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Abstract. Interacting with a web service enabled marketplace in order to achieve a complex
task involves sequencing a set of individual service operations, gathering information from
the services, and making choices. We provide a high-level language for expressing web service
business processes and user requests. We also provide algorithms to encode them into a
constraint problem with an optimization function for preferential requests. A branch and
bound algorithm can then be used to solve the problem hence satisfy user requests against
the given business processes. This paper is an extended version of [10].

1 Introduction

Services are autonomous computational entities which live on a network and interact by asyn-
chronous message passing. Services publish standard interfaces to enable the discovery, binding
and invocation of their services. The most prominent example of services are the XML based set
of standards known as web services. The increasing size of the Internet and the availability of
more and more on-line services, opens a myriad of opportunities for developing loosely coupled
applications based on third party services.

The most interesting open challenge in the field today is the problem of aggregating several
services in order to achieve a complex task, this problem is known as the service composition
problem. There are many dimensions to this problem which span from selecting services to achieve a
goal, considering non-functional properties of the composition, performing automatic composition
based on semantic descriptions, providing tools for designing compositions, etc.

We concentrate on the problem of enabling a user to express complex requests against a pre-
compiled composition of services in the form of a business process. If the latter is generic enough to
describe all possible interactions with those web services, what we have is a description of a domain,
e.g., of an electronic marketplace. Then the user request amounts to invoking the appropriate
services following the constraints given by the business process and by the goal of the user. In this
paper, we propose to encode the service domain and the user goal as an optimization constraint
problem. In particular, we provide algorithms to move from service domain representations and
goals to a set of constraints. The request language can express achievement of goals, sequencing
of goals, maintaining of properties, and preferences. Solving of the constraints represents finding
an executable plan to satisfy the user’s request “as best as possible”.



The remainder of the paper is organized as follows. Section 2 introduces a trip organization
example which runs throughout the paper. Definitions of the goal language and planning are
provided in Section 3. The algorithms to perform the encoding of the problem of interacting with
web services as constraint programming are given and explained in Section 4. Related work in the
fields of constraints, AI and service-oriented computing is surveyed in Section 5. Finally, Section 6
contains concluding remarks.

2 Organizing a trip

Nowadays standard business and terminology descriptions are given in XML schemas, e.g., for the
automotive industry, tourism industry, chemical industry and so on (e.g., http://xml.coverpages.
org/xmlApplications.html). In the near future, it is expected that abstract definitions of such
business process will be given in BPEL [3] or similar service choreography languages. Let us
consider a travel marketplace and the organization of a trip. A generic trip organization can be
modeled by a complex business process encompassing several steps. Moving from one step to
another may involve the discovery of information, the choice of which step to take or even the
nondeterminism involved in a step of which the outcome is not known until execution. In [11], we
used a business process for organizing a trip consisting of 36 states and based on a OTA specifi-
cation (http://www.opentravel.org). Here we look at a subset of that business process which
will help to ground the intuitions behind the proposed encoding.

a1’: bookHotel

a3: reserveFlight

a2: reserveTrain

s1

s2 s3

a1’’: failure

Fig. 1. A component of a travel business process

When deciding on a trip, the user may first want to book the hotel of the final destination and
then book a carrier to reach the location of the hotel. We represent this business process snippet
as a state transition system in Figure 1. The first action is that of reserving a hotel (state s1).
This action may nondeterministically result in the successful booking of the room (state s2) or in
a failure (return to state s1). Finally, there are two ways to reach the state s3 in which a carrier to
arrive at the site of the hotel is booked. One may choose to fly or to take a train. This is achieved
by choosing one of the two actions reserveTrain or reserveFlight.

Given the above scenario, a specific user may desire to have a hotel reserved; it can also happen
that the user prefers flying to taking a train to her/his final destination, and to spend no more
than 100 euros.

