Choreographies: using Constraints to Satisfy
Service Requests

Alexander Lazovik2 Marco Aiello,! and Rosella Gennari
1. DIT, University of Trento, Via Sommarive 14, 38100 Trenlialy
2. ITC-irst, Via Sommarive 18, 38100 Trento, Italy
{l azovi k, aiel lom@lit.unitn.it gennari @tc.it

Abstract— Interacting with a web service enabled marketplace there have been several proposals using Al planning [5]ewhi
in order to achieve a complex task involves sequencing a setencoding planning problems as constraints is in [6].

of individual service operations, gathering information from the
services, and making choices. In the context of coreograpts In [7], we have proposed the XSRL request language over

of web services, we propose to encode the problem of issuingCOMplex business domains. In [8], we presented the constrai
requests as a constraint problem. In particular, we provide model laying at the basis of the present work. In this paper,
a choreographic framework to handle requests, we show how we propose a framework for the encoding of choreographies
the encoding of requests is performed, and we illustrate an and requests as a set of constraints; finally, we propose an
implementation using the Choco constraint system. implementation using the Choco constraint system.

The remainder of the paper is organized as follows. A
motivating example in the travel domain is introduced in
Satisfying complex business requirements in servicgection II. In Section Ill, we present the framework for
enabled marketplaces comprises the composition of bisingganaging choreographies encoded as constraints. Setion |
processes, their execution and monitoring, and gathering presents the rules for encoding choreographies and request
formation from services at run-time. Requesters and servi& snapshot of our implementation in Choco is shown in
providers have complex requests which express desidefatasgction V. Concluding remarks are presented in Section VI.

distributed interaction and, ideally, they would want tetahct
from the inner working of the marketplace. These desiderata ||
express the achievement of complex business requests, the
preference of some requests over others, and the achieing dConsider a user requesting a trip to Nowhereland and having
certain requests with specific numeric values ranges. A usenumber of additional requirements regarding such a trip, e
may desire to obtain a trip package for a given date spendinthat the total price of the trip be lower than 300 euro, theqwi
certain amount of money and preferring a certain flight earri of the hotel lower than 200 euro, avoid using the train, and
A service provider might expose a business rule that forces on. To be satisfied such a request involves the interaction
unregistered users to pay before receiving the service. with various autonomous service providers, including adfa

A broad service enabled marketplace is thus a distributagency, a hotel company and a flight carrier. Services reside
system in which autonomous actors interact asynchronouslythe same travel marketplace domain and must follow a
according to some standardized general business proagss standard business process for that domain. Such a process is
one with its own requests and additional requirements. Thgemplified in Figure 1. This process is modeled as a labelled
interaction of the service providers and requester in suchtransition graph, that is, every node is a state in which the
setting is known as ahoreography A natural way to model process can be, while directed arcs, each labeled by a specifi
choreographies is through constraints. In fact, the bagsineiction, indicate how the process changes state. Actors/eno
process defining the marketplace can be modeled as a isethe process are shown at the top of the graph. The actors
of constraints; user requests are interpreted as additiomelude the user issuing the request, a travel agency, d hote
constraints to be satisfied against the given business ggpceservice, an air service, a train service and a payment gervic
finally, the service providers’ requirements are also medlel The process is initiated by the user contacting a travel
as constraints on how their services need to be invoked. agency, hence, (1) is the initial state. The state is thengdth

Methods and techniques to automatically enable choreogra-(2) by requesting a quote from an hotel (actior). The
phies of services are the subject of recent research. Thdeshed arcs represent web service responses, in particular
are approaches based on formal logics [1], [2], [3] or otharc ay brings the system in the state (3). The execution
approaches based on logic programming formalisms (e.gontinues along these lines by traversing the paths in the
[4]). All these approaches work under the assumption tfnsition graph until we reach state (14). In this state a
having available rich semantic service description andtime confirmation of an hotel and of a flight or train is given by
information. Artificial Intelligence techniques can prdeia the travel agency and the user is prompted for acceptance of
solution to the problem of service composition. In partcul the travel package (13).

