Constraint Propagation for Soft Constraint
Satisfaction Problems: Generalization and
Termination Conditions

S.Bistarelli', R.Gennari?, F. Rossi?

1: Universita di Pisa, Dipartimento di Informatica, Corso Italia 40, 56125 Pisa.
bista@di.unipi.it
2: ILLC, Institute of Logic, Language and Computation, University of Amsterdam,
N. Doelenstraat 15, 1012 CP Amsterdam, The Netherlands. gennari@hum.uva.nl 3:
Universita di Padova, Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7,
35131 Padova. frossi@math.unipd.it

Abstract. Soft constraints based on semirings are a generalization of
classical constraints, where tuples of variables’ values in each soft con-
straint are uniquely associated to elements from an algebraic structure
called semiring. This framework is able to express, for example, fuzzy,
classical, weighted, and over-constrained constraint problems.

Classical constraint propagation has been extended and adapted to soft
constraints by defining a schema for “soft local consistency” [BMRI7].
On the other hand, in [Apt99c¢] it has been proven that most of the well
known constraint propagation algorithms for classical constraints can be
cast within a single schema. In this paper, we refine the framework of
[Apt99c] and show how to use it for soft constraints. In doing so, we
generalize the concept of soft local consistency, and we also prove some
convenient properties about the termination of the proposed schema.

1 Introduction

Soft constraints allow to model faithfully many real-life problems, especially
those which possess features like preferences, uncertainties, costs, levels of im-
portance, and absence of solutions. Formally, a soft constraint problem (SCSP)
is just like a classical constraint problem (CSP), except that each assignment
of values to variables in the constraints is associated to an element taken from
a set (usually ordered). These elements will then directly represent the desired
features, since they can be interpreted as levels of preference, or costs, or levels
of certainty, or many other criteria.

There are many formalizations of soft constraint problems. In this paper we
consider the one based on semirings [BMR97], where the semiring specifies the
partially ordered set and the appropriate operation to use to combine constraints
together. This formalism has been shown to have many interesting intancs, like
classical, fuzzy, weighted, and probabilistic constraints.

For the semiring formalism, the propagation techiques usually used for classi-
cal CSPs have been extended and adapted to deal with soft constraints, provided

that certain conditions are met. This has led to a general framework for soft con-
straint propagation, where at each step a subproblem is solved, as in classical
constraint propagation, and possibly some domain modifications occurr in such
a subproblem [BMR97]. It is important to notice that, by studying the proper-
ties of this schema, it has been proved that such steps can be seen as functions
which are monotone, inflationary, and idempotent over a certain partial order.

On an orthogonal line of research, the concept of constraint propagation
over classical constraints has been studied in depth in [Apt99c], and a general
algorithmic schema (called GI) has been developed. In such a schema, constraint
propagation is achieved whenever we have a set of functions which are monotone
and inflationary over a partial order with a bottom.

By studying these two frameworks and comparing them, the first thing we
noticed is that the GI schema can be applied to soft constraints (see Section
6), since the function are order used for soft constraints has all the necessary
properties for the GI algorithm. This is proved in this paper by defining an
appropriate partial order over soft constraint problems (see Section 4).

By analyzing the features of the GI algorithm, we also realized (see Section 5)
that indeed soft constraint propagation can be extended to deal with functions
which are not necessarily idempotent (but still have to be monotone and infla-
tionary). Notice that this is a double generalization: we don’t require any longer
that each step has to solve a subproblem (it could do some other operation over
the problem), nor that it is idempotent. This allows us to model several forms
of “approximate” constraint propagation which were instead not modelled in
[BMRO7]. Example are: bounds-consistency for classical constraints [MS98], and
partial soft arc-consistency for soft constraints [BCGROO].

Summarizing, these two results allow us to use the GI algorithm schema for
performing a generalized form of soft constraint propagation. What is important
to study, at this point, is when the resulting GI schema terminates. In fact, if
we work with classical constraints over finite domains, it is easy to see that
the GI algorithm always terminates. However, when moving to soft constraints
over a semiring, even if the variable domain is finite, we could have an infinite
behaviour due to an infinite number of elements in the semiring. For example,
fuzzy constraints have a semiring containing all reals between 0 and 1, while
the semiring of weighted constraints contains all the reals, or all the naturals
(depending on the type of weights).

Therefore in the last part of the paper (see Section 7) we focus on identifying
some sufficient conditions for the termination of the GI algorithm over soft con-
straints. The first, predictable, condition that we consider is the well-foundedness
of the partial order over soft constraint problems: if the partial order over which
the GI algorithm works has chains of finite length, since constraint propaga-
tion never goes from one chain to another one, obviously the whole algorithm
terminates.

The second condition is in some sense more precise, although less general.
In fact, when the propagation steps are defined via the two semiring operations,
then we can just consider the sub-order over semiring elements obtained by tak-

ing the elements initially appearing in the given problem, and closing it under
the two operations. In fact, the GI algorithm cannot reach other elements, con-
sidering the restriction over the propagation steps. Therefore, if such a set (or a
superset of it) is well-founded, the GI algorithm terminates.

