
Choreographies: using Constraints to Satisfy
Service Requests

Alexander Lazovik,1,2 Marco Aiello,1 and Rosella Gennari2

1. DIT, University of Trento, Via Sommarive 14, 38100 Trento, Italy
2. ITC-irst, Via Sommarive 18, 38100 Trento, Italy

{lazovik,aiellom}@dit.unitn.it gennari@itc.it

Abstract— Interacting with a web service enabled marketplace
in order to achieve a complex task involves sequencing a set
of individual service operations, gathering information from the
services, and making choices. In the context of coreographies
of web services, we propose to encode the problem of issuing
requests as a constraint problem. In particular, we provide
a choreographic framework to handle requests, we show how
the encoding of requests is performed, and we illustrate an
implementation using the Choco constraint system.

I. I NTRODUCTION

Satisfying complex business requirements in service-
enabled marketplaces comprises the composition of business
processes, their execution and monitoring, and gathering in-
formation from services at run-time. Requesters and service
providers have complex requests which express desiderata of
distributed interaction and, ideally, they would want to abstract
from the inner working of the marketplace. These desiderata
express the achievement of complex business requests, the
preference of some requests over others, and the achieving of
certain requests with specific numeric values ranges. A user
may desire to obtain a trip package for a given date spending a
certain amount of money and preferring a certain flight carrier.
A service provider might expose a business rule that forces
unregistered users to pay before receiving the service.

A broad service enabled marketplace is thus a distributed
system in which autonomous actors interact asynchronously
according to some standardized general business process each
one with its own requests and additional requirements. The
interaction of the service providers and requester in such a
setting is known as achoreography. A natural way to model
choreographies is through constraints. In fact, the business
process defining the marketplace can be modeled as a set
of constraints; user requests are interpreted as additional
constraints to be satisfied against the given business process;
finally, the service providers’ requirements are also modeled
as constraints on how their services need to be invoked.

Methods and techniques to automatically enable choreogra-
phies of services are the subject of recent research. There
are approaches based on formal logics [1], [2], [3] or other
approaches based on logic programming formalisms (e.g.,
[4]). All these approaches work under the assumption of
having available rich semantic service description and run-time
information. Artificial Intelligence techniques can provide a
solution to the problem of service composition. In particular,

there have been several proposals using AI planning [5], while
encoding planning problems as constraints is in [6].

In [7], we have proposed the XSRL request language over
complex business domains. In [8], we presented the constraint
model laying at the basis of the present work. In this paper,
we propose a framework for the encoding of choreographies
and requests as a set of constraints; finally, we propose an
implementation using the Choco constraint system.

The remainder of the paper is organized as follows. A
motivating example in the travel domain is introduced in
Section II. In Section III, we present the framework for
managing choreographies encoded as constraints. Section IV
presents the rules for encoding choreographies and requests.
A snapshot of our implementation in Choco is shown in
Section V. Concluding remarks are presented in Section VI.

II. A N EXAMPLE IN THE TRAVELING MARKETPLACE

Consider a user requesting a trip to Nowhereland and having
a number of additional requirements regarding such a trip, e.g.,
that the total price of the trip be lower than 300 euro, the prices
of the hotel lower than 200 euro, avoid using the train, and
so on. To be satisfied such a request involves the interaction
with various autonomous service providers, including a travel
agency, a hotel company and a flight carrier. Services reside
in the same travel marketplace domain and must follow a
standard business process for that domain. Such a process is
exemplified in Figure 1. This process is modeled as a labelled
transition graph, that is, every node is a state in which the
process can be, while directed arcs, each labeled by a specific
action, indicate how the process changes state. Actors involved
in the process are shown at the top of the graph. The actors
include the user issuing the request, a travel agency, a hotel
service, an air service, a train service and a payment service.

The process is initiated by the user contacting a travel
agency, hence, (1) is the initial state. The state is then changed
to (2) by requesting a quote from an hotel (actiona1). The
dashed arcs represent web service responses, in particular
arc a2 brings the system in the state (3). The execution
continues along these lines by traversing the paths in the
transition graph until we reach state (14). In this state a
confirmation of an hotel and of a flight or train is given by
the travel agency and the user is prompted for acceptance of
the travel package (13).

Fig. 1. A traveling business process.

Actions in the graph can benondeterministic. This is
illustrated, for instance, in state (4). In this state the user
has accepted the hotel room price however is faced with two
possible outcomes, one that a room is not available (where the
system transits back to state (1)) and the other where a room
reservation can be made (state (5)). The actual path will be
determined only at run-time.

The lower part of the business process models the payment
of the travel package just booked as an atomic action. This
means the entire trip payment is atomic.

III. W EB SERVICE EXECUTION USING CONSTRAINTS

Issuing a request to a marketplace generates a choreographic
effect in which the various service providers are invoked and
provide service following a precise order. The order is deter-
mined by the request, by the run-time conditions, by the values
returned by the various providers, and by nondeterministic
conditions. We view such an execution as the performing of
a set of actions of the transition graph in order to achieve
the issued request. Given the number of unknown elements
and the nondeterministic nature of services, an initial plan
will often fail, making replanning necessary. We encode the
choreography as a constraint problem. In [8], we provide

Constraint Programming
System

Monitor

SERVICE
REGISTRY

WEB SERVICE
IMPLEMENTATIONS

Executor

verifies constraints on-the-fly

invokes web services
collects new information

role & provider-level
assertions

client

service providers

business process,
process-level assertions requests plan

executioninitial plan,
replanning

Fig. 2. Framework with a constraint programming system.

the basic algorithms for the encoding, here we introduce the
framework for supporting such an encoding.

In this view of a choreography, abusiness processis a
planning domain, that is, a labeled transition graph whose
states represent the state of a distributed computation. Such a
transition graph can be extracted from a standard choreography
description. What we do is to transform this graph into a set
of constraints according to the rules shown in Table I. The
user requestis also encoded as a set of constraints, as shown
in Table I, to be satisfied against the constraint set of the
business process. In other words, achoreographyfor satisfying
a request amounts to the the execution of a plan, which in turn
we view as a solution to a constraint-based problem.

In Figure 2, we present the choreography framework based
on constraints to satisfy user requests. The framework consists
of four components: monitor, constraint programming system,
and supporting runtime environment. The monitor manages the
overall process of interleaving planning and execution. Ittakes
user requests, the business process, and starts interacting with
the constraint programming system that synthesizes a plan and
returns it to the monitor. The plan is a sequence of actions to
be executed. The constraint system returns a failure if there
is no plan for the user request in the given domain. Let us
assume that a correct plan exists and therefore is synthesized.
Then the monitor passes it to the executor. The executor is
responsible for executing the plan. While executing each action
of the plan, the executor may gather new information from
the service registry or from the service invocations. Whenever
new information is obtained, the constraint set is updated
and the constraint system checks if the newly introduced
constraints violate the plan under execution. The framework
works iteratively until the request is satisfied or there is no
satisfying execution.

For the framework shown in Figure 2 constraints come out
as the natural choice. Firstly, typical web service interactions
involve constraints over numeric values, and constraint pro-
gramming systems provide solvers for these. Secondly, the

execution of the business process depends on the outcome of
the services it consist of, new information gathered at runtime;
in other words, a process result depends on the information
that is available only at runtime. Interleaving planning and ex-
ecution supports such iterative model of execution. Replanning
is performed when new information is gathered. Due to the
incremental nature of most constraint programming solvers,
full replanning from scratch is not needed, in the sense that
one can add new constraints to the set of already active ones;
this can be seen as a refinement of the initially synthesized
plan. However, when constraints are to be removed from
the constraint set, for example, when changing a provider,
the constraint space may have to be rebuilt—however, an
extension of Choco allows for the “intelligent” removal of
constraints [9].

To benefit from constraint programming we have to for-
mulate the choreography problem in terms of constraints.
In the following section we show how the service domain
accompanied with requests is encoded.

IV. EXPRESSINGCHOREOGRAPHIES ANDREQUESTS

To express the execution of the requests, i.e., the run of a
choreography in a specific web service context, we need three
main ingredients:

(BP) a representation of the Business Process or Domain;
(RL) a Request Language to express requests;
(⊲⊳) a mechanism to decide how to coordinate and se-

quence the service invocations in order to satisfy the
requests.

There are a number of requirements on these ingredients. For
the business process, we want to use a representation able
to capture the nondeterminism typical of web service imple-
mentations and to be state based. For the request language, we
want a language which is high-level and expressive. It must be
possible to state preferences, to state a number of subtasks, to
sequence the order in which the subtasks might be achieved.
Finally, for the choreographic mechanism we want an agile
framework which can be implemented, but also sound and
complete.

We formalize the choreography as a constraint programming
task. In this way, the requester’s desires become a set of con-
straints over an actual business process, while the satisfaction
of the request is the satisfaction of the constraints. While
the constraint programming system tries to satisfy these, a
number of invocations are performed which might lead to more
constraints being added or to the instatiation of a number of
free variables. The latter process is an instance of information
gathering at run time.

More formally, we model (BP) ad (RL) as a set of con-
straints (⊲⊳) over controlled and non-controlled variables. The
constraints have the following form:

[∀ξi :] cv ⊲⊳ value, (1)

• value is a value from the domain of the variablev,
• cv is a vector of expressions of the form

∑

βi[ξi]ai,k

with βi, ξi ∈ {0, 1},

• the ξi are non-controlled variables and theβi are con-
trolled variables,

• ai,k is the effect of actionai for outcomek,
• ⊲⊳ is either<,>,≥, ≤ or =,
• and[·] denote that the expression is optionally present in

the constraint.
Then we can define the problem of choreography as aser-

vice constraint problem. There are two types of Boolean vari-
ables:controlledvariables, denoted byβi, andnon-controlled
variables, denoted byξi. Non-controlled variables represent
nondeterministic action outcomes. The underlying idea is that
the constraint programming system is not necessarily free to
choose a specific value for a non-controlled variable, thus a
solution to the problem may be such regardless of the values
assigned to the non-controlled variables.

In this paper, when we talk about nondeterministic actions
we refer to their outcomes (that is, states) which can be
different; yet, once an action is invoked, we assume that its
outcome will be always the same. That is, any of its future
invocations produce the same outcome for the same provider.

Definition 1 (service constraint problem). A service
constraint problemis a tupleCP = 〈β,N , ξ, C〉, where:

• β is a set ofcontrolledboolean variables;
• N is a set ofcontrolledvariables over integers;
• ξ is a set ofnon-controlledboolean variables;
• C is a set of constraints, as in Equation 1, in which (i)

if a non-controlled variable occurs then it is universally
quantified, (ii) otherwise a value is available and
substituted for the variable.

A solution to a service constraint problem is an assignment
to controlled variables such that all constraints are satisfied.

The encoding is performed in two phases: in phase (i) the
service business process itself is encoded; in phase (ii) the
request is added to the encoding.

A. Phase I

We consider the business process as a labeled transition
graph with two types of actions to go from one state to another:
deterministic and nondeterministic ones. This can be pictured
as a graph of nodes (states) and labeled arcs (actions) with
some extra information (roles, variables and effects, [7]).

During Phase I the business process is encoded. Starting
from a business process as a labeled transition graph, we arrive
at a set of expressionscv as in Equation (1) plus a set of linear
constraints of the form

∑

βi ≤ 1. In the following, we adopt
the notation of Equation (1); in addition,n varies over integers
and specifies how many times a cycle is followed, whileai is
overloaded to represent not only the action, but also its effects.

The encoding is generated following an algorithm that visits
the process graph, separately keeping track of cycles, and
returns a set of constraints. The whole process is recursiveand
is divided into the following cases, summarized in Table I:
(A) Base case.If the degree of the arcs leaving the states is
0, then there is no constraint to be returned. The case of the
directed cycle, which is presented below, is also a base case.

Type of action Encoding

(A) No action 0
(B) Single deterministic action βa

(C) Sequence of actions β1(a1 + β2a2)
(D) Branching β1a1 + β2a2, with β1 + β2 ≤ 1
(E) Nondeterministic action ξ1a′ + ξ2a′′, with ξ1 + ξ2 = 1
(F) Cycle: undirected cycle state splitting, no specific encoding
(G) Cycle: directed cycle na

TABLE I

DOMAIN ENCODING RULES.

(B) Single deterministic action a is encoded asβa, where
β is a controlled boolean variable. Thenβ = 1 means that
actiona must be in the resulting plan.
(C) Sequence of actions.This rule is applied to consecutive
actions as follows (for two deterministic actions):β1(a1 +
β2a2). If β1 = 1 then actiona1 is added to the plan, and if
also β2 = 1, then a2 is added to the plan right aftera1. If
β1 = 0 then neither actiona1 nor a2 are added.
(D) Branching. If there are several outgoing actions from the
state s and the system is supposed to choose only one of
them to add to the plan, then this situation (for two actions)is
encoded as follows:β1a1 + β2a2, whereβ1 + β2 ≤ 1 means
that at most one action can be chosen. If some of these actions
are nondeterministic, then the(E) rule is applied to each one.
(E) Nondeterministic action. This rule takes care of a nonde-
terministic action. Such an action may bring the system non-
deterministically in several states. To represent the behavior,
in which one has no control over the action’s outcome, the
non-controlled variablesξ are introduced. The encoding (for
a nondeterministic action with two possible outcomes) is the
following: ξ1a

′ + ξ2a
′′, whereξ1 + ξ2 = 1.

(F) Cycle: state splitting. This rule is applied to undirected
cycles. To proceed we need to duplicate the states already vis-
ited by creating states′ and recursively encode the duplicated
state. There is no further encoding for this case.
(G) Cycle: directed cycle. This rule is applied to directed
cycles. Variablen in the encoding denotes the number of times
the cycle is going to be executed.

B. Phase II

During the second phase of the encoding, we take a request
(RL) and produce a set of constraints (⊲⊳) for these; then we
try to satisfy the resulting constraints against the constraint set
encoding the business process (BP). The request is expressed
in a language derived from XSRL [7]. Here we give the basic
definition of the language and we show the intuitions for the
language constructs in Table II.

Definition 2 (request language). Basic requests arevital p

| atomic p | vital-maint p | atomic-maint p

wherep is a constraint over thev variable. A request is a
basic request or of the formachieve-all g1, . . . , gn | optional
g | before g1 then g2 | prefer g1 to g2.

The algorithm parses the request recursively distinguishing
the cases of the various operators and updating the set of

constraints. Whenever a new basic request/constraint is added,
a new set of controlled variables is introduced.

vital v ⊲⊳ v0. If the request isvital with respect to the variable
v constrained by the⊲⊳ operator on thev0 value, we restrict
the constraintc to what concerns variablev, denoting it bycv,
and we addcv ⊲⊳ v0 to the constraints set. Since the request
is vital we also set all variablesξ associated withcv to ξ0,
by which we mean that the normal execution is followed, in
place of the nondeterministic failure ones.

atomic v ⊲⊳ v0. This is analogous tovital , except that the
nondeterministic variablesξ are universally quantified over.

vital-maint v ⊲⊳ v0. For maintainability requests we keep track
of all the states visited during a plan execution. Thus, we apply
the constraint as forvital for each step along the execution.

atomic-maint v ⊲⊳ v0. This is analogous tovital-maint ,
except that the nondeterministic variablesξ are universally
quantified over.

Now we consider non-basic requests.

achieve-all g1, . . . , gn. First, we recur on all sub-requests
g1, . . . , gn. Second, one considers all pairs of basic requests
coming from the recursive call and all execution steps. In all
these cases, if during the execution some choices have been
made for the same branch point among different sub-requests,
these choices have to be the same. Therefore we add, to the
set of constraints, expressions forcing the same choices for the
execution of any sub-requests. These expressions introduce the
execution steptk. Suppose that the set

{

. . . β
g
tk,i . . .

}

denotes
the branch variables in steptk, that has been chosen to satisfy
the requestg. Then

∑

β
gr

tk,i 6= 0 denotes that one of the
βs is set to1 for the step under consideration. In order to
ensure that different reachability requests are satisfied by the
same sequence of actions, the following constraint is added:
∑

β
gr1

tk,i 6= 0 ∧
∑

β
gr2

tk,i 6= 0 ⇒ ∀i : β
gr1

tk,i = β
gr2

tk,i. In order
to guarantee that maintainability request is satisfied along the
synthesized sequence of actions, one has to add implicationfor
each pair of reachability/maintainability requests:

∑

β
gr

tk,i 6=
0 ⇒ ∀i : β

gr

tk,i = β
gm

tk,i.

before g1 then g2. The principle behind the before-then op-
erator is similar to that of theachieve-all, with the difference
that one forces the ordering of the satisfaction of the sub-
requests. Again, first we recur on the sub-requests, then we
constrain the execution choice variables

{

. . . β
g
tk,i . . .

}

. The
second sub-requestg2 should repeat the path of the first sub-
requestg1, until the first is satisfied, and only then the second
expression is checked. This is ensured by expressions of the
form:

∑

β
g1

tk,i 6= 0 ⇒ ∀i : β
g1

tk,i = β
g2

tk,i which are added to
the set of constraints.

prefer g1 to g2. Preferences are handled not as additional
constraints, but rather appropriately instantiating the variables.
The first step is to recur on the two sub-requestsg1 and g2.
Then the requestsg1 andg2 are placed in a disjunction. When
constraints are checked for satisfiability, variables are assigned
in preference order. Optional requests are a sub-case ofprefer-
to request, in whichg2 is simply true.

Request Where satisfied How encoded Type of request

vital p In a state wherep holds to which there is a path
from the initial state modulo failures

ξ = ξ0: cv ⊲⊳ v0 reachability

atomic p In a state wherep holds to which there is a path
from the initial state despite failures

∀ξ: cv ⊲⊳ v0 reachability

vital-maint p In a state to which there is a path from the initial
state modulo failures.p must hold in all states along
the path

ξ = ξ0: cv(ti) ⊲⊳ v0, for all encoding stepsti maintainability

atomic-maint p In a state to which there is a path from the initial
state despite failures.p must hold in all states along
the path

∀ξ: cv(ti) ⊲⊳ v0, for all encoding stepsti maintainability

prefer g1 to g2 In states whereg1 is satisfied, otherwise the satis-
fiability of g2 is checked

variables ing1 are instantiated before those ing2 preference

optional g States whereg is satisfied are checked first, other-
wise the request is ignored

encoded asprefer g to ⊤ preference

before g1 then g2 In states, to which there is a path from the initial
state, such that, states along these path whereg1 is
satisfied precede those whereg2 is satisfied

for all stepstk:
P

β
g1

tk,i 6= 0 ⇒ ∀i : β
g1

tk,i = β
g2

tk,i

sequencing

achieve-all g1, . . . , gn In states, to which there is a path from the initial
state, such that, there are states along the path where
gi are satisfied

reachability/reachability pairs of requests:
for all stepstk, for all reachability pairsgr1

, gr2
:

P

β
gr1

tk,i
6= 0∧

P

β
gr2

tk,i
6= 0 ⇒ ∀i : β

gr1

tk,i
= β

gr2

tk,i

reachability/maintainability pairs of requests:
for all stepstk, reachabilitygr, maintainabilitygm:
P

β
gr

tk,i
6= 0 ⇒ ∀i : β

gr

tk,i
= β

gm

tk,i

composition

TABLE II

REQUEST LANGUAGE CONSTRUCTS.

V. A RUN OF THE TRAVEL EXAMPLE

We have implemented the encoding of the service composi-
tion problem in Choco (http://choco.sourceforge.
net/). Choco is a java library for constraint satisfaction prob-
lems (CSP), constraint programming (CP) and explanation-
based constraint solving (e-CP). It is particularly well suited
for adding and removing constraints while the CP system is
working. This is the typical situation of a service enabled
marketplace where any service interaction may result in the
addition of a business rule of a provider or the gathering of
new numeric information, i.e., a new constraint.

To illustrate our work and its implementation in Choco,
let us introduce an example that is a snippet (shown in
Figure 3) of the travel choreography definition (introduced
in Figure 1). When deciding on a trip, the requester may
first want to book the hotel for the final destination and then
book a carrier to reach the location of the hotel. The first
actiona0: getHotelPrice retrieves the hotel price. The next
action is that of reserving a hotel (states1). This action may
nondeterministically result in the successful booking of the
room (states2) or in a failure (return to states1). Finally,
there are two ways to reach the states3 in which a carrier
to arrive at the site of the hotel is booked. One may choose
to fly or to take a train. This is achieved by choosing one of
the two actionsreserveTrain or reserveFlight. There
is one knowledge-gathering action:a0: getHotelPrice. The
process variables, ranging over integers, are:hotelBooked,
trainReserved, flightReserved, which are boolean, and
hotelPrice, trainPrice, flightPrice, price.

The framework works in the following way. First, the
domain is encoded:βs0,0(a0 +βs1,0(ξs1,0na

fail
1

+ ξs1,1(a
ok
1

+

a1’’: failure

a3: reserveFlight

a2: reserveTrain

s0

s2

s3

a1’’: failurea1’: bookHotel

a0: getHotelPrice

Hotel Provider

- prefers flight over train
- use Visa card, if possible
- discounts for people over 60

Flight Provider

- cancellation is not available
- international valid insurance

Train Provider

- authenticated via PGP

knowledge-gathering
action

Fig. 3. A component of a travel business process.

βs2,0a2 + βs2,1a3))); this represents the paths from state
s1 to s3 with n being the number of times the cycle is
followed, and withβsi,j representing thej-th choice in state
si. Additionally, the constraint on the controlled variables
βs0,0, βs1,0, βs2,0, βs2,1 ∈ {0, 1} is βs2,0 + βs2,1 ≤ 1, and
the constraint on the non-controlled variablesξs1,0, ξs1,1 ∈
{0, 1} is ξs1,0 + ξs1,1 = 1, where ξsi,j represents thej-th
nondeterministic outcome in the statesj .

Suppose the user provides the following request:

achieve-all
vital hotelBooked ∧ vital trainReserved
vital-maint price ≤ 300

The request is encoded as follows. Every basic request
creates its own subset of controlled variables (Table II). The
variables coming from the encoding of the request are shown
next. As a point of notation, we usecourier to present the
output of our implementation.

xi_s1_0 in {0, 1}
beta_s2_0 in {0, 1}

beta_s2_1 in {0, 1}
beta_s2_0 + beta_s2_1 <= 1
xi_s1_1 in {0, 1}
xi_s1_0 + xi_s1_1 <= 1
beta_s1_0 in {0, 1}

For each of thevital request we additionally havexi s1 0=0,

xi s1 1=1, representing the execution without failure. The
first sub-request to be parsed isvital hotelBooked. Since the
hotelBooked variable is influenced only by theaok

1
outcome,

then the encoding isβs1,0ξs1,1 = 1 and, sinceξs1,1 = 1, then
βs1,0 = 1. By the same reasoning, one has the encoding for
the train:βs1,0βs2,0 = 1:

0.0+beta_s1_0*(xi_s1_1*(1.0))=1.0
0.0+beta_s1_0*(xi_s1_1*(beta_s2_0*(1.0)))=1.0

The atomic requestvital-maint price < 300 is slightly
different asprice < 300 has to be checked for each state. We
assume thatafail

1
= 0, that is, no fee is paid for non-successful

reservation. Recalling thata0 = 0 and a4 = 0 since getting
price information is free, only three actions affect the price
(bookHotel, reserveFlight, andreserveTrain). These
simply add the corresponding cost to the overall price.

0.0 <= 300.0
0.0 + beta_s1_0 * (xi_s1_1 * (100.0)) <= 300.0
0.0 + beta_s1_0 * (xi_s1_1 * (100.0 +

beta_s2_0 * (200.0) + beta_s2_1 * (400.0)))<=300.0

For each nestedvital request pair within anachieve-all, there
may be common branching points. If this is the case, the
choice made has to be the same for all requests. Therefore,
achieve-all adds the following constraints forvital requests
(vital 1 is a prefix forvital hotelBooked andvital 2 for
vital trainReserved). Note that constraints are added only in
states where there are at least two deterministic actions:

if (vital_1_beta_s2_0 + vital_1_beta_s2_1 = 1) ∧
(vital_2_beta_s2_0 + vital_2_beta_s2_1 = 1)

then (vital_1_beta_s2_0 = vital_2_beta_s2_0) ∧
(vital_1_beta_s2_1 = vital_2_beta_s2_1)

Maintainability requests inachieve-allare treated differently:
if a choice is made for anyvital requests, then the same choice
must be made forvital-maint . Thus, for each pair ofvital
and vital-maint inside theachieve-all request we have the
following constraints (wherevitalm 1 is a prefix for request
vital-maint price ≤ 300):

if (vital_1_beta_s0_0 = 1) then
vital_1_beta_s0_0 = vitalm_1_beta_s0_0

if (vital_1_beta_s1_0 = 1) then
vital_1_beta_s1_0 = vitalm_1_beta_s1_0

if (vital_1_beta_s2_0 + vital_1_beta_s2_1 = 1)
then (vital_1_beta_s2_0 = vitalm_1_beta_s2_0) ∧