|. INTRODUCTION

AN EXAMPLE IN THE TRAVELING MARKETPLACE

TRAVEL HOTEL AIR TRAIN PAYMENT . MEDICAL ~J
A AGENGY : SERVICE . SERVICE : SERVICE | AGENGY INSURANGE ™

| o aae e i i NN
" A : | \ \fL - _
: : ;
; P
L : : : TN
o 8 % : 2 T

business process,

process-level assertions requests plan
- initial plan, execution
.- aGreserved replanning

ab:getTrainPrice()

2) :
-getFlightPrice() O
: 6 :

W
312p13bad pea __3EPrCE

Constraint Programming
System

rewision is required

verifies constraints on-the-fly ﬂ

10 ider- .)
role & provider-level |__ invokes web services
B —

a10:price

service providers

£ 1 ai1bookTrainG s

L a20Eected | 5 L e i : :
* aldbooked | . ; assertions collects new information

,,,,,,,,,,,,,,,,,,,,,,,

317 aE_EEmF“Dm[:aﬂEI Pl R :
a15:ask confirdiatn | : —
3 @ B B -

alGconfirmed !

@ paFaHolel makePaymenty Fig. 2. Framework with a constraint programming system.
: : payed /rQ i
(N B wsd ¢
Oﬂ o O— f’.%éyfe'p’a;ﬁ{e’n&;’" ® -
__/ f.f the basic algorithms for the encoding, here we introduce the
: Q"' o 1/ (Opasseamgey framework for supporting such an encoding.
= P In this view of a choreography, Ausiness process a
o O ¥ planning domain, that is, a labeled transition graph whose
T e § states represent the state of a distributed computatiash §u
: “O’ O transition graph can be extracted from a standard chorpbgra
rejectPament) ! § description. What we do is to transform this graph into a set

of constraints according to the rules shown in Table I. The
user requests also encoded as a set of constraints, as shown

WPgwgg@;pm/’/ in Table |, to be satisfied against the constraint set of the
business process. In other wordshereographyor satisfying
Fig. 1. A traveling business process. a request amounts to the the execution of a plan, which in turn

we view as a solution to a constraint-based problem.

In Figure 2, we present the choreography framework based

Actions in the graph can beondeterministic This is ©On constraints to satisfy user requests. The framevyorldsusns
illustrated, for instance, in state (4). In this state therusOf four components: monitor, constraint programming syste
has accepted the hotel room price however is faced with t/#d Supporting runtime environment. The monitor manages th
possible outcomes, one that a room is not available (where fiyerall process of interleaving planning and executiotakes
system transits back to state (1)) and the other where a roH¢r requests, the business process, and starts intgractin
reservation can be made (state (5)). The actual path will i€ constraint programming system that synthesizes a plén a
determined only at run-time. returns it to the monitor. The plan is a sequence of actions to

The lower part of the business process models the paymgﬁtexecuted. The constraint system returns a failure ifether

of the travel package just booked as an atomic action. THfsnO plan for the user request in the given domain. Let us
means the entire trip payment is atomic. assume that a correct plan exists and therefore is synétesiz

Then the monitor passes it to the executor. The executor is
I1l. WEB SERVICE EXECUTION USING CONSTRAINTS responsible for executing the plan. While executing eatibrac
Issuing a request to a marketplace generates a choreographithe plan, the executor may gather new information from
effect in which the various service providers are invoked arihe service registry or from the service invocations. Whene
provide service following a precise order. The order is deteneéw information is obtained, the constraint set is updated
mined by the request, by the run-time conditions, by theemluand the constraint system checks if the newly introduced
returned by the various providers, and by nondeterminisg@nstraints violate the plan under execution. The framkwor
conditions. We view such an execution as the performing works iteratively until the request is satisfied or there @& n
a set of actions of the transition graph in order to achiewatisfying execution.
the issued request. Given the number of unknown elementd-or the framework shown in Figure 2 constraints come out
and the nondeterministic nature of services, an initiahplas the natural choice. Firstly, typical web service intéoas
will often fail, making replanning necessary. We encode thevolve constraints over numeric values, and constraiot pr
choreography as a constraint problem. In [8], we providgamming systems provide solvers for these. Secondly, the

execution of the business process depends on the outcome 6f the ¢; are non-controlled variables and tlve are con-

the services it consist of, new information gathered atinueit trolled variables,
in other words, a process result depends on the informatiors «; j, is the effect of actioru,; for outcomet,
that is available only at runtime. Interleaving planningl a&x- o X is either<,>,>, < or =,

ecution supports such iterative model of execution. Repitan « and[-] denote that the expression is optionally present in
is performed when new information is gathered. Due to the the constraint.