These two conditions are both sufficient for termination. However, they could
be difficult to check, unless the partial order has a well-known structure of which
we know the well-foundedness. Nevertheless, in a special case we can formally
prove that there exists a well-founded set of the shape required by the second
condition above, and thus we can automatically deduce termination. This special
case is related to the idempotence of the multiplicative operation of the semir-
ing, the one that we use to combine constraints. Therefore, if this operation is
idempotent, then GI terminates. For example, in classical constraints the mul-
tiplicative operation is logical and, and in fuzzy constraints it is the minimum,
thus we can formally prove that algorithm GI over any classical or fuzzy con-
straint problem always terminates, provided that the functions are defined via
the two semiring operations.

2 Soft Constraints

In the literature there have been many formalizations of the concept of soft
constraint [SFV95 DFP93 FW92,FL93]. Here we refer to a specific one [BMR97]
based on semirings, which however can be shown to generalize and express many
of the others. In the semiring-based formalism, a soft constraint is just a con-
straint where each instantiation of its variables has an associated value. Combin-
ing constraints will then have to take into account such additional values, and
thus the formalism has also to provide suitable operations for combination (x)
and comparison (+) of tuples of values and constraints. Therefore the formal-
ization adopted in [BMR97] uses a semiring structure, which is just a set plus
two operations (that will be used for constraint combination and comparison).

Semirings and SCSPs. A semiring is a tuple (A, +, x,0,1) such that: A is
a set and 0,1 € A; + is commutative, associative and 0 is its unit element; x
is associative, distributes over +, 1 is its unit element and 0 is its absorbing
element.

Further, we enforce some additional properties on a semiring, leading to
the notion of c-semiring (for “constraint-based”): a c-semiring is a semiring
(A, 4+, x,0,1) such that + is idempotent with 1 as its absorbing element and x
is commutative.

A constraint system is a tuple C'S = (S, D, V) where S is a c-semiring, D is a
finite set (the domain of the variables) and V' is a finite ordered set of variables.

Given a semiring S = (A, +, x, 0, 1) and a constraint system C'S = (S, D, V),
a constraint is a pair (def, con) where con C V and def : DI°"l — A. Therefore
a constraint specifies a set con of variables and assigns each tuple of values of
these variables an element of the semiring.

A Soft Constraint Satisfaction Problem (SCSP) on a constraint system CS
is a pair P := (C, con), where con CV and C is a set of constraints: intuitively,

con represents the set of variables of interest for the constraint set C', which
however may contain constraints defined on variables not in con.

Combining and projecting soft constraints. Given two constraints ¢; =
(defy,cony) and co = (defs,cons), their combination ¢; ® co is the constraint
(def,con) defined by con = coniUconsy and de f(t) = defi(t Lo) xdef(t Lion,),
where ¢ |5 denotes the tuple of values over the variables in Y, obtained by
projecting tuple ¢ from X onto Y. In other words, combining two constraints
means building a new constraint involving all the variables of the original one;
the new constraint associates to each tuple of domain values a semiring element
obtained by multiplying the elements associated by the original constraints to
the appropriate subtuples.

Given a constraint ¢ = (def,con) and a subset I of V', the projection of ¢
onto I, written ¢ |}y, is the constraint (def’,con’) where con’ = con N I and
def'(t') = Et\tir?%"con:t’ def(t). Informally, projecting means eliminating some
variables. This is done by associating each tuple ¢ over the remaining variables a
semiring element; the last one is the sum of the elements associated by the orig-
inal constraint to all the extensions of the tuple ¢ over the eliminated variables.

In brief: combination is performed via the multiplicative operation of the
semiring, and projection via the additive one.

Examples. Classical CSPs are SCSPs where the chosen c-semiring is Bool =
({false,true}, V, A, false, true). By means of Bool we can associate each tuple
of elements in D a Boolean value, false or true, then project and combine
constraints via the Boolean connectives.

Fuzzy CSPs [DFP93] can instead be modeled by choosing the c-semiring
Fuzzy = ([0, 1], maz,min,0,1). In fact, there each tuple has a value between
0 and 1; constraints are combined via the min operation and compared via
the max operation. Figure 1 shows a fuzzy CSP. Variables are inside circles,
constraints are represented by undirected arcs, and semiring values are written
to the right of the corresponding tuples. Here we assume that the domain of the
variables contains only elements a and b.

a..09 a..09
b..01 b..05

O—

.08
.02
.0
.0

EF &8

Fig. 1. A fuzzy CSP.

Solutions. The solution of an SCSP P = (C, con) is the constraint Sol(P) =
(Q C) Ueon- That constraint is obtained by combining all constraints of P and

then projecting over the variables in con. In this way we get the constraint over
con that is “induced” by the entire problem P.

For example, each solution of the fuzzy CSP of Figure 1 consists of a pair
of domain values (that is a domain value for each of the two variables) and
an associated semiring element. Such an element is obtained by selecting the
smallest value for all the subtuples (as many as the constraints) forming the
pair. For example, in the case of (a,a) (that is, z = y = a), we compute the
minimum between 0.9 (which is the value for z = a), 0.8 (which is the value for
(x = a,y = a)) and 0.9 (which is the value for y = a). Hence, the resulting value
for that tuple is 0.8.