3 Web service interactions as planning and execution

Interacting with a web service enabled marketplace in order to achieve a complex task involves
sequencing a set of individual service operations, gathering information from the services and
making choices. Planning offers a natural model for this behavior. The complex task of the user
is similar to a planning goal, while the business process describing the possible behaviors of the
marketplace is similar to a planing domain. The achievement of the user’s goal yields a plan, that
is sequences of actions, and its execution.



We propose to use constraint programming techniques to implement such a planning model
for web service interaction. The service planning domain, i.e., the business process, is encoded as
a constraint-based problem together with the encoding of the goal, i.e., the user’s requests. Then,
putting together the encoding of the domain and the encoding of the goal means representing all
possible executions which are plans satisfying the goal.

Next we introduce the formal notions of domain and goal that we use in this paper, and show
how we translate them into constraints.

3.1 Service domain and goals

The service planning domain is a state-transition system with one characterizing peculiarity: non-
deterministic actions. Formally, we define such a domain as a tuple of states, actions, variables,
failure states, and an effect function.

Definition 1 (service planning domain). A service planning domain D is a tuple 〈S,A,V , T , f〉,
where:

– S is a set of states;

– A is a set of actions;

– V is a set of variables of arbitrary domains;

– T : S ×A → 2S × S is the transition function;

– f : A× V → V is the effect function.

Note that the transition function maps a state and an action into a set of states and an individual
state. The rationale is that of all the states reached with an action one of them is a normal outcome
state, while all the others represent some kind of failure states for that action. Moreover, the effect
function expresses every possible action outcome.

Goal Where satisfied Type of goal

vitalp In a state where p holds to which there is a path from the initial
state modulo failures

reachability

atomic p In a state where p holds to which there is a path from the initial
state despite failures

reachability

vital-maint p In a state to which there is a path from the initial state modulo
failures. p must hold in all states along the path

maintainability

atomic-maint p In a state to which there is a path from the initial state despite
failures. p must hold in all states along the path

maintainability

prefer g1to g2 In states where g1 is satisfied, otherwise the satisfiability of g2 is
checked

preference

optional g States where g is satisfied are checked first, otherwise the goal is
ignored

preference

before g1then g2 In states, to which there is a path from the initial state, such that,
states along these path where g1 is satisfied precede those where
g2 is satisfied

sequencing

achieve-all g1, . . . , gn In states, to which there is a path from the initial state, such that,
there are states along the path where gi are satisfied

composition

Table 1. Goal language constructs.

The goal language is derived from our earlier work using a model based planner [11] which in
turn is based on temporal logics. Here we give the basic definition of the language and ground the
intuitions about the language constructs in Table 1. The goal is recursively defined as follows.



Definition 2 (goal language). Basic goals are formed using the following unary operators:
vital p, atomic p, vital-maint p, atomic-maint p, where p is a proposition. A goal g is a basic
goal or a combination of goals using the following operators: achieve-all g,optional g, before-then g,
prefer g to g.

We are now ready to provide a general definition of what a planning problem is in our setting,
that is with respect to our service planning domain and goal.

Definition 3 (service planning problem). A service planning problem is a tuple P = 〈D, s0, g〉,
where D is a domain from Definition 1, s0 is an initial state, and g is a goal from Definition 2.
A set of sequences of actions is a plan π; this is solution to the planning problem P if all possible
executions of the plan, starting in s0, satisfy g.

For the precise definition of goal satisfaction we refer the reader to [11]. In Section 4, we explain
how we obtain a plan by translating goals and domains into numeric constraints.

3.2 Planning a trip

Let us come back to our travel example of Section 2 and define the service planning domain
according to Definition 1. Referring to Figure 1, the set of states S is {s1, s2, s3}, the set of
actions A is {bookHotel a1, reserveTrain a2, reserveFlight a3 }, while the set of variables
is {price, hotelBooked, trainBooked, flightBooked}. In this example the first variable is a non-
negative integer and all other variables are boolean. As for the transition function, bookHotel a1

brings the system nondeterministically into two possible states; s2 is the normal state, while s1

is the failure state. The other two elements of the transition function are evident from Figure 1.
Finally, for the effect functions we have the following situation, which we present informally:

– normal bookHotel action a′
1 increases price and sets the boolean variable hotelBooked to true

(i.e., the value 1);
– failure bookHotel action a′′

1 has no effect on the variables;
– reserveTrain action a2 increases the price and sets the boolean variable trainBooked to true;
– reserveFlight action a3 increases the price and sets the boolean variable flightBooked to

true;

We assume initial values for the variables to be equal to zero. As for the goal introduced in Section 2
using the goal language of Definition 2, we have:

achieve-all
vital hotelBooked = 1

atomic-maint price < 100 (goal 1)

prefer vital flightBooked = 1

to vital trainBooked = 1

4 Constraint-based encoding of the service planning domain

Services offer a set of independently invocable operations. The operations act on a number of
variables whose value may depend on a single service invocation or, more generally, it may depend
on a number of invocations on several independent services. We model the way in which the values
of a variable spanning across services may change by means of constraints. Additionally, the user
has goals and preferences in achieving complex tasks that guide the service invocations. We model
the latter as additional constraints on the service domain.

In particular in the framework we propose, there are two types of Boolean variables: controlled
variables, denoted by βi, and non-controlled variables, denoted by ξi. The underlying idea is that
the system is not necessarily free to choose a specific value for a non-controlled variable, thus
a solution to the problem may be such regardless of the values assigned to the non-controlled
variables.



Note 1. In this paper, when we talk about nondeterministic actions we refer to their outcomes
(that is, states) which can be different; yet, once an action is invoked, we assume that its outcome
will be always the same. In other words, any of its future invocations will produce the same
outcome.

The rationale for the framework we propose is that of modeling a service domain and user’s goal as
a set of constraints over controlled and non controlled variables. The constraints have the following
form:

[∀ξi :] cv ⊲⊳ value (1)

where:

– value is a value from the domain of the variable v,
– cv is a vector of expressions of the form

∑

βi[ξi]ai,k with βi, ξi ∈ {0, 1},
– the ξi are non-controlled variables and the βi are controlled variables,
– ai,k is the effect function of the action ai for the outcome k,
– ⊲⊳ is either <,>,≥, ≤ or =,
– and [·] denote that the expression is optionally present in the constraint.

Formally, the service constraint problem can be formulated as follows.

Definition 4 (service constraint problem). A service constraint problem is made of: a finite
set of controlled boolean variables, β; a finite set of controlled variables over integers, n; a finite
set of non-controlled boolean variables, ξ; a finite set of constraints, c, as in Equation 1, s.t. (i) if
a non-controlled variable occurs then it is universally quantified, (ii) else a value is available and
substituted for the variable; an objective function over Boolean variables.
A solution to a service constraint problem is an assignment to controlled variables such that all
constraints are satisfied and the objective function is maximized.

To arrive at the encoding of the service interaction problem as a set of constraints of the form of
Equation 1, we follow a two phase process. In the first phase, one encodes the service planning
domain, while in the second phase one encodes the goal.

Phase 1. Domain encoding: the service domain is encoded as a vector of constraints C. Effect
functions can be partially specified as numeric values.

Phase 2. Goal encoding: the encoding is completed when the goal is given; then the required
symbols and universal quantifiers are added.

4.1 Phase 1: domain encoding

During Phase 1 the service domain is encoded. Starting from a service domain as in Definition 1,
we arrive at a set of expressions cv as in Equation (1) plus a set of linear constraints of the form
∑

βi ≤ 1. In the following, we adopt the notation of Equation (1); in addition, n is a natural
number that specifies how many times a cycle is followed, while ai is overloaded to represent not
only the action, but also its effects. From here onwards, we only consider linear effect functions.

The encoding is generated following an algorithm that recursively visits the service domain D,
separately keeping track of cycles, and returns a set of constraints. The algorithm (Algorithm 1)
begins from an initial state s ∈ S from the service planning domain D, and an empty path P (which
represents the working path followed on the graph), and returns a vector of constraints; that is,
one constraint for every variable in the domain V . It also updates a global cycle data structure to
record constraints associated with cycles. The algorithm uses a set of variables to mark states as
visited in order to detect directed and undirected cycles. Let us consider the various cases of the
algorithm, for which we also provide a pictorial explanation in Table 2.
Base case. If the degree of the arcs leaving the state s is 0, then there is no constraint to
be returned. Table 2.(A) illustrates this situation. Also the case of the directed cycle, which is
presented below, is a base case.



Cycles. With the path sequence P and the visited variables one detects cycles in the state-action
graphs. We distinguish two types of cycles: undirected ones and directed ones. In the first case,
we simply ‘duplicate’ the state and proceed in our analysis; in the second case, we add counters
to represent the number of times the cycle is followed.
Cycles: state splitting. If one has already visited a state, but the state is not part of the current
path P , we have detected an undirected cycle. To proceed we need to duplicate the state s already
visited by creating state s′ and recursively encode the duplicated state. This situation is illustrated
in Table 2.(E). There is no specific encoding for this case.
Cycles: directed cycle. If one has already visited a state and the state is part of the current path
P , we have detected a directed cycle. The Algorithm 3 is invoked to encode the cycle constraint
which is added to the step where the cycle originated. The constraint resulting from the invocation
of the cycle algorithm is stored in the global variable cycle together with information on where the
cycle began (given by the state s and path P ). No constraint is directly added to the expression,
so the return value of this case is ∅.

The Algorithm 3 works by first identifying the cycle. This is done by going backwards in
the path P until the same state as the last one is found. Then all the actions involved in the
cycle are identified. For each one of the actions which is nondeterministic we add a non-controlled
variable ξj which multiplies the whole expression, because a cycle is only possible if corresponding
nondeterministic actions keep inside the cycle. Then we sum all the actions effects involved in
the cycle. Finally, we multiply the whole expression for a natural number n which represents the
number of times the cycle is followed.

Table 2.(F) exemplifies a cycle situation in which there are simple deterministic actions (a1),
actions taking out of the cycle (a3), and nondeterministic actions that ‘might’ lead out of the cycle
(a′′

4 ). The expression on the right in Table 2.(F) is what is added to variable cycle.
Branch point. Of all the actions leaving from the current state one of these will be performed at
the next step. The constraint is a sum of all the possible executed actions which calls the function
add-single-action (Algorithm 2) containing a mutual recursive call. If there is a cycle associated
to the current state in the path, then also the cycle constraint is added by the get function. With
the βi one pinpoints which one of the actions is actually executed (at most one β is set to one and
all the others to 0).

Algorithm 2 distinguishes between the case the action is deterministic and nondeterministic.
In the latter case, non-controlled variables ξi are introduced for every possible outcome of the
nondeterministic action. Only one of the outcomes will occur. If, on the other hand, the action is
deterministic, mutual recursion is called on the next state of the domain to which the action leads.
In Table 2.(B & C) examples of one and two deterministic actions are presented, respectively. In
Table 2.(D) the case of a nondeterministic action with two possible outcomes is shown.

4.2 Phase 2: goal encoding

During the second phase of the encoding of the service planning problem, one takes a goal and the
encoding of the service domain, and produces a set of constraints which represent how to achieve
the user’s goal. The goal is expressed in the goal language of Definition 2. By parsing the goal,
Algorithm 4 works on the constraints generated in Phase 1 and generates a set of constraints of
the form of Equation 1.

We present the encoding of the goal into the domain by following Algorithm 4. The algorithm
parses the goal recursively distinguishing the cases of the various operators and updating the set
of constraints. Every time a new basic goal constraint is added, a new set of controlled variables is
introduced. Relations between controlled variables of different sub-goals are defined by achieve-all
and before-then .

vital v ⊲⊳ v0. If the goal is vital with respect to the variable v constrained by the ⊲⊳ operator on
the v0 value, then we take the v line in the constraint vector c (denoted by cv) and we add
it to the constraints set cv ⊲⊳ v0. Since the goal is vital we also set all variables ξv associated
with cv to ξ0

v , by which we mean that the normal execution must be followed, in place of the
nondeterministic failure ones.



Algorithm 1 encode(state s, domain D, path P ): constraint

if degree(s) == 0 then

// recursion base case
return ∅

end if

P = P ∪ s

if s is visited ∧ s ∈ P then

// visited state: cycle is added, base case
put(s,P,add-cycle(s, D, P ),cycle)
return ∅

end if

if s is visited ∧ s 6∈ P then

// visited state: splitting point
s′ = split(s)
return encode(s′, D, P )

end if

set visited s

// branch point

c =
Pdegree(s)

βi add-single-action(s, D, ai, P)+get(s,P,cycle)
Pdegree(s)

βi ≤ 1, βi ∈ {0, 1}
P = P\s
return c

Algorithm 2 add-single-action(state s, domain D, action a, path P ): constraint

if a is nondeterministic then

// nondeterministic branch point

return
P

outcomes(a)
ξi add-single-action(s, D, a′

i, P)
S

S P

outcomes(a)
ξi = 1, ξi ∈ {0, 1}

end if

// single deterministic action outcome
snext = get-next-state(s, D, a)
return a + encode(snext,D, P )

Algorithm 3 add-cycle(state s, domain D, path P ): constraint

// identify last cycle in the path
P = 〈. . . s, t1, . . . , tr, s〉;
// let ai be the action going from state ti to ti+1

∀ nondeterministic actions ad a ξj

return n
Q

ξj ·
Pr+1

ai



atomic v ⊲⊳ v0. This case is analogous to the vital one, with the difference that all nondetermin-
istic executions must be considered, therefore we come to a universal quantification over the
nondeterministic variables ξ.

vital-maint v ⊲⊳ v0. For maintainability goals we need to keep track of all the states visited during
a plan execution. This information is what is stored in the set P in Algorithm 1. Thus, we
quantify over the execution steps and we repeat the constraint as for the vital case above for
each step.

atomic-maint v ⊲⊳ v0. This case is analogous to the maintainability vital one, with the difference
that all nondeterministic executions must be considered, therefore we come to a universal
quantification over the nondeterministic variables ξ.

Now we consider the operators which aggregate basic sub-goals.

achieve-all g1 . . . , gn. First, recursion is called for all sub-goals g1, . . . , gn. Second, one considers
all pairs of basic goals coming from the recursive call and all execution steps (as done for
the maintainability goals). In all these cases, if during the execution some choices have been
made for the same branch point among different sub-goals, these choices have to be the same.
Therefore, we add expression forcing the choices for the execution of any subgoals to be the
same to the set of constraints. The expressions introduce the execution choice variable u.
Suppose that uj, j ∈ {1, 2} denotes the branch that has been chosen by the procedure that
tries to satisfy an j-th goal, uj = 0 defines that there were no choice made. Then the following
constraints ar added: u1 6= 0 ∧ u2 6= 0 ⇒ u1 = u2.

before g1then g2. The principle behind the before-then operator is similar to that of the achieve-
all, with the difference that one forces the ordering of the satisfaction of the subgoals. Again,
first we recur on the subgoals, then we introduce the execution choice variables u. The second
subgoal g2 should repeat the path of the first subgoal g1, until the first is satisfied, and only then
the second expression is checked. This is ensured by expressions of the form: u1 6= 0 ⇒ u1 = u2

which are added to the set of constraints.
prefer g1to g2. The preference request prefer g1to g2 is handled via reification [2, p. 383], intro-

ducing a fresh Boolean variable B(g1, g2) and appropriately ordering the domain of B(g1, g2);
optional g is treated similarly introducing B(g) which is true iff g is, and ordering the domain
of B(g) so that, whenever possible, B(g) 7→ 1 is chosen as first.

At the end of the encoding, the sum over all Boolean variables originating from preferences is
added as a maximization function to the original constraint problem. In this manner, a branch-
and-bound algorithm can be employed to satisfy the service constraint problem, and so satisfy the
maximum number of preferences.

4.3 The example encoded

Let us come back to the travel example of Sections 2 and 3.2 and show how Algorithms 1–4 encode
it into a constraint-based problem. Algorithm 1 takes the domain exemplified in Figure 1 and the
initial state s1 and produces the following constraints: β1(ξ1na

fail
1 + ξ2(a

ok
1 + β2a2 + β3a3)) which

represents the paths from state s1 to s3 with n being the number of times the cycle is followed.
Additionally, it also produces the constraints on the choice variables β1, β2, β3 ∈ {0, 1}, β2+β3 ≤ 1,
and the constraints on the non-controlled variables ξ1, ξ2 ∈ {0, 1}, ξ1 + ξ2 = 1. ξ1, ξ2.

Consider again the goal (goal 1) in Section 3.2, Algorithm 4 takes the constraints set above and
the goal, and builds a service constraint problem. For each basic goal a new set of free variables
is introduced. The first subgoal to be parsed is vital hotelBooked = 1. Since the hotelBooked

variable is influenced only by aok
1 outcome, then the constraint is β′

1ξ2a
ok
1 = 1 and the non-

controlled variables are assigned to normal execution, i.e., ξ2 = 1, ξ1 = 0.
The other vital goals are treated similarly. For vital flightBooked = 1 we have β′′′

1 ξ2β
′′′
3 = 1

and ξ2 = 1, ξ1 = 0, while for vital trainBooked = 1 we have βiv
1 ξ2β

iv
2 = 1 and ξ2 = 1, ξ1 = 0.

The atomic goal atomic-maint price < 100 is slightly different as price < 100 has to be
checked for each state. Since it is an atomic goal, we have to introduce a universal quantification



Algorithm 4 encode-goal(constraint c, goal g): goalset

// reachability goals
if g is ‘vital v ⊲⊳ v0’ then

c
S

ξv = ξ0
v, cv ⊲⊳ v0

return {g}
end if

if g is ‘atomic v ⊲⊳ v0’ then

c
S

∀ξ cv ⊲⊳ v0

return {g}
end if

// maintainability goals
if g is ‘vital-maint v ⊲⊳ v0’ then

for all steps ti do

c
S

ξv = ξ0
v , cv(ti) ⊲⊳ v0

end for

return {g}
end if

if g is ‘atomic-maint v ⊲⊳ v0’ then

for all steps ti do

c
S

∀ξ cv(ti) ⊲⊳ v0

end for

return {g}
end if

if g is ‘achieve-all g1, . . . , gn’ then

Gi = encode-goal(c, gi)
for all gi ∈ Gi, gj ∈ Gj , i 6= j, steps tk do

c
S

uk(gi) 6= 0 ∧ uk(gj) 6= 0 ⇒ uk(gi) = uk(gj)
end for

return {G1, . . . , Gn}
end if

if g is ‘before g1then g2’ then

Gi = encode-goal(c, gi), i ∈ {0, 1}
for all g1 ∈ G1, g2 ∈ G2, steps ti do

c
S

ui(g
1) 6= 0 ⇒ ui(g

1) = ui(g
2)

end for

return {G1, G2}
end if

if g is ‘prefer g1to g2’ then

Gi = encode-goal(c, gi), i ∈ {0, 1}
raise-priority(G1 , G2)
return {G1, G2}

end if

if g is ‘optional g1’ then

G1 = encode-goal(c, g1)
raise-priority(G1)
return {G1}

end if



over the non-controlled variables. This goal leads to the following set of constraints: ∀ξ : s′1 : 0 <

100, s′′1 : β′′
1 ξ1na

fail
1 < 100, s2 : β′′

1 (ξ1na
fail
1 + ξ2(a

ok
1 ) < 100, s3 : β′′

1 (ξ1na
fail
1 + ξ2(a

ok
1 + β′′

2 a2 +
β′′

3 a3)) < 100.
The goal of preferring flying over taking the train does not add any constraints, but defines

ordering of instatiation between the variables β′′′
i over βiv

i for all i ∈ {1, .., 3}. Finally, achieve-all
adds the relations between the branch choices, that is, the last 6 constraints in Equation 4.3.
Summarizing, the encoding of the travel example of Figure 1 and (goal 1) is the following:
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

β′
1ξ2 = 1, if ξ2 = 1, ξ1 = 0

∀ξ : 0 < 100

∀ξ : β′′
1 ξ1na

fail
1 < 100

∀ξ : β′′
1 (ξ1na

fail
1 + ξ2(a

ok
1 ) < 100

∀ξ : β′′
1 (ξ1na

fail
1 +

+ξ2(a
ok
1 + β′′

2 a2 + β′′
3 a3)) < 100

β′′′
1 ξ2β

′′′
3 = 1 if ξ2 = 1, ξ1 = 0∨

∨βiv
1 ξ2β

iv
2 = 1 if ξ2 = 1, ξ1 = 0
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∀j ∈ {1, .., 4}β
(j)
1 ≤ 1 ∧ β

(j)
2 + β

(j)
3 ≤ 1

∀i ∈ {1, .., 3}β′
i 6= 0 ∧ β′′

i 6= 0 ⇒ β′
i = β′′

i

∀i ∈ {1, .., 3}β′
i 6= 0 ∧ β′′′

i 6= 0 ⇒ β′
i = β′′′

i

∀i ∈ {1, .., 3}β′
i 6= 0 ∧ βiv

i 6= 0 ⇒ β′
i = βiv

i

∀i ∈ {1, .., 3}β′′
i 6= 0 ∧ β′′′

i 6= 0 ⇒ β′′
i = β′′′

i

∀i ∈ {1, .., 3}β′′
i 6= 0 ∧ βiv

i 6= 0 ⇒ β′′
i = βiv

i

∀i ∈ {1, .., 3}β′′′
i 6= 0 ∧ βiv

i 6= 0 ⇒ β′′′
i = βiv

i

One of the possible solutions is the following assignment of controlled variables: β
(j)
1 = 1,

β
(j)
2 = 0, β

(j)
3 = 1, for all j ∈ {1, .., 4}. This corresponds to the execution of booking the hotel

(bookHotel) and reserving a flight (reserveFlight) assuming that the total price is less than 100.
On the contrary, suppose that the flight price is 200, thus violating the price constraint, then the
above assignment is no longer a solution. By the preference ordering, we still have an assignment
which is a solution by using the train (reserveTrain) instead of the plane assuming that the total

cost is less than 100: β
(j)
1 = 1, β

(j)
2 = 1, β

(j)
3 = 0, for all j ∈ {1, .., 4}.

5 Related work

In the area of constraint satisfaction, the motivations that led to the framework of open constraint
satisfaction problems are common to ours. In particular, as the author of [16] pinpoints, for one
party in the service “it is often impractical [. . . ] to provide the other parties [. . . ] with full informa-
tion on its own constraints” and thus each party “has to solve its constraint satisfaction problem
without complete knowledge”; we refer the reader to [7] for other work related to the framework
of open constraint satisfaction problems. Another track of the constraint literature is focused on
the resource allocation problem in a distributed scenario, and its optimization (e.g., [8]); however
this is not an issue in this paper, as we abstract from this problem.

In fact, in this paper we are concerned with web service oriented business processes and inter-
actions with them, and we proposed a modeling as constraint-based problems. Instead of having
“external constraints” as, for instance, in the open constraint setting of [16], we introduced two
sorts of variables in our model: variables the constraint system is free to choose values for, and
variables that only external parties can choose values for. Accordingly the latter are called “non-
controlled variables”, and any solution to the problem is independent of their possible values.

In service-oriented computing several initiatives have been proposed to manage and interact
with web service compositions. There are approaches based on formal logics [4, 13, 14]) or other
approaches based on logic programming formalisms (e.g., [12]). All these approaches work under
the assumption of having available rich semantic service description and run-time information. In
contrast to this, in a pure service-oriented environment on the one hand, there is little semantic
description and, on the other hand, one deals with incomplete knowledge about service behavior.

Artificial Intelligence techniques can provide a solution to the problem of service composition.
In particular, there have been several proposals using AI planning. In [15], a review of web service
composition techniques is presented and it is argued that planning techniques can help tackling
the problem of automatic web service composition. In particular, Knoblock et al. [9] use a form
of template planning based on hierarchical task networks and constraint satisfaction. The authors



focus on information gathering and integration rather than on service composition. Encoding plan-
ning problems as constraints is not new. For instance, [5] introduce temporal constraint networks,
while planning as constraint satisfaction is proposed in [6].

In [1], we proposed a hybrid approach to web service composition and interaction based on
both planning and constraint satisfaction. In that work constraint satisfaction was used to select
the best plan instance of those generated by the planner and with values coming from interactions
with web service implementations. In [11], we concentrated on interleaving planning and execution
for satisfying user requests. In the latter work constraint satisfaction was not used, rather a planner
was adapted in order to deal with numeric responses from web service instances.

6 Concluding remarks

We proposed an approach to planning interactions with web services based on a constraint en-
coding. The key characteristics of the encoding are its dealing with nondeterminism, its being
unbounded, its representing the possible executions on the domain including traversal properties.
We provided algorithms for encoding state representations of the domain together with user re-
quests given in an expressive goal language. The proposed encoding is particularly suited to deal
with web service marketplace and gives the user the possibility to satisfy his/her desires.

This is a major improvement with respect to the previous frameworks to deal with web service
requests based on a model based planner [11]. In particular, with the proposed approach we deal
with numeric values in place of considering boolean conditions coming from the satisfaction of an
expression; we handle preference goals by introducing an optimization function; while keeping the
desired properties of dealing with nondetermisim, having primitives for execution properties (e.g.,
vital-maint goals) and having a framework to execute the requests.

This is an initial proposal to use constraints to encode the satisfaction of a user’s request with
respect to a set of autonomous web services. A number of issues are open for further investigation.
Most notably, we have not yet considered issues of efficiency of the proposed algorithms with
respect to the minimality of the encoding or of the propagation complexity or execution time.
We have not considered the framework in the context of interleaving planning and execution, nor
with respect to run-time information gathering. The latter is a crucial issue for the success of the
approach as in the web service context some information is gathered only at run-time and there
is constant need for replanning. We have preliminary results in extending the presented work in
this direction.
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Domain Type of action Encoding

(A)
s No action ∅

(B)

s1

s2
a

Single deterministic action βa

(C)

s1

s2

a1

s3

a2

Deterministic branch point β1a1 + β2a2

β1 + β2 ≤ 1

(D) s2

a’

s3

a’’

s1 Nondeterministic branch point β(ξ1a
′ + ξ2a

′′)
ξ1 + ξ2 = 1

(E)

s1 s2

s3

s1

s ’
3

s2

s ’’
3

a1 a2
a1 a2

s0 s0 Cycle: state splitting ∅

(F)

s1

s3

s2

s4

s5

a1 a2

a3

a’4
a’’4

Cycle: directed cycle nξ(a1 + a2 + a′

4)

Table 2. Encoding examples of the service domain.