incremental nature of most constraint programming sojvers Then we can define the problem of choreography asra

full replanning from scratch is not needed, in the sense thate constraint problemThere are two types of Boolean vari-
one can add new constraints to the set of already active ongisles:controlled variables, denoted by;, andnon-controlled
this can be seen as a refinement of the initially synthesizegiables, denoted by;. Non-controlled variables represent
plan. However, when constraints are to be removed fromdndeterministic action outcomes. The underlying idefas t
the constraint set, for example, when changing a providefie constraint programming system is not necessarily free t
the constraint space may have to be rebuilt—however, 8Roose a specific value for a non-controlled variable, thus a
extension of Choco allows for the “intelligent” removal ofsolution to the problem may be such regardless of the values
constraints [9]. assigned to the non-controlled variables.

To benefit from constraint programming we have to for- |n this paper, when we talk about nondeterministic actions
mulate the choreography problem in terms of constrainige refer to their outcomes (that is, states) which can be
In the following section we show how the service domaigifferent; yet, once an action is invoked, we assume that its
accompanied with requests is encoded. outcome will be always the same. That is, any of its future

IV. EXPRESSINGCHOREOGRAPHIES ANDREQUESTS invocations produce the same outcome for the same provider.

To express the execution of the requests, i.e., the run oPgfinition 1 (service constraint problem). A service
choreography in a specific web service context, we need thegnstraint problenis a tupleCP = (3,N,¢,C), where:

main ingredients: o [3is a set ofcontrolledboolean variables;
(BP) a representation of the Business Process or Domainy N is a set ofcontrolledvariables over integers;
(RL) a Request Language to express requests; o ¢ is a set ofnon-controlledboolean variables;

(<) a mechanism to decide how to coordinate and se-+ C is a set of constraints, as in Equation 1, in which (i)

quence the service invocations in order to satisfy the if a non-controlled variable occurs then it is universally
requests. quantified, (ii) otherwise a value is available and

There are a number of requirements on these ingredients. For supstituted for.the variabl_e. _ _
the business process, we want to use a representation #pgolutionto a service constraint problem is an assignment
to Capture the nondeterminism typica| of web service |mp|é0 controlled variables such that all constraints are sf¢d.

mentations and to b(_e state _based. For the request language, Wheq encoding is performed in two phases: in phase (i) the
want.alanguage which is high-level and expressive. It mest Boryice business process itself is encoded; in phase i) th
possible to state preferences, to state a number of Subtas"?equest is added to the encoding.

sequence the order in which the subtasks might be achieved.
Finally, for the choreographic mechanism we want an agife Phase |
framework which can be implemented, but also sound andWe consider the business process as a labeled transition
complete. graph with two types of actions to go from one state to another
We formalize the choreography as a constraint programmidgterministic and nondeterministic ones. This can be péctu
task. In this way, the requester’s desires become a set of cas a graph of nodes (states) and labeled arcs (actions) with
straints over an actual business process, while the sHimia some extra information (roles, variables and effects,. [7])
of the request is the satisfaction of the constraints. While During Phase | the business process is encoded. Starting
the constraint programming system tries to satisfy thesefram a business process as a labeled transition graph, we arr
number of invocations are performed which might lead to moeg a set of expressions as in Equation (1) plus a set of linear
constraints being added or to the instatiation of a number ednstraints of the forny_ 5; < 1. In the following, we adopt
free variables. The latter process is an instance of infioma the notation of Equation (1); in addition,varies over integers
gathering at run time. and specifies how many times a cycle is followed, whijés
More formally, we model (BP) ad (RL) as a set of coneverloaded to represent not only the action, but also iescesf
straints) over controlled and non-controlled variables. The The encoding is generated following an algorithm that sisit
constraints have the following form: the process graph, separately keeping track of cycles, and
V&] & o9 value (1) _retu_rr_13 a s_et of constrain_ts. The whole process is_ recuaisige
' ’ is divided into the following cases, summarized in Table I:
o value is a value from the domain of the variahle (A) Base caself the degree of the arcs leaving the states
» T, is a vector of expressions of the forln 5;[¢;]a; O, then there is no constraint to be returned. The case of the
with g;,¢& € {0, 1}, directed cycle, which is presented below, is also a base case