Soft local consistency . SCSPs can be solved by extending and adapting the
typical algorithms used for classical CSPs. In particular, most of the traditional
local consistency (also called propagation algorithms can be generalized to SCSPs
[BMROT]. In order to define local consistency algorithms for SCSPs, the notion of
local consistency rules is introduced. The application of one of such rules consists
of solving a subproblem of the given problem.

To model this, we use the notion of typed location. Informally, a typed location
is just a location [(as in ordinary store-based programming languages) which
has a set of variables con as type, and thus can only be assigned a constraint
¢ = (def,con) with the same type. In the following we assume to have a location
for every set of variables, and thus we identify a location with its type.

Definition 1. Given an SCSP P = (C, con), the value [l]p of the location [in
P is defined as the constraint (def,l) € C if it exists, as (1,1) otherwise. Given n

locations ly, ..., 1y, the value [{l1,...,l,}]|p of this set of locations in P is defined
as the set of constraints {[l1]p,...,[ln]pP}
Definition 2. An assignment is a pair | := ¢ where ¢ = (def,l). Given an

SCSP P = (C, con), the result of the assignment [:= ¢ is the problem [l := c](P)
defined as:

[l :=c|(P) = ({{def',con’y € C' | con' #1} Uc,con).

Thus an assignment [:= ¢ is seen as a function from constraint problems
to constraint problems, that modifies a given problem by changing just one
constraint, namely the one with type [. The change consists in substituting such a
constraint with c. If there is no constraint of type [, then the constraint c is added
to the given problem. In other words, the assignment [:= ¢ in P produces a new
problem P’ which is the same as P, except that it has an additional constraint
c over the variables in [, and that the old constraints over [are removed. Note
also that when | [|= 1 we are able to modify domains; in fact a domain can be
seen as a unary constraint.

Definition 3. Given a semiring S = (A,+,%,0,1) and a constraint system
CS = (S,D,V), we define the Problem Universe related to the constraint system
CS as PCS - (V, CCS)-

Some notation: when no confusion can arise, we shall simply write P instead of
the more cumbersome P¢s.

Definition 4. Consider a constraint system CS = (S,D,V), a location | and
a set of locations L, where | € L; a local consistency rule r} is a function
rk o p(Pes) = p(Pcs) such that, for any P € o(Pcs), rE(P) = [l =
Sol({[L]p, I)](P).

Intuitively, the application of r/” to P adds the constraint Sol({[L]p,)) over
the variables in [to P. This constraint, by definition of Sol, is obtained by
combining all constraints of P identified by L and then projecting the resulting
constraint over . However local consistency rules add or modify the constraints
of a problem preserving “equivalence”, which is defined as follows.

Definition 5. Consider two problems Py, and Py such that con,; C cons. If they
have the same solution set, we say that they are equivalent and write P, =p Ps.

It is possible to prove the following about the local consistency rules [BMRI7]:

— (equivalence) Given a constraint system CS, an SCSP P and a rule r on
CS, we have that P = r(P) if x is idempotent.

— (inflationarity) Given an SCSP P, a location [and a set of locations L, we
have that P Cop rf(P).

— (monotonicity) Consider two SCSPs P; = (C4,coni) and P> = (C2,cons)
over C'S, any set of locations L and a location [€ L. If P, Cop Ps, then
rE(P) Cop rf (P2).

Definition 6. Consider a problem P and a set R of rules. An infinite sequence
T of rules in R is a strategy. A strategy is fair if each rule of R occurs in it
infinitely often.

Since a local consistency rule is a function from problems to problems, the
application of a sequence S of rules to a problem is easily provided by func-
tion composition: we write [r; S](P) = [S]([r1](P)) and mean that the problem
[r; S](P) is obtained applying first the rule r and then the rules of the sequence
S in the specified order.

We are now ready to define local consistency algorithms.

Definition 7 (local consistency algorithm). Given a problem P, a set of
rules R and a fair strategy T for R, a local consistency algorithm applies to P
the rules in R in the order given by T. The algorithm stops when the current
problem is a fizpoint of all functions from R. In that case, we write lc(P,R,T)
to denote the resulting problem.

It is easy to prove that all the results about local consistency rules hold also
for a whole local consistency algorithm. Moreover, we can prove also that the
strategy does not influence the result, if it is fair [BMR97].

3 The Generic Iteration algorithm

The author of [Apt99b,Apt99c| introduced the Generic Iteration (GI) algorithm
to find the least fixpoint of a finite set of functions defined on a partial ordering
with bottom. This was then used as an algorithmic schema for classical constraint
propagation: each step of constraint propagation was seen as the application of
one of these functions. Our idea is to compare this schema with the one used
for soft constraints, with the aim of obtaining a new schema which is the most
general (that is, it can be applied both to classical and to soft constraints) and
has the advantages of both of them.

We recall here the main definitions needed for the development of the GI
algorithm.

