
Constraint Programming for

Modelling and Solving Modal Satisfiability

Sebastian Brand1, Rosella Gennari2, and Maarten de Rijke3

1 CWI, Amsterdam, The Netherlands, sebastian.brand@cwi.nl
2 ITC-irst, Trento, Italy, gennari@irst.itc.it

3 Language and Inference Technology Group, ILLC, University of Amsterdam,
The Netherlands, mdr@science.uva.nl

Abstract. We explore to what extent and how efficiently constraint pro-
gramming can be used in the context of automated reasoning for modal
logics. We encode modal satisfiability problems as constraint satisfaction
problems with non-boolean domains, together with suitable constraints.
Experiments show that the approach is very promising.

1 Introduction

In various branches of artificial intelligence, modal and modal-like formalisms
are used for reasoning about relational structures [3], such as transition systems.
Recently, there have been increased efforts to develop algorithms for solving the
satisfiability problem for modal logic. Some implementations use special purpose
algorithms for modal logic, such as DLP [11], FaCT [7], RACER [5], ∗SAT [12],
while others exploit existing tools or provers for either first-order (MSPASS [9])
or propositional logic (KSAT [4], KBDD [10]) through some encoding.

We follow the latter approach: we model and solve the modal satisfiability
problem via Constraint Programming (CP). We build on the fact that a modal
formula is satisfiable in the basic logic K only if it is so on a tree-like model [2,
1]. This property allows us to stratify K-satisfiability problems into “layers”
of propositional satisfiability problems. In [1] this layering was encoded into a
translation from modal into first-order logic. We build on the schema for KSAT [4],
following the intuitions in [1]. We encode modal input formula into layers of finite
constraint satisfaction problems (CSPs) with additional non-Boolean values; we
show that any complete constraint solver for finite CSPs can be used to solve
them (and, hence, to determine modal satisfiability).

Our aim in this paper is to explore to what extent and how efficiently CP
can be used in the context of automated reasoning for modal logics. To the best
of our knowledge, our work constitutes the first attempt in this direction. The
novelty of the paper is two-fold: first, encoding modal satisfiability problems
as CSPs with enlarged domains; and second, solving such CSPs by means of
suitable propagation algorithms in a CP environment.

We turn to modal logic matters in Section 2. In Section 3 we report on an
experimental assessment and comparison. We conclude in Section 4.

2 Modal Logic and CSPs

Modal Logic. We focus on the basic mono-modal logic K, even though our
results can easily be generalized to a multi-modal version. Let P be a finite set
of propositional variables. K-formulas are produced by the rule φ ::= p | ¬φ |
φ ∧ φ | φ ∨ φ |

�
φ, where p ∈ P . A formula is boxed if it is of the form

�
φ.

A modal model is a triple M = (W,R, V) where W is a non-empty set (the
model’s domain), R is a binary relation on W , and V : P → 2W is a valuation,
assigning subsets of W to proposition letters. Satisfaction of a formula φ at a
state w in a model M (M, w |= φ) is defined by induction on φ: M, w |= p if
w ∈ V (p); M, w |= ¬φ iff M, w 6|= φ; M, w |= φ∧ψ iff M, w |= φ and M, w |= ψ;
and M, w |=

�
φ iff for all v such that Rwv, M, v |= φ. A formula φ is satisfiable

if for some model M and state w in M we have that M, w |= φ. K-satisfiability
is the following problem: given a mono-modal formula φ, is φ satisfiable?

A tree model is a model M = (W,R, V) such that (W,R) is a tree. K-
formulas satisfy the tree model property : they are satisfiable only if they are
satisfiable at the root of a tree model; see [3, Chapter 2] for details.

Let ψ be a modal formula on P . A ψ subformula of the form p ∈ P or
�
ψ ′

is a layer -0 variable (of ψ). A formula φ is a layer-0 proposition (of ψ) iff it is
a layer-0 variable of ψ or its negation, the conjunction or disjunction of layer-0
propositions of ψ. In general, a layer-(i+ 1) variable θ (of ψ) is a subformula of
ψ of the form θ′ where

�
θ′ is a layer-i proposition. A layer-(i + 1) proposition

(of ψ) is a layer-(i+1) variable of ψ or its negation, a conjunction or disjunction
of layer-(i+ 1) propositions of ψ.

µ := ∅;
Propositions := stack init([ψ]);
while not stack empty(Propositions) do

ψ := stack pop(Propositions);
sat(ψ,µ); % return µ 6= ∅ else backtrack

Θ := � {θ : � θ = 1 in µ} ;
for each � ν = 0 in µ do

Propositions := stack push(¬ν ∧Θ,Propositions);

The k sat Schema. The
algorithm schema k sat

on the right-hand side, on
which KSAT [4] is based,
determines the satisfia-
bility of formulas in K:
the sat procedure deter-
mines the satisfiability of
ψ as a proposition by re-
turning a propositional assignment, if no exists backtracking takes place. Thus,
the modal search space is explored layer by layer, in a depth-first manner.