Type of action Encoding constraints. Whenever a new basic request/constraintisdcad

(A) | No action 0 a new set of controlled variables is introduced.
E(B:)) gg‘(?lﬂee::ge;? ;r;lt?(tjlﬁsactlon gf(al T Bsa3) vital v 1 vg. If the request ivital with respect to the variable
(D) [Branching Brai + Baaz, With B1 & B2 < 1 v constrained by the< operator on they, value, we restrict
(E) | Nondeterministic action | &1a”+&0a”, withé& +& =1 | the constraint to what concerns variablg denoting it byc,,
(F) | Cycle: u_ndlrected cycle state splitting, no specific encoding and we add:, 1 vo to the constraints set. Since the request
(G) | Cycle: directed cycle na L . . . 0

is vital we also set all variable§ associated with, to £°,

TABLE |

by which we mean that the normal execution is followed, in
place of the nondeterministic failure ones.

atomic v <1 vg. This is analogous twital, except that the
nondeterministic variables are universally quantified over.

vital-maint v > vg. For maintainability requests we keep track
of all the states visited during a plan execution. Thus, weyap
the constraint as fovital for each step along the execution.

atomic-maint v 1 vg. This is analogous toital-maint,

DOMAIN ENCODING RULES.

(B) Single deterministic actiona is encoded as$ia, where
(3 is a controlled boolean variable. Theh= 1 means that
actiona must be in the resulting plan.

(C) Sequence of actionsThis rule is applied to consecutive
actions as follows (for two deterministic actiong}i (a1 + S . .
Byas). If B, — 1 then actiona, is added to the plan, and if excep_t_that the nondeterministic variablgsare universally

also 2 = 1, thena, is added to the plan right after;. If quantified over.

(1 = 0 then neither actiom; nor a, are added. Now we consider non-basic requests.

(D) Branching. If there are several outgoing actions from thechieve-all g1, . .., g,. First, we recur on all sub-requests
state s and the system is supposed to choose only one @f ..., ¢g,. Second, one considers all pairs of basic requests
them to add to the plan, then this situation (for two actiaas) coming from the recursive call and all execution steps. In al
encoded as follows3ia; + B2a2, Where; + 32 < 1 means these cases, if during the execution some choices have been
that at most one action can be chosen. If some of these actignigde for the same branch point among different sub-requests
are nondeterministic, then th€) rule is applied to each one.these choices have to be the same. Therefore we add, to the
(E) Nondeterministic action. This rule takes care of a nonde-set of constraints, expressions forcing the same choicekédo
terministic action. Such an action may bring the system nogxecution of any sub-requests. These expressions intedtac
deterministically in several states. To represent the \deha execution step,.. Suppose that the s¢t..37 ;... } denotes

in which one has no control over the action’s outcome, thRe branch variables in step, that has been chosen to satisfy
non-controlled variableg are introduced. The encoding (forthe requesty. Then)~ 3/, # 0 denotes that one of the

a nondeterministic action with two possible outcomes) & thgs is set tol for the step under consideration. In order to
following: &1a’ + &a”, whereéy + & = 1. ensure that different reachability requests are satisfiethé

(F) Cycle: state splitting. This rule is applied to undirectedsame sequence of actions, the following constraint is added
cycles. To proceed we need to duplicate the statieeady vis- S 37" £ 0 A ST/ £ 0 = Vi : 87 = 7. In order

. . h X th,t th,t th,t th,i"
ited by creating state’ and recursively encode the duplicatedo guarantee that maintainability request is satisfied gatbe
state. There is no further encoding for this case. synthesized sequence of actions, one has to add implidation

(G) Cycle: directed cycle This rule is applied to directed each pair of reachability/maintainability reques}s: ;" ;
cycles. Variable: in the encoding denotes the number of timeg — v; . 9" gm '

the cycle is going to be executed.

th,t tr,i"
before g, then g.. The principle behind the before-then op-
B. Phase Il erator is similar to that of thachieve-all with the difference