Definition 8.

e Consider a partial ordering D := (D,Cp); the n-product ordering of D
is the ordering (D™, Cp=) where, for each n-tuple d := (di,...,d,) and
d = (dy,...,d,) of D", we have that d Cp~ d' iff, for all i = 1,...,n,
d; Cp dj.

e A function f : (D",Cpn) — (D,Cp) is inflationary (with respect to Cp)
if, for alld € D™ andi=1,...,n, d; Cp f(d).

e A function f : (D™, Epn) — (D,Cp) is monotonic if d Epn d implies

f(d) Ep f(d').

Consider now a set of functions F' := {f1,..., fr} on D. The following algo-
rithm can compute the least common fix point of the functions in F.

GENERIC ITERATION ALGORITHM (GI)

d:=1;

G :.=F;

while G # () do
choose g € G;
G:=G—{g}
G := G Uupdate(G, g,d);
d:= g(d)

do

where for all G, g, d the set of functions update(G, g, d) from F is such that:

A. {feF-G|f(d)=dA f(g(d) # g(d)} C update(G, g, d);
B. g(d) = d implies update(G,g,d) = 0;
C. g(g(d)) # g(d) implies g € update(G, g,d).

Intuitively, assumption A states that update(G, g,d) at least contains all the
functions from F' — G for which d is a fix point but g(d) is not. So at each loop
iteration such functions are added to the set G. In turn, assumption B states
that no functions are added to G in case the value of d did not change. Note

that even though after the assignment G := G — {g} we have g € F — G still
g&{feF—-G| f(d)=dA f(g(d)) # g(d)} holds. So assumption A does not
provide any information when g is to be added back to G. This information is
provided in assumption C. On the whole, the idea is to keep in G at least all
functions f for which the current value of d is not a fix point.

The following theorem states the (partial) correctness of the GI algorithm,
cf. [Apt99b,Apt99c].

Theorem 1 (termination and correctness of GI).

i. Every terminating execution of the GI algorithm computes in d a common
fixpoint of the functions from F'.
it. Suppose that all functions in F are monotonic. Then every terminating ex-
ecution of the GI algorithm computes in d the least common fixpoint of all
the functions from F .
iii. Suppose that all functions in F are inflationary and that D is finite. Then
every execution of the GI algorithm terminates. |

4 Some useful orderings

In this section we review and modify some of the orderings among semiring
elements, constraints, and problems, which have been introduced in [BMRI7];
moreover, we also define new orderings that will be used in the next sections.
These orderings will be used within the GI algorithm, which, we recall, needs to
work on a partial order with a bottom.

4.1 Semiring order

Hereby, we introduce the same ordering over the semiring, and state some of
the results concerning it, that can be found in [BMR97]. Then we will use this
ordering to to define other ordering relations.

Definition 9. The semiring relation <g over the set A is defined as follows:
a<gbiffa+b=nh.

Intuitively, the relation a <g b means that b is “better” than a, or, from
another point of view, that the + operation chooses b between a and b.

Theorem 2 ((A,<g) is a po). Given a semiring S = (A, +, x,0,1) with x
idempotent, we have the following:

o the relation <g is a partial order over the set A;
e 0 is the minimum;
o 1 is the maximum. a

The previous result corresponds to Theorem 2.3 of [BMR97]; in the same paper,
the authors demonstrated stronger properties of <g, namely that (4, <g) is a
distributive lattice, provided that x is idempotent; as far as we are concerned,
the result stated in Theorem 2 above is sufficient for our purposes.

Proposition 1. Let S = (A, +,x,0,1) be a semiring and <g the associated
partial order relation. Then the following results hold:

e + and X are monotone with respect to <g;
o + is inflationary with respect to <g; instead X is inflationary with respect
to >g. O

The proof of this Proposition can be found in [BMR97] within Theorem 2.4.

Summarizing, given a semiring S, we have two operations, + and x, which
are both monotone over <g. Moreover, + always brings to higher elements in
the partial order, while x always brings to lower elements.

4.2 Constraint order

From the ordering <g over A, we can also define a corresponding order between
constraints. Before introducing the new order we define its domain, namely the
set of all possible constraints over a constraint system.

Definition 10. Given a semiring S = (A, +, X,0,1) and a constraint system
CS = (S,D,V), we define the Constraint Universe related to the constraint
system CS as follows: Cos = U, ,cvi(def,con) | def : Dleonl — A},

Some notation: we write C (instead of Ccg) when the constraint system CS is
clear from the context.

Definition 11. Consider two constraints ci,ce2 over a constaint system CS;
assume that con; C cons and | cony |= k. Then we write ¢y Cg ¢o if and only
if, for all k-tuples t of values from D, defs(t) <g defi(t }5572).

coni

Loosely speaking, a constraint ¢; is less than cs in the order Cg iff it constrains
possibly less variables and assigns each tuple a greater value with respect to <g
than ¢z does.

Remark 1. Notice that the above definition is slightly different from the one
stated in [BMR95,BMR97], since there only constraints over the same set of
variables were taken into account. In this case, our order is the reverse of the
one considered in [BMR97].