The KCSP Algorithm. Our next aim is to devise a modal decision procedure based
on the k sat schema, with CSP algorithms as the underlying propositional solver.

Definition. Let φ be a modal formula and X the set of all layer-0 variables in
φ. Consider φ as a layer-0 proposition with variables in X ; then the CSP of the
modal formula φ is the CSP of the layer-0 proposition φ. Let us denote the CSP
of the modal formula φ with CSP(φ).

We instantiate sat with a complete constraint solver for finite CSPs in k sat
and transform ψ into CSP(ψ) before passing it on to the constraint solver; the
result is the KCSP algorithm.

KCSP is a decision procedure due to the fact that k sat is so if sat returns
a Boolean assignment whenever the input formula is satisfiable, otherwise the
empty assignment; see [4].

Theorem (Total Correctness of KCSP). KCSP is a decision procedure for K-
satisfiability.

The solver adopted as sat in our implementation of KCSP is backtracking search
interleaved with constraint propagation for generalized arc-consistency. Further-
more, the input formula is transformed into conjunctive normal form.

3 Experimental Assessment and Optimisations of KCSP

We provide an empirical evaluation of KCSP, using the Heuerding and Schwendi-
mann (HS) test set [6] that was used at the TANCS’98 comparison of systems
for non-classical logics [13]. The HS test set consists of classes of formulas for
K, which are either provably false (labelled with p) or satisfiable (labelled with
n). One tests formulas from each class, starting with the easiest instance, until
the satisfiability status of a formula can not be determined within 100 seconds.
The result from this class will then be a parameter (ranging from 0 to 21) of
the largest formula that can be solved within the time limit. It is important to
note that the formula size is exponential in this parameter. A linear speed-up in
processor or program speed does not change in essence the benchmark results.

Optimisations and Analysis. We implemented the KCSP algorithm in the Con-
straint Logic Programming (CLP) system ECL iPSe, version 5.5. We ran our
experiments on an AMD Athlon Processor (1 GHz), with 512MB RAM, under
Red Hat Linux 7.1. The HS formulas used in the experiments and the code for
KCSP are at available at http://www.cwi.nl/∼sbrand/Research/kcsp/.

We turn to a brief discussion of our optimisations and their impact. To get
partial Boolean assignments in KCSP so that the reasoning on the boxed formulas
is “delayed” (and possibly never done), we ensure that propositional variables
have as domains {0, 1}, while boxed formulas have as domains {0, 1, 2}, where 2
describes “irrelevance”. We add constraints to obtain a partial assignment with
a small number of boxed formulas “switched on” (i.e., with a value 6= 2). We call
these the (assignment-) minimising constraints. We also add heuristics to reduce
the size of the KCSP search tree: the value 2 is preferred for boxed formulas,
and among them for positively occurring ones. Additionally, the instantiation
ordering of boxed formulas is along their increasing modal depth, that is, shallow
boxed formulas are assigned first.

Minimising constraints make a substantial difference, especially in the case of
the so-called branch formulas within the HS test set: KCSP with total assignments
can only solve the first two formulas in branch p, whereas KCSP with minimising
constraints solves all of them in less than 2 seconds; a similar result holds for
branch n — see also the comparison table below.

Another optimization concerns disjunctive information. In the KCSP algo-
rithm, formulas are transformed in CNF form before being converted into CSPs;
in particular, every time 0 is assigned to a formula ¬

�
ψ, the subformula ¬ψ is

first transformed in CNF and then into CSP form. This CNF-conversion is not
an efficient choice; it can be avoided by treating ¬ψ as a disjunctive constraint
¬ψ =

∨n

i=1
φi. The clauses φi are reified by means of link variables Li, which are

constrained to contain at least one that is set to true. Avoiding CNF conversion
by means of disjunctive constraints has a substantial effect; e.g., ph n(4) — an
instance of the pigeon-hole problem — is now solved in a few seconds but with
CNF conversion KCSP halts due to a lack of memory.