During the second phase of the encoding, we take a requ@@t one force_s th_e ordering of the satisfaction of the sub-
(RL) and produce a set of constraints)(for these; then we r€quests. Again, first we recur on the sub-requests, then we
try to satisfy the resulting constraints against the camstiset CONStrain the execution choice variablgs . g ;... }. The
encoding the business process (BP). The request is exgreS&eond sub-requegt should repeat the path of the first sub-
in a language derived from XSRL [7]. Here we give the basl€duesty:, until the first is satisfied, and only then the second
definition of the language and we show the intuitions for tHeXPression is checked. This is ensured by expressions of the

language constructs in Table 1. form: 3257} # 0 = Vi : 9, = B}, which are added to

_— i) the set of constraints.
Definition 2 (request language). Basic requests argital p

| atomic p | vital-maint p | atomic-maint p

wherep is a constraint over the variable. A request is a
basic request or of the forrachieve-all g1, ..., g, | optional
g | before g1 then go | prefer g; to go.

prefer ¢g; to go. Preferences are handled not as additional

constraints, but rather appropriately instantiating tagables.

The first step is to recur on the two sub-requegtsand gs.

Then the requestg, andg, are placed in a disjunction. When

constraints are checked for satisfiability, variables asgmed
The algorithm parses the request recursively distingagshiin preference order. Optional requests are a sub-cgsefr-

the cases of the various operators and updating the sett@mfequest, in whichy, is simply true.

Request Where satisfied How encoded Type of request
vital p In a state wherep holds to which there is a path ¢ = £9: ¢, 1 vg reachability
from the initial state modulo failures
atomic p In a state where holds to which there is a path V&: ¢, > vg reachability
from the initial state despite failures
vital-maint p In a state to which there is a path from the initialé = £V: ¢, (¢;) < vo, for all encoding steps; maintainability

state modulo failureg must hold in all states along
the path

atomic-maint p

In a state to which there is a path from the initi
state despite failureg. must hold in all states along
the path

AlVE: ¢y (t;) < vo, for all encoding steps;

maintainability

state, such that, there are states along the path w
g; are satisfied

prefer g; to g2 In states whergy; is satisfied, otherwise the satis- variables ing; are instantiated before those ga preference
fiability of go is checked

optional g States whergy is satisfied are checked first, othefr-encoded aprefer g to T preference
wise the request is ignored

before g1 then g2 In states, to which there is a path from the initiplfor all stepsty: sequencing
state, such that, states along these path wierie > 6?;1 #0=Vi: f;l = ﬁf}i i
satisfied precede those wheje is satisfied

achieve-allg1,...,gn | In states, to which there is a path from the initinlreachability/reachability pairs of requests: composition

ndoe all stepsty,, for all reachability pairsgr, , gry:

S8y A ONT B, # 0= Vi: B = By,
reachability/maintainability pairs of requests:

for all stepsty,, reachabilityg,, maintainability g, :

g S ogr L ag
2B FO= Vi B =BT

TABLE

REQUEST LANGUAGE CONSTRUCTS

V. A RUN OF THE TRAVEL EXAMPLE

We have implemented the encoding of the service composi-

tion problem in Chocohtt p://choco. sour cef orge.

net /). Choco is a java library for constraint satisfaction prob-
lems (CSP), constraint programming (CP) and explanation-

based constraint solving (e-CP). It is particularly wellted

for adding and removing constraints while the CP system is’
working. This is the typical situation of a service enabled

knowledge-gathering
action

Train Provider

authenticated via PGP || a,: reserveTrain

marketplace where any service interaction may result in the

addition of a business rule of a provider or the gathering of

new numeric information, i.e., a new constraint.
To illustrate our work and its implementation in Choco,

Hotel Provider

- prefers flight over train
- use Visa card, if possible
- discounts for people over 60

Flight Provider

- cancellation is not available
- international valid insurance

Fig. 3. A component of a travel business process.