Theorem 3 (Cg is a po). Given a semiring S = (A, +, x,0,1) with X idem-
potent and a constraint system C'S = (S, D, V) we have the following:

o the relation Cg is a partial order over the set Cos;
e its bottom Lg is (1, 0), where the O-arity function 1 :) — A is the constant
1 of the semiring.

Proof. We prove our first claim: we need to demonstrate that Cg is a reflexive,
antisymmetric and transitive relation. Reflexivity holds trivially. To prove anti-
symmetry, suppose that ¢; Cg ¢ and ¢y Eg c¢p; this yields that cony = cons.
Now, for all ¢ € DI®™l we have both def, (t) <s defs(t) and defs(t) <5 defi(t),
hence def,(t) = defs(t) and so ¢; = co. The transitivity of Cg follows from the
transitivity of <g. The other claim immediately follows from the definition of
Cs. O

4.3 Constraint set order

We can easily extend the order C g over constraints to a new order over constraint
sets as follows.

Definition 12. Consider two sets of constraints C1, Cs over a constraint system
CS. Suppose furthermore that Cy = {c} : i € I}, Cy = {c? :jeJ}, I CJ and
that, for every i € I, the relation ¢} Cg ¢? holds. Then we write C; Cc Ca.

The intuitive reading of C; C¢o Cy is that Cs is a problem generally “more
constraining” than C is, because Co> has (possibly) a larger number of “more
restrictive” constraints than C; has.

Note 1. Observe that the relation C is a C¢ relation. Indeed, consider two sets
of constraints C,Cs over a constraint system CS: if Cy C C5 then C; C¢o Cs.
In particular, for every constraint set C' over C'S, we have that C C¢ C.

Theorem 4 (Cc is a partial order). Given a semiring S = (A,+, x,0,1),
and a constraint system CS = (S, D, V), the following statements hold:

e the relation C¢ is a partial order over p(C);
e the bottom of the relation is L,c) is 0.

Proof. We only prove the first claim, the other one being straightforward. As
usual, we need to prove that the relation C¢ is reflexive, antisymmetric and
transitive. Reflexivity trivially holds. As far as antisymmetry is concerned, sup-
pose that Oy = {cj}ier, Co = {¢}}jes and both C; o Cy and Cy Eo C)
hold; this means that I = J. Moreover, the following relations hold for every
i € I: ¢} Cs ¢ and ¢} Cg c}. Hence ¢} = ¢} for every i € I, because Cg is
a partial order relation, cf. Theorem 3. Transitivity follows similarly exploiting
the transitivity of Cg. |

4.4 Problem order

So far, we have introduced two partial ordering relations: one between constraints
(Cs) and another one between constraint sets (C¢). However, local consistency
algorithms take constraint problems as input; therefore we need an ordering
relation between problems if we want the GI algorithm to be used for soft local
consistency.

Definition 13. Given a constraint system CS, consider two problems P, =
(C1,cony) and Py = (Ca,cons) on it. We write P, Cop P iff C1 E¢ Cy and
cony C cons.

Note 2. As observed in Note 1, the partial order C between constraint sets is a
C¢ relation; analogously, the set inclusion C between SCSP’s is a C¢ p relation.
Given a constraint system C'S = (S, D, V) and a problem P = (C, con), we have
that P C P’ implies P Ceop P'.

We now need to define a partially ordered structure that contains all SCSPs
that can be generated via local consistency starting from a given problem. We
recall that a local consistency algorithm for SCSPs modifies a given problem
enforcing new constraints on it.

Definition 14. Consider a constraint system C'S and an SCSP P over it. The
up-closure of P, briefly P 1, is the class of all problems P' on CS such that
PCcs P

The proof of the following proposition is an immediate consequence of the pre-
vious definition and the fact that T is a transitive relation, cf. Theorem 4.

Proposition 2. Consider a constraint system CS, an SCSP P over it and its
up-closure P 1. Then the following statements hold:

1. if PP Cos P and Py € P 1, then P, € P1;
2. if P, Cos Pa, then P, 1C Py 1.

Theorem 5 (Ccp is a po). Given a constraint system CS = (S,D,V) and a
problem P on it, the following statements hold:

e the relation Ceop is a partial order between problems on C'S;

e in particular (P T,Ccpipy) s a partial ordering, where Ccoppy is the re-
striction of Cop to P T; when no confusion can arise, we simply write
(P T) ECP);

e the bottom Lcs of (P 1,Ccp) is P.

Proof. We prove the first claim, the other ones following immediately from the
definition of P 1 and Proposition 2. As usual, we only prove that the relation
is antisymmetric, because transitivity can be proved similarly and reflexivity
trivially holds. Hence, suppose that both P, Cop P and P Cop P; hold. This
means that we have the following relations:

cony C cony and Cy Ce Cs,
cony C cony and Cy Co Cf.

From the two previous relations and Theorem 4, it follows that con; = cons and
C1 = Cs; hence P, = Ps. O

5 Generalized local consistency for soft constraints

The local consistency rules defined in [BMR97], and recalled in Section 2, solve
a subproblem of a given problem. Such rules are shown to be monotone, infla-
tionary, and idempotent. However, algorithm GI just needs a set of functions
which are monotone and inflationary. We recall that inflationarity is needed to
ensure correctness (that is, that the least fixpoint is generated), while mono-
tonicity ensures, together with the finiteness of the domain, that GI terminates.
Therefore, we will now define a generalized notion of local consistency rules for
soft, constraints, which have just these two properties.

