolution (ABox is fixed)

New Knowledge: Bishop \subseteq Cleric

How does it affect the old KB?

Intuition:
Old knowledge is not affected, e.g., just add the assertion to the old KB

MBAs give strange model in evolution result:

$$M = \{ \text{Bishop(Carl), Cleric(Carl), } \neg \text{Single(Carl)}, ... \}$$

Hence, $\mathbf{K} \bowtie \mathbf{N} \not\models \text{Cleric} \subseteq \text{Single}$
Quest for Understanding

We want some understanding of:

• DL-Lite wrt evolution
 - What DL-Lite fragments are closed under MBAs?
 - What DL-Lite formulas are in charge of inexpressibility?

• Evolution wrt to DL-Lite
 - Can we capture DL-Lite evolution in richer logics?
 - What are these logics?

• Approximation
 - How to approximate DL-Lite evolution in DL-Lite?
Outline

• Knowledge evolution and DL-Lite
• Model-Based approaches and Issues for DL-Lite
• ABox Evolution in restricted DL-Lite
• ABox Evolution in full DL-Lite
DL-Lite\textsubscript{R}PR fragment of DL-Lite\textsubscript{R}

- DL-Lite with restrictions on assertions involving roles
- Roles cannot be involved in disjointness
 - Forbidden role assertions:
 - Allowed only positive role assertions:
- Any concept inclusion assertions are allowed
- PR stands for Positive Role (interaction)
- Deciding
 \[K \nvDash \text{forbidden assertion}\]

\[
\exists R \sqsubseteq \neg B \quad \times
\]
\[
A \sqsubseteq \exists R \quad \checkmark
\]

can be (syntactically) checked PTIME in |K|
Example: Violating DL-Lite$_{PR}$ condition

New Knowledge: Single(John)

Forbidden assertions:
\[\exists \text{HasHb} \sqsubseteq \neg \text{Priest} \]
\[\exists \text{HasHb} \sqsubseteq \neg \text{Priest} \]

These assertions bring
- disjunction in $K \diamond N$ and
- inexpressibility of $K \diamond N$
Why is \(\text{DL-Lite}_R^{\text{PR}} \) Interesting?

- \(\text{DL-Lite}_R^{\text{PR}} \) is an extension of RDFS (its FO fragment) enriched with:
 - concept disjointness \(A \subseteq \neg B \)
 - mandatory participation \(A \subseteq \exists R \)
- Reasoning in \(\text{DL-Lite}_R^{\text{PR}} \) is as tractable as in \(\text{DL-Lite}_R \):
 - LogSpace query answering for CQs in data complexity
Evolution in DL-Lite\textsubscript{PR}^{\text{PR}}

\[G^a_{\subseteq} \quad G^a_{\#} \quad G^s_{\subseteq} \equiv G^s_{\#} \]

\[L^a_{\subseteq} \equiv L^a_{\#} \equiv G^a_{\subseteq} \equiv G^a_{\#} \quad L^s_{\subseteq} \text{ expressible} \quad \quad L^s_{\#} \text{ inexpressible} \]

Theorem:

• All atom based coincide: they give the same result

• Local and global symbol based semantics coincide

Theorem:

• Closed under local and global atom based and global symbol based.
• Not closed under local symbol based.

Algorithms:

We developed 3 polynomial time algorithms to compute

1. Atom based semantics
2. Global symbol based semantics
3. Minimal sound approximation of local symbol based
Evolution in DL-Lite\textsubscript{PR}R

- DL-Lite\textsubscript{PR}R is a maximal sublogy of DL-Lite\textsubscript{R} closed under the four atom based semantics

Theorem: \(T \) - DL-Lite\textsubscript{R} TBox s.t.:

\[
T \models \exists R \subseteq \neg B
\]

Then, for every of the 8 MBAs there are ABoxes \(A \) and \(N \) s.t. \((T, A) \diamond N\) is not axiomatizable in DL-Lite\textsubscript{R}
Example: Global Symbol-Based Evolution

- Recall: semantics traces changes in predicates only
- Example:

\[A : C(a), C(b), C(c), B(e) \quad N : \neg C(a) \]

- We have to drop \(C(a) \) from \(A \)
- What to do with \(C(b), C(c) \) and \(B(e) \)?

\[A' : \neg C(a), B(e) \]

- If there is an \textit{unavoidable change} in a concept than delete all the \textit{old information} about this concept
Example: Local Symbol-Based Evolution

- Example:

\[\mathcal{A} : C(a), C(b), C(c), B(e) \quad \mathcal{N} : C(d) \]

- What to do with C(a), C(b), C(c) and B(e)?
 delete all about C

\[\mathcal{A}' : C(d), B(e) \]

- If the new data makes any change in a concept, then delete all the old data about this concept

- Capturing this semantics requires disjunction

- The algorithm is a minimal sound approximation of the semantics
Concluding on Model-Based DL-LitePR Evol.

- All four atom-based semantics:
 - give reasonable / intuitive results of evolution
 - can be captured in DL-LitePR with a PTIME algorithm
- Symbol based semantics:
 - give unintuitive results of evolution
 - 2 out of 4 semantics cannot be captured DL-LitePR → does not look good for ABox evolution
- We have 6 model-based approaches to do evolution of RDFS ontologies
Outline

- Knowledge evolution and DL-Lite
- Model-Based approaches and Issues for DL-Lite
- ABox Evolution in restricted DL-Lite
- ABox Evolution in full DL-Lite
Winslett’s Semantics for ABox Evolution

- For the full DL-Lite_R we focus on Winslett’s semantics (WS)
- WS corresponds to an atom-based semantics L^a_Θ
- Atom-based semantics behave well for DL-Lite_R^{PR}
- WS proved its importance:
 - Updates of ABoxes in expressive description logic [Liu&al:2006]
 - DL-Lite ABox updates [De Giacomo&al:2006]

Recall: DL-Lite is not closed under WS
Prototypal Sets

• S - a set of models, finite $\{ J_1, \ldots, J_n \} \subseteq S$ is a prototypal set for S if for every $I \in S$, there $J \in \{ J_1, \ldots, J_n \}$ that can be homo. embedded in I

$$\forall I \in S, \exists J \in \{ J_1, \ldots, J_n \}: \quad J \hookrightarrow I$$

• We call elements of prototypal sets: prototypes

• Not all sets of models have prototypal sets

• DL-Lite KBs have canonical models \Rightarrow prototypal sets are singletons

Theorem: K - DL-Lite$_R$ KB, N - ABox. Then, ABox evolution $K \diamond N$ under WS has a prototypal set
Prototypal Sets

Theorem: \(K - \text{DL-Lite}_R \text{ KB, N - ABox.} \)

Then,

ABox evolution \(K \bowtie N \) under WS has a prototypal set
Behavior of Prototypes for ABox Evolution

1. Take I_0 - slightly extended canonical model of K

2. Construct zero-prototype $I_0 \bowtie N \rightarrow J_0$

3. Construct other prototypes from $I_0 \bowtie N \rightarrow \{J_1, ..., J_n\}$

Theorem: K - DL-LiteR KB, N - ABox. Then,

- prot. set of ABox evol. $K \bowtie N$ is of exponential size in $|K \cup N|$
- all prototypes can be constructed by ConstrProt
Approximating ABox Evolution

Theorem: \(K \)- DL-Lite\(_R\) KB, \(N \)- ABox. Then, a maximal sound approx. of ABox evolution \(K \diamond N \) exists and can be computed in PTIME

- Prototypal sets help in approximation of DL-Lite\(_R\) ABox evolution
- Maximal sound approximation:
 - \(K_{ap} \) is a **sound** approximation of \(K \diamond N \) if \(K \diamond N \subseteq \text{Mod}(K_{ap}) \)
 - \(K_{ap} \) is **maximal** if \(\forall K' \)- sound approx.:
 \(K \diamond N \subseteq \text{Mod}(K_{ap}) \subseteq \text{Mod}(K') \)
Conclusion

1. Inexpressibility

We described the space of 8 MBAs to evolution, and showed inexpressibility of all MBAs for DL-Lite

2. Reasons of inexpressibility

We found DL-Lite formulas responsible for inexpressibility

2. DL-Lite fragments

We found a maximal fragment of DL-Lite closed under 6 out of 8 evolution semantics

4. Approximation

We introduced prototypes and based on them showed how to do PTIME maximal sound approximation of Winslett’s semantics in DL-Ltie
Thank you!

ACSI Project
Artifact-Centric Service Interoperation
FP 7 grant, agreement n. 257593
http://www.acsi-project.eu/

Webdam Project
Foundations of Web Data Management
ERC FP7 grant, agreement n. 226513
http://webdam.inria.fr/
Presentation is Base On

Further Reading