Next, we added constraints for factoring. Consider a subformula
�
ψ of φ, the

input KCSP; suppose that
�
ψ occurs several times in φ, positively and negatively;

then, in the KCSP algorithm, each occurrence at position i is encoded as a different
variable in the corresponding CSP, say xi. To avoid this, we add a constraint
C � ψ on the CSP variables for

�
ψ which states that no two variables xi, xk

(representing
�
ψ) exist with xi = 0 and xk = 1. This form of factoring is

beneficial for formulas with the same boxed subformula occurring repeatedly.
Finally, we added simplifications. These take place only once, upon reading

the formula. We use standard simplification rules for propositional formulas, at
all layers, in a bottom-up fashion. Simplification makes an important different
in the case of the lin formulas in the HS test set.

branch d4 dum grz lin path ph poly t4p
n p n p n p n p n p n p n p n p n p

KSATC 8 8 5 8 > 11 > 17 3 > 8 4 5 5 12 13 18 10
KCSP 13 > 6 9 19 12 > 13 > > 11 4 4 4 15 10 7 10

Results and a Com-
parison. The table
on the right-hand side
displays a comparison
of KSATC with KCSP in
which all the optimisations above are switched on; from now on we refer to this
as KCSP. The results for KSATC are taken from [8]; there KSATC was run on the
Heuerding and Schwendimann test set, on a 350 MHz PentiumII with 128 MB of
main memory. In the table, we write > when all 21 formulas in the test set are
solved within 100 CPU seconds, else we write the number of the most difficult
formula decided within the time out. For some classes, KCSP clearly outperforms
KSATC, for some it is the other way around, and for yet others the differences do
not seem significant. E.g., KCSP is superior in the case of lin and branch formu-
las; branch n is often considered to be the hardest “truly modal test class” for
current modal theorem provers; thus adding constraints to limit the number of
boxed formulas to reason on, while still exploring the truly propositional search
space, seems to be a winning idea in this case. In the case of t4, KSATC is superior
to KCSP; notice, however, that KSATC features a number of optimisations for early
modal pruning that we have not (yet) added to KCSP.

4 Finale

We have described a method for modeling and solving modal satisfiability prob-
lems using a constraint-based approach. Guided by the tree model property for

modal logic, the method works by stratifying modal satisfiability problems into
sequences of propositional satisfiability problems, each of which is encoded as
a non-Boolean CSP. Our implementation, KCSP, is competitive with the best
modal-theorem provers on the hardest “truly modal class” in the Heuerding and
Schwendimann test set, namely branch . An important advantage of KCSP is that
encoding optimisations (e.g., for factoring or partial assignments) can be done
very elegantly and compactly in our constraint-based setting.

Our ongoing and future work focuses on: CNF-free modelling, modal learning
heuristics, the use of stronger forms of constraint propagation, and an extension
of our CSP-based approach to more expressive modal-like logics.

Acknowledgments. We thank our referees for their useful comments. Maarten de
Rijke was supported by grants from the Netherlands Organization for Scientific
Research (NWO), under project numbers 612-13-001, 365-20-005, 612.069.006,
612.000.106, 220-80-001, and 612.000.207.

References

1. C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-based Heuristics
in Modal Theorem Proving. In Proc. ECAI 2000, pages 199–203. IOS Press, 2000.

2. P. Blackburn and M. De Rijke. Zooming in, zooming out. Journal of Logic,

Language and Information, 6:5–31, 1997.
3. P. Blackburn, M. De Rijke, and Y. Venema. Modal Logic. Cambridge University

Press, 2001.
4. F. Giunchiglia and R. Sebastiani. Building Decision Procedures for Modal Logics

from Propositional Decision Procedures. The Case Study of Modal � (m). Infor-

mation and Computation, 162(1–2):158–178, 2000.
5. V. Haarslev and R. Möller. RACER. URL: http://kogs-www.informatik.

uni-hamburg.de/~race/, September 2002.
6. A. Heuerding and S. Schwendimann. A Benchmark Method for the Propositional

Modal Logics � , ��� , � 4. Technical Report IAM-96-015, University of Bern,
1996.

7. I. Horrocks. FaCT. URL: http://www.cs.man.ac.uk/ ~horrocks/FaCT/, Septem-
ber 2002.

8. I. Horrocks, P.F. Patel-Schneider, and R. Sebastiani. An Analysis of Empirical
Testing for Modal Decision Procedures. Logic J. of the IGPL, 8(3):293–323, 2000.

9. MSPASS V 1.0.0t.1.2.a. URL: http://www.cs.man.ac.uk/~schmidt/mspass,
February 23, 2001.

10. G. Pan, U. Sattler, and M. Y. Vardi. BDD-Based Decision Procedures for � . In
Proceedings of CADE 2002, pages 16–30. Springer LINK, 2002.

11. P.F. Patel-Schneider. DLP. URL: http://www.bell-labs. com.user/pfps/dlp/,
September 2002.

12. A. Tacchella. ∗SAT System Description. In Collected Papers from the International

Description Logics Workshop 1999, CEUR, 1999.
13. TANCS: Tableaux Non-Classical Systems Comparison. URL: http://www.dis.

uniroma1.it/~tancs, January 17, 2000.