let us introduce an example that is a snippet (shown ih,0a2 + fs,1a3))); this represents the paths from state
Figure 3) of the travel choreography definition (introduceeh t0 s3 with n being the number of times the cycle is
in Figure 1). When deciding on a trip, the requester mdgllowed, and withg;, ; representing thg-th choice in state
first want to book the hotel for the final destination and then. Additionally, the constraint on the controlled variables
book a carrier to reach the location of the hotel. The firgts,,0, 351,05 85,0, 82,1 € {0,1} IS Bs,0 + Bs,1 < 1, and
actionag: get Hot el Pri ce retrieves the hotel price. The nexithe constraint on the non-controlled variablgs o,&s,,1 €
action is that of reserving a hotel (statg). This action may {0,1} is &0 + &,1 = 1, where§, ; represents thg-th
nondeterministically result in the successful booking leé t nondeterministic outcome in the statg
room (statesy) or in a failure (return to state;). Finally, = Suppose the user provides the following request:
there are two ways to reach the statein which a carrier Achieve-all
to arrive at the site of the hotel is booked. One may choose vital hotelBooked A vital trainReserved
to fly or to take a train. This is achieved by choosing one of Vital-maint price < 300
the two actionsreserveTrain or reserveFl i ght. There The request is encoded as follows. Every basic request
is one knowledge-gathering actiom;: get Hot el Pri ce. The creates its own subset of controlled variables (Table Ihe T
process variables, ranging over integers, dretel Booked, variables coming from the encoding of the request are shown
trainReserved, flightReserved, which are boolean, and next. As a point of notation, we ussuri er to present the
hotel Price, trainPrice, flight Price, price. output of our implementation.

The framework works in the following way. First, they; s1 g in f0, 1}

domain is encoded3,, o(ao + B, 0(Es, onal ' + &, 1 (a8 + beta_s2. 0 in {0, 1}

beta_s2_1 in {0, 1} *xx vital -maint (price <= 300)

beta_s2_0 + beta_s2_1 <=1 vitalm1l beta_sl1 0 =1
xi_sl_1in {0, 1} vitalm1l beta_s2 1 =0
xi_s1 0+ xi_s1 1<=1 vitalm1l beta_s2 0 =1
beta_s1_0 in {0, 1} *xx vital (trainBooked = true)

. .) vital _2_beta_s1 0 =1
For each of thevital request we additionally havé s1.0=0, yjtal 2 beta s2 1 = 0

xi s1_1=1, representing the execution without failure. Theital _2_beta_s2 0 =1
first sub-request to be parsedvisal hotel Booked. Since the *** vital (hotel Reserved = true)

. . vital _1 _beta_sl1 0 =1
hotel Booked variable is influenced only by the/" outcome, yital "1 beta s2 1 = 0
then the encoding i8;, 0&s,1 = 1 and, sincets, ; =1, then vital _1_beta_s2 0 =0

fBsi.0 = 1. By the same reasoning, one has the encoding f§(;mmarizing, the solution means that the plan involves first

the train:fs, ofs,,0 = 1: invoking ther eser veHot el and therr eserveTrai n.
0.0+beta_s1_0x(xi _s1_1x(1.0))=1.0 The framework implementation includes algorithms for the
0.0+beta_s1_O«(xi_sl_1x(beta_s2_0+(1.0)))=1.0 interleaving of planning and execution (monitor, execuamd

The atomic requesvital-maint price < 300 is slightly interaction with a constraint programming system) as well a
different asprice < 300 has to be checked for each state. Wer Phase | of the encoding. As for Phase I, all the request
assume thai "' = 0, that is, no fee is paid for non-successfuencodings are implemented except &omic and prefer-to,
reservation. Recalling thaty, = 0 andas = 0 since getting the implementation of which is underway.

price information is free, only three actions affect theceri

(bookHot el , reserveFl i ght, andreserveTrai n). These i) .
simply add the corresponding cost to the overall price. The choreography of independent services to achieve com-
0.0 <= 300.0 plex business requests is a labeled transition graph inhwhic

0.0 + beta s1 0 + (xi_s1 1 * (100.0)) <= 300.0 the transition from one state to another is governed by
0.0 + beta_s1 0 * (xi_s1 1 = (100.0 + constraints coming from different actors. The requestes, t

beta_s2_0 = (200.0) + beta_s2 1 + (400.0)))<=300.0 service providers and the rules of the marketplace constrai
For each nestedital request pair within amchieve-al| there the possible interactions. We proposed a framework to leand|
may be common branching points. If this is the case, ti§@oreographies in which the problem of satisfying a regisest
choice made has to be the same for all requests. Theref&@goded as a constraint-based problem. We have also pdovide
achieve-all adds the following constraints farital requests an implementation of our framework to show the feasibility
(vital _1 is a prefix forvital hotelBooked andvital -2 for of the approach.
vital trainReserved). Note that constraints are added only in