Definition 15. Consider an SCSP problem P over a semiring S. A local con-
sisteny function for P is a function f : P +— P 1 which is monotone and
inflationary over Cop.

With this definition of a local consistency function we relax two conditions
about a local consistency step:

— that it must solve a subproblem;
— that it must be idempotent.

The second generalization has been triggered by the results about the GI
algorithm, which have shown that idempotency is not needed for the desired re-
sults. Moreover, many practical local consistency algorithms do not exactly solve
subproblems, but generate an approximation of the solution (see for example the
definition of bounds consistency in [MS98]). Thus the first extension allows one
to model many more practical propagation algorithms.

6 Soft constraint propagation via algorithm GI

We can now collect the results achieved so far and combine them together in
this section. Our goal is to exploit the GI algorithm introduced in Section 3 and
apply it to local consistency functions for soft constraints.

The functions that GI needs in input are defined on a partial order with
bottom. In the case of local consistency rules for SCSPs, the partial order is
(P 1,Ccp), and the bottom is the problem P itself, cf. Theorem 5. Moreover,
the local consistency rules (and also the more general local consistency func-
tions) have all the “good” properties that GI needs. Namely, those functions
are monotonic and inflationary. Thus algorithm GI can be used to perform con-
straint propagation over soft constraint problems. Notice that the possibility of
using local consistency functions, instead of the more restrictive local consistency
rules, allows also to model partial local consistency (such as bounds-consistency
or partial arc-consistency [BCGRO0]).

This result can be formally stated as follows, as a corollary of Theorem 1.

Corollary 1 (properties of GI over soft constraints). Given a constraint
system CS and an SCSP problem P on it, let us instantiate the GI algorithm
with the po (P 1,Ccp) and a finite set R of local consistency functions. Then
every terminating execution of the GI algorithm computes in the output problem
P' the least common fizpoint of all the functions from R.

This means that algorithm GI can be applied as it is to soft constraint prob-
lem. In fact, if given in input a set of local consistency functions for a given
SCSP problem P, the algorithm performs constraint propagation over P.

What is now important to investigate is when the algorithm terminates. This
is particularly crucial for soft constraints, since, even when the variable domains
are finite, the semiring may contain an infinite number of elements, which is
obviosly a source of possible infiniteness. In the next section we will provide
some useful sufficient conditions for the termination of the GI algorithm when
used for constraint propagation over soft constraints.

7 Termination of the GI algorithm over soft constraints

As noted above, the presence of a possibly infinite semiring may lead to a con-
straint propagation algorithm which does not terminate. In the following we will
give several independent conditions which guarantee termination in some special
cases.

The first condition is a predictable extension of the one given in Theorem 1:
instead of requiring the finiteness of the domain of computation, we just require
that its chains have finite length, since it is easy to see that constraint propaga-
tion moves along a chain in the partial order. Monotonicity and inflationarity are
assured since they are properties, by definition, of the local consistency functions
(which, we recall, extend the local consistency rules defined in [BMR97]).

Theorem 6 (termination 1). Given a constraint system CS and an SCSP
problem P on it, let us instantiate the GI algorithm with the po (P 1,Ccp)
and a finite set R of local consistency functions. Suppose that the order Jcg
restricted to P 1 is well founded: namely that each chain of problems of P 1

~+Jdes Py Jes - Py Des o
is finite. Then every execution of the GI algorithm terminates.

This theorem can be used to prove termination in many case. For example,
classical constraints over finite domains generate a partial order which is finite
(an thus trivially well-founded), so the above theorem guarantees termination.
Another example occurs when dealing with weighted soft constraints, where we
deal with the naturals. Here the semiring is (N, +,min, 0, +00). Thus we have
an infinite order, but well-founded.

However, there are also many interesting cases in which the ordering (P 1
,Ccp) is not well-founded. Consider for instance the case of fuzzy or proba-
bilistic CSPs. For fuzzy CSPs, the semiring is ([0, 1], min, maz,0,1). Thus the
partially ordered structure containing all problems smaller than the given one,
according to the semiring partial order, is not well-founded, since we have all the
reals between 0 and a certain element in [0,1]. Thus the above theorem cannot
say anything about termination of GI in this case. However, this does not mean
that GI does not terminate, but only that the theorem above cannot be ap-
plied. In fact, later we will give another sufficient condition which will guarantee
termination in these two cases as well.

In fact, if we restrict our attention to local consistency functions defined via
+ and X, we can define another condition on our input problem that guarantees
the termination of the GI algorithm; this condition exploits the fact that the
local consistency functions are defined by means of the two semiring operations,
and the properties of such operations.

Definition 16 (semiring closure). Consider a constraint system CS with
semiring S = (A,+,%,0,1), and an SCSP P on CS. Consider also the set
of semiring values appearing in P: Cl(P) = U(def’,con’)EC def’(D‘CO”I‘). Then,
a semiring closure of P is any set B such that:

— Cl(P)CBCA;
— B s closed with respect to + and x;
— B is well-founded.

Theorem 7 (termination 2). Consider a constraint system C'S with semiring
S =(A,+,x,0,1), an SCSP P on it and a finite set of local consistency functions
R defined via + and x. Assume also there exists a semiring closure of P. Then
every execution of the GI algorithm terminates.

Proof. The proof is similar to the one of Theorem 1; just replace the order J¢cp
with <g and accordingly the set D with B, where B is a semiring closure of P.
O

Remark 2. Notice that this theorem is similar to the one in [BMR97] about
termination; however the authors of [BMR97] force the set B to be finite in order
to guarantee the termination of a local consistency algorithm (cf. Theorem 4.14
of [BMRI7]); a hypothesis that is implied by ours.

For example, if we have a fuzzy constraint problem, then we can take B as
the set of all semiring values appearing in the initial problem. In fact, this set is
closed with respect to min and max, which are the two semiring operations in
this case. Moreover, it is well-founded, since it is finite.

Another example is constraint optimization over the reals: if the initial prob-
lem contains only natural numbers, then the set B can be the set of all naturals,
which is is a well-founded subset of the reals and it is closed w.r.t. + (min) and
X (sum).

Therefore, by using Theorem 7 we can prove that also constraint propagation
over fuzzy constraint problems always terminates, provided that each step of the
algorithm uses a local consistency function which is defined in terms of the two
semiring operations only.

However, it is not always easy to find a semiring closure of a given SCSP P,
mainly because we should check that a tentative set B, closed and containing
CL(P), is well-founded. Nevertheless, there is a special case in which we don’t
have to find such a set, because we can prove that it exists (and this is what
Theorem 7 requires).

This special case occurs when the multiplicative operation of the semiring is
idempotent. In fact, we can prove that in this case there exists always a finite
(and thus well-founded) semiring closure of any given problem over that semiring.
This obviously is very convenient, since it provides us with an easy way to check
whether Theorem 7 can be applied.

Theorem 8 (idempotence of x and termination). Consider a constraint
system C'S, an SCSP P on it and a finite set of local consistency functions R
defined via + and X. Assume also that X is idempotent. Then there exists a
finite set B which is a semiring closure of P.

Proof.c.cccoveeei.

Consider again the fuzzy constraint example. Here x is min, thus it is idempo-
tent. Therefore, by Theorem 8 and 7, GI over such problems always terminates.
This is an alternative, and easier, way (to Theorem 7) to guarantee that soft
constraint propagation over fuzzy constraints terminates. In fact, we don’t have
to find a semiring closure of the problem, but just check that the multiplicative
operation is idempotent.

Considering all the above results, we can devise the following steps towards
proving the termination of algorithm GI on a soft constraint problem P over a
semiring S:

— If the local consistency functions are defined via the two operations of S,
and the multiplicative operation of S is idempotent, then GI terminates (by
Theorem 8).

— If instead it is not idempotent, but we still have local consistency functions
defined via the two semiring operations, we can try to find a semiring closure
of P. If we find it, then GI terminates (by Theorem 7).

— If we cannot find a semiring closure of P, or the local consistency functions
are more general, then we can try to prove that the partial order of problems
is well-founded. If it is so, the GI terminates (by Theorem 6).

While Theorem 8 applies in a special case of the hypothesis of Theorem 7, it
is interesting to investigate the relationship between the hypothesis of Theorem
6 and 7. What can be proved is that these two conditions, namely, the well-
foundedness of the partial order of problems and the existence of a semiring
closure, are independent. In other words, there are cases in which one holds and
not the other one, and viceversa. To prove this result, we need the following
formal development.

Definition 17. Let S = (A, +, x,0,1) be a semiring and B a subset of A. The
set B is a down-set (or an order ideal) if, whenever a € B, a’' € A and o' <g a,
then a' € B. Given any subset B of A, the downward closure of B is

Bli={d €A:3d(d€ B and d <s d)}.

Observe that the class F of down-sets containing a subset B of A is not empty,
since A itself is such a set. Moreover, it is easy to check that the donward closure
of B is the smallest down-set of F; hence the donward closure of a set is well
defined.

Given a semiring S = (A, +, x,0,1), the following result links the upward
closure of a problem P with the downward closure of CI(P), thus allowing us to
link the conditions in the two theorems 6 and 7.

Proposition 3. Given a constraint system CS and a problem P defined on it,
consider the set

B:={def(t)e A : AP' € Pt (c:= (def,con) € P', t € DI*°"l\}.

Then B = CI(P) |.

Proof. Tt follows immediately from the definition of Cop, of P 1 and CI(P) .0

Now we can notice that, if a subset B of a semiring is finite and closed
with respect to + and X, then so is the set B := B U {0,1}. In fact it is
sufficient to check that the following identities hold because of the fact that
S =(A,+,%,0,1) is a c-semiring:

ifa € Bthena+0=a € B;
ifa € Bthenax1=a € B;
ifaEBthena-{—l:lEB;
ifa € Bthenax0=0¢ B.

Hence in Theorem 7 we can replace the hypothesis “CI(P) C B, and B finite
and closed with respect to + and x” with the condition that “CI(P) is a subset
of a finite sub-c-semiring B of S = (A4, +, x,0,1)”.

Moreover, + is the least upper bound operation and, if x is idempotent, X
is the greatest lower bound operation, cf. Theorem 2.9 and 2.10 of [BMR97].
Hence a sub-c-semiring is also a sub-lattice of S = (4, +, x,0,1) and vice versa
if x is idempotent. Thus a subset B of a semiring can be a down-set and yet it
may be not closed with respect to x and +. For instance, the set of negative real
numbers augmented with —oo is a down-set in the lattice R™ of reals extended
with {400, —00} and the usual linear ordering; however it is not a sub-lattice
itself. Viceversa, there are sub-lattices of R - hence sets that are closed with
respect to the least upper bound and the greatest lower bound operations -
that are not down-sets. For instance, the extended interval [0,1] U {+o0, —c0}.
Therefore the two conditions that guarantee the termination of algorithm GI in
Theore, 6 and 7 are indipendent.

8 Conclusions

We have studied the relationship between the soft constraint formalism based on
semirings described in [BMR97] and the constraint propagation schema proposed
in [Apt99c]. What we have discovered is that the GI algorithm of [Apt99c| can
be used also for soft constraints, since soft constraints provide what is need for
the GI algorithm to work correctly: a partial order with a bottom, and a set of
monotone functions.

Moreover, in studying this relationship we have also discovered that, in soft
constraints, we don’t have to restrict ourselves to local consistency functions
which solve a subproblem, but we can use any monotone function. Of course, in
this more general case, the equivalence of the resulting problem and the initial
one is not assured any more, and has to be studied on a case-by-case basis.

By passing from classical constraints to soft constraints, although on finit
domains, we have more possible sources of non-termination for the GI algorithm,
since the semiring can be infinite. Therefore we have studied in depth the issue
of termination for GI over soft constraints, finding some convenient sufficient
conditions. In particular, one of them just requires to check, in a certain special
case, that the multiplicative operation of the semiring is idempotent.

References

[Apt99a] K.R. Apt, The essence of Constraint Propagation, Theoretical Computer
Science, 221(1-2), pp. 179-210, 1999.

[Apt99b] K.R. Apt, The Rough Guide to Constraint Propagation, Proc. of the 5th
International Conference on Principles and Practice of Constraint Programming
(CP’99), (invited lecture), Springer-Verlag Lecture Notes in Computer Science
1713, pp. 1-23.

[Apt99c] K.R. Apt, The Roul of Commutativity to Constraint Propagation, submitted
for publication.

[B94] C. Bessiere. Arc-consistency and Arc-consistency again. Artificial Intelligence,
65(1), 1994.

[BCGROO] S. Bistarelli, P. Codognet, Y. Georget and F. Rossi Labeling and Partial
Local Consistency for Soft Constraint Programming Proc. of the 2nd International
Workshop on Practical Aspects of Declarative Languages (PADL’00), Springer-
Verlag Lecture Notes in Computer Science 1753, 2000.

[BMRO95] S. Bistarelli, U. Montanari and F. Rossi. Constraint Solving over Semirings.
Proceedings of IJCAI’95, Morgan Kaufman, 1995.

[BMRO7] S. Bistarelli, U. Montanari and F. Rossi. Semiring-based Constraint Solving
and Optimization. Journal of ACM, vol. 44, no. 2, March 1997.

[DP90] B. A. Davey and H. A. Priestley, Introduction to lattices and order, Cambridge
University Press, 1990.

[DFP93] D. Dubois, H. Fargier and H. Prade. The calculus of fuzzy restrictions as a
basis for flexible constraint satisfaction. Proc. IEEE International Conference on
Fuzzy Systems, IEEE, pp. 1131-1136, 1993.

[DFP93] D. Dubois and H. Fargier and H. Prade. The calculus of fuzzy restrictions as
a basis for flexible constraint satisfaction Proc. IEEE International Conference on
Fuzzy Systems, IEEE, pp. 1131-1136, 1993.

[FL93] H. Fargier and J. Lang Uncertainty in Constraint Satisfaction Problems: a
Probabilistic Approach Proc. European Conference on Symbolic and Qualitative
Approaches to Reasoning and Uncertainty (ECSQARU), Springer-Verlag, LNCS
747, pp. 97-104, 1993.

[FW92] E. C. Freuder and R. J. Wallace. Partial Constraint Satisfaction. Al Journal,
1992, 58.

[AC5] P. Van Hentenryck, Y. Deville and C-M. Teng. A generic arc-consistency algo-
rithm and its specializations. Artificial Intelligence 57 (1992), pp 291-321.

[MS98] K. Marriott and P. Stuckey. Programming with Constraints. MIT Press, 1998.

[SFV95] T. Schiex and H. Fargier and G. Verfaille. Valued Constraint Satisfaction
Problems: Hard and Easy Problems. Proc. IJCAI95, Morgan Kaufmann, pp. 631—
637, 1995.