(vital_1_beta_s2_1 = vitalm_1_beta_s2_1)

if (vital_2_beta_s0_0 = 1) then
vital_2_beta_s0_0 = vitalm_1_beta_s0_0

if (vital_2_beta_s1_0 = 1) then
vital_2_beta_s1_0 = vitalm_1_beta_s1_0

if (vital_2_beta_s2_0 + vital_2_beta_s2_1 = 1)
then (vital_2_beta_s2_0 = vitalm_1_beta_s2_0) ∧

(vital_2_beta_s2_1 = vitalm_1_beta_s2_1)

There are two solutions for the above constraint, and these are
provided by our implementation. One of them is:

*** vital-maint (price <= 300)
vitalm_1_beta_s1_0 = 1
vitalm_1_beta_s2_1 = 0
vitalm_1_beta_s2_0 = 1
*** vital (trainBooked = true)

vital_2_beta_s1_0 = 1
vital_2_beta_s2_1 = 0
vital_2_beta_s2_0 = 1
*** vital (hotelReserved = true)

vital_1_beta_s1_0 = 1
vital_1_beta_s2_1 = 0
vital_1_beta_s2_0 = 0

Summarizing, the solution means that the plan involves first
invoking thereserveHotel and thenreserveTrain.

The framework implementation includes algorithms for the
interleaving of planning and execution (monitor, executor, and
interaction with a constraint programming system) as well as
for Phase I of the encoding. As for Phase II, all the request
encodings are implemented except foratomic andprefer-to,
the implementation of which is underway.

VI. CONCLUDING REMARKS

The choreography of independent services to achieve com-
plex business requests is a labeled transition graph in which
the transition from one state to another is governed by
constraints coming from different actors. The requester, the
service providers and the rules of the marketplace constrain
the possible interactions. We proposed a framework to handle
choreographies in which the problem of satisfying a requestis
encoded as a constraint-based problem. We have also provided
an implementation of our framework to show the feasibility
of the approach.

REFERENCES

[1] L. Chen, N. Shadbolt, C. Goble, F. Tao, S. Cox, C. Puleston, and P. Smart,
“Towards a knowledge-based approach to semantic service composition,”
in 2nd Int. Semantic Web Conf. (ISWC2003), ser. LNCS 2870, G. Goos,
J. Hartmanis, and J. van Leeuwen, Eds. Springer-Verlag, 2003, pp.
319–334.

[2] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic matching
of web services capabilities,” inInt. Semantic Web Conf. (ISWC2002), ser.
Lecture Notes in Computer Science 2342, I. Horrocks and J. Hendler, Eds.
Springer, 2002, pp. 333–347.

[3] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic composition of
web services using semantic descriptions,” inWeb Services: Modeling,
Architecture and Infrastructure workshop in ICEIS 2003, 2003. [Online].
Available: http://www.mindswap.org/papers/composition.pdf

[4] S. McIlraith and T. C. Son, “Adapting Golog for composition of semantic
web-services,” inConf. on principles of Knowledge Representation (KR),
D. Fensel, F. Giunchiglia, D. McGuinness, and M. Williams, Eds., 2002.

[5] B. Srivastava and J. Koehler, “Web Service Composition -Current
Solutions and Open Problems,” inWorkshop on Planning for Web Services
– ICAPS’03, 2003.

[6] M. B. Do and S. Kambhampati, “Planning as constraint satisfaction: solv-
ing the planning graph by compiling it into csp,”Artificial Intelligence,
vol. 132, pp. 151–182, 2001.

[7] A. Lazovik, M. Aiello, and M. Papazoglou, “Planning and monitoring the
execution of web service requests,”Journal on Digital Libraries, 2005,
to appear.

[8] A. Lazovik, M. Aiello, and R. Gennari, “Encoding requests to web service
compositions as constraints,” inPrinciples and Practice of Constraint
Programming (CP-05), 2005.

[9] N. Jussien, “e-constraints: explanation-based constraint programming,” in
CP01 Workshop on User-Interaction in Constraint Satisfaction, 2001.