VI. CONCLUDING REMARKS

- . REFERENCES
states where there are at least two deterministic actions:
[1] L. Chen, N. Shadbolt, C. Goble, F. Tao, S. Cox, C. Pulesamd P. Smart,
if (vital _1_beta_s2 0 + vital _1 beta_s2_1 =1) A “Towards a knowledge-based approach to semantic serviopasition,”
(vital _2_beta_s2_0 + vital _2_beta_s2_1 = 1) in 2nd Int. Semantic Web Conf. (ISWC2Q08r. LNCS 2870, G. Goos,
then (vital _1_beta_s2_0 = vital _2_beta_s2_0) A J. Hartmanis, and J. van Leeuwen, Eds. Springer-Verlag3,2pp.

(vital _1 beta_s2_1 = vital _2_beta_s2_1) 319-334.

. . - . -) . . [2] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Seimanatching
Maintainability requests imchieve-allare treated differently: of web services capabilities.” imt. Semantic Web Conf. (ISWC20088r,

if a choice is made for anyital requests, then the same choice Lecture Notes in Computer Science 2342, 1. Horrocks and ddlée Eds.
must be made fowital-maint. Thus, for each pair ofital 4 Eprg_qeh 320?42' F(J]ﬁ- 333—54;- barsia. “Semi.automat ion of
. Sl : . Sirin, J. Hendler, and B. Parsia, “Semi-automatic position o
and V'_tal'mamt ”_15|de theac_hleve'a”_requeSt_We have the web services using semantic descriptions,"Vieb Services: Modeling,
following constraints (wherei t al m1 is a prefix for request Architecture and Infrastructure workshop in ICEIS 20@B03. [Online].

vital-maint price < 300); Available: http://www.mindswap.org/papers/compositjmdf
[4] S. Mcllraith and T. C. Son, “Adapting Golog for compositi of semantic
if (vital _1 beta s0 0 = 1) then web-services,” inConf. on principles of Knowledge Representation (KR)
vital _1 beta sO_0 = vitalm1 beta_s0_0 D. Fensel, F. Giunchiglia, D. McGuinness, and M. Williamslsg 2002.
if (vital _1_beta_s1 0 = 1) then [5] B. Srivastava and J. Koehler, “Web Service CompositiorCurrent
vital _1 beta_s1 0 = vitalm1 beta s1 0 Solutions and Open Problems,”\Workshop on Planning for Web Services
if (vital _1 beta_s2 0 + vital_1_beta_s2_1 = 1) — ICAPS’03 2003.
then (vital _1 beta s2 0 = vitalm1 beta s2 0) A [6] M. B. Do and S. Kambhampati, “Planning as constraintsatition: solv-
(vital _1 beta_s2 1 = vitalm1 beta_s2_1) ing the planning graph by compiling it into cspArtificial Intelligence
vol. 132, pp. 151-182, 2001.
if (vital _2 beta_s0 0 = 1) then [7] A.Lazovik, M. Aiello, and M. Papazoglou, “Planning andcbmitoring the
vital _2 beta_s0 0 = vitalm1 beta s0_0 execution of web service requestsgurnal on Digital Libraries 2005,
if (vital _2_beta_s1 0 = 1) then to appear.
vital _2 beta_s1 0 = vitalm1 beta s1 0 [8] A.Lazovik, M. Aiello, and R. Gennari, “Encoding requesb web service
if (vital _2_beta_s2 0 + vital _2 beta_s2_1 = 1) compositions as constraints,” iRrinciples and Practice of Constraint
then (vital _2_beta_s2_0 = vitalm1l beta_s2_0) A Programming (CP-05)2005.
(vital _2 beta_s2 1 = vitalm1 beta_s2_ 1) [9] N. Jussien, “e-constraints: explanation-based cammgtprogramming,” in

. . CPO01 Workshop on User-Interaction in Constraint Satiséagt2001.
There are two solutions for the above constraint, and these a P

provided by our implementation. One of them is:

