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Ex. 36 — Prove the following claim.

Claim 1. Uniform substitution preserves validity.
The above Claim 1 is implied by the following claim.
Claim 2. For all ¢ in M L(P), M L(P)-frame F,

for all p and 0 in ML(P), if F' |= ¢ then F = ¢(p/0). (3)

Now, proving (3) by contraposition means proving the following claim.

Claim 3. If, for all p and 6 in M L(P), and for some M based on F and w in F,
M, w [~ ¢(p/6) then there exists M’ based on F' and w’ in F' such that M’ w’ - ¢.
In turn, this follows from the following more general claim:

Claim 4. If, for all p and 6 in M L(P), and for all M based on F there exists M’
based on F' with the following property:

M,w k= ¢ iff M'yw = 6(p/6).

Prove the latter claim and work out the logical dependencies among the above
claims.

Answer (ex. 36) — Now, take any M = (W,R,V) in F. Define its variant
M' = (W, R, V') as follows:

Vi(p) ={weW | Muw 0}, (4)
V'(q) = V(q) for q #p in P.

If one proves that
M w = ¢ iff M w = ¢(p/0) (5)
then Claim 4 follows. We now prove (5) by induction on ¢.

Induction basis. The base case means proving (5) with ¢ equal to a proposition
letter. This follows from (4) — students are invited to spell it out in details.

Induction step. We distinguish three cases, one for each primitive logical sym-
bol of the basic modal language.

Case 1 means proving (5) with ¢ = =¢'. Now, M’ ,w = —¢' iff (by definition of
satisfiability) M’ ,w £ ¢ iff (IH on ¢') M,w = ¢'(p/0) iff (by definition of
satisfiability) M, w = —¢'(p/0).

Case 2 means proving (5) with ¢ = YAY’. Now, M, w = Ay iff (by definition of
satisfiability) M’ ,w = ¢ and M',w = " iff (IH on ¢ and ¥') M,w = ¢ (p/0)
and M,w = ¢'(p/0) iff (by definition of satisfiability) M,w = (p/0) A
V' (p/0) iff (by definition of substitution) M, w = (¢ A¢')(p/0).
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Case 3 means proving (5) with ¢ = &¢'. Now, M’ w | ¢’ iff (by definition of
satisfiability) there is v in W and Rwv and M’ v |= ¢’ iff (by IH on ¢’ and the
fact that M and M’ are based on the same frame (W, R)) there is v in W and
Rwv and M, v |= ¢'(p/0) iff (by definition of satisfiability) M, w = $v(p/6).

Ex. 37 — Definability of a class of frames.
1. Prove that Op defines the class of completely disconnected frames:
VaVy—Rzy.
2. Prove that O(Op — ¢) VvV O(Og — p) defines the class of piecewise connected
frames: VaVy(Rxy A Ryz — RxzV Rzx).
3. Conclude Example 3.6 of your textbook.

Answer (ex. 37) —

3. We prove by contraposition that if F' validates the Lob formula then F' is
transitive. Non transitivity yields that Rwv, Rvu and =Rwu for some w, v, u of
F. Let us consider the following formula, equivalent to the Léb formula: &p —
S(O-p A p) (why can we consider this instead of the Lob formula?). Next, let
us define M with V(p) = {v,u} over F. Now, M,v = p hence M,w | <p.
If M;w = <&(O-p A p) then there exists z with M,z | p and Rwz (1), and
M, z = O—-p. By definition of V' and R, (1) gives z = v. But M,v [~ O-p since
M, u = p. Therefore M, w = <(0-p A p), and hence F' does not validate the Lob
formula.

Ex. 39 — Definability properties. Let ML(P) be the basic modal language
over P, F; and F5 be two classes of frames for it.

1. Assume that »; defines F; and Y, defines F5. Then, what class of frames
does 1 U X5 define? Prove your statement.

2. What is the set of ML(P) formulas which defines the class of reflexive and
transitive frames?

Answer (ex. 39) — (1) follows from this:

- Fl=¢forall ¢ € XU
i

- F |= ¢ for all ¢ € 3 and for all ¢ € ¥
i
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Students are now asked to answer (2).

Ex. 41 — Non definability. Let ML(P) be the basic modal language. Prove
the following claims.

1. The class of frames with precisely n > 1 states is not definable in ML(P).
2. The class of frames each state of which has at most one R-successor, that
is,
VaVyVz(Rxy A Rrz — z = y),

is not definable in ML(P).

3. The class of non-reflexive frames (i.e., Iz—Rxx) is not definable in ML(P).

Answer (ex. 41) —
1. Consider a frame F', and FF W F. ..
2. Take F' = ({0,1,0',1'},{(0,1),(0/,1)}) and G = ({a,b,0'},{(a,b), (a,V')}).
Now, f(0) = f(0') = a, f(1) =band f(1') =¥ is a surjective bounded morphism.
Clearly, it is a hom. Let us check the back condition:

oif R f(0)b then Rr01 with f(1) = b;

oif Re:f(0')b then Rp01 with f(1) = b; ° ‘ °

oif R f(0)Y then Rp01 with f(1') = b'; : <

oif R f(0')0 then Rp01 with f(1') = V. ’ ’
Now, F validates the given property but G does not (a has precisely 2 R-successors).
Theorem 3.14 yields that the property is not definable in M L(P).

3. Take N = (N, S). It validates the given property. However, the reflexive state
is a bounded morphic image of N...

Ex. 42 — Local entailment. Prove that, if ¢ is a local semantic consequence
over the class all models of ¢ (that is, ¢ = ¢) then = ¢ — 1), and vice versa.

Answer (ex. 42) — This follows immediately from the definition of =y as stu-
dents are invited to check.

Ex. 54 — Theorems. Prove the following closure property of the set of theo-
rems of a modal logic €.

Claim 6. Let 2 be a modal logic. If -q ¢g — ¢1 and Fq ¢1 — ¢ then Fq @9 — ¢s.
(The rule is derived in Q).



Answer (ex. 54) — The set of Q-theorems contains (p — ¢q) — ((¢ — r) —
(p — 1)) as a propositional tautology. The set is closed for uniform substitution,
and hence Fq (g9 — ¢1) — ((¢1 — ¢2) — (Po — ¢2)) (x). Now, assume that
Fo ¢o — ¢1. From this and (x), we obtain Fq (¢1 — ¢2) — (g — ¢2) (®) by
modus ponens. Next, assume that o ¢ — ¢o. From this and (®), we obtain
Fa @9 — ¢2 by modus ponens.

Ex. 55 — Consistency and negation. Let A be a modal logic. Suppose that
Y. is A-consistent. Then prove the following: X U {¢} Fx L iff 3 5 —¢.

Answer (ex. 55) — YU {¢} Fp Liff ¥ Fy ¢ — L by the deduction theorem.
Let us now show that if ¥ Fy ¢ — 1 then X Fj —¢. Assume that Xy ¢ — 1|
that is, Fa A, ¢ — (¢ — L) where ¢; € ¥ for each i = 1,...,n. Now,
Fa (¢ — L) — —¢ (propositional tautology and uniform substitution). This and
Claim 6 yield that ¥ Fj —¢. A similar argument proves that X F, ¢ — L only if
Yk —o.

Ex. 56 — Inconsistency. Prove that the following statements are equivalent,
where ¥ is any set of modal formulas and A a modal logic:

1. X l_A J_;
2. there exists ¢ such that ¥ 5 ¥ A —;
3. X kA ¢ for all modal formulas ¢.

Answer (ex. 56) —

1 = 2. Take any formula ¢ of M L(P). The tautology instance 1L — 1 A =) and
Claim 6 yield X Fp 1 A ).

2 = 3. Let be ¥ be as in (2), that is, ¥ 5 ¥ A =10. Then, for any ¢, » A =) — ¢
is a tautology instance. This and Claim 6 yield X F, ¢.

3= 1. Take ¢ = L.

Ex. 57 — Compactness of . Let A be any modal logic. Prove that a set of
formulas ¥ is A-consistent iff every subset of X is such.

Answer (ex. 57) — Prove it by contraposition: ¥ 5 L iff there exists a finite
20 g > s.t. 20 l_A 1.

Ex. 59 — Soundness. Prove that S5 is not sound w.r.t. the class of reflexive



frames. Is S5 sound w.r.t. the class of universal frames (namely, those for which
VaVyRzy holds)?

Answer (ex. 59) — We leave the first statement to students. As for the second
statement, observe that S5 is sound for the class of equivalence frames, which
strictly includes that of universal frames. Students now should apply the definition
of soundness and conclude the proof.

Ex. 60 — MCS’s. Prove Proposition 4.16 of [BRV] as follows. Let I' be a
maximal {2-consistent set.

i. fgpel and ¢ - €I then ¢ €T
ii. If Th(Q) is the set of Q-theorems then Th(2) C I
iii. For every ¢ € M L(P), either ¢ € " or =¢ € I'.
iv. For every oV ip € ML(P), pVy el iff T ory €.

Answer (ex. 60) — The first two items of that proposition immediately follow
from this claim:
Claim 7. Let I' be a maximally (2-consistent set. ' Fq ¢ iff ¢ € T'.

Proof.

Right-to-left: Fo ¢ — ¢ (1) because p — p is a tautology and the set of Q-theorems
is closed for uniform substitution. The definition of 2-theorem with premises from
', to which ¢ belongs, yields I" Fq ¢ (note that we did not need maximality here).
Left-to-right: we prove it by reductio ad absurdum. IfI" g ¢ then Fo AT, ¢ — ¢
where the ¢} are I' formulas. If ¢ ¢ I" then maximality yields I' U {¢} o L, and
hence Fq ¢ — (Ai_; ¥ — L) where the t; are ' formulas. Claim 6 now yields
Fo Aioy L — (Aiey ¥ — L), that is, T' is Q-inconsistent. O

As for Item (i), note that ¢ — 1 € T yields (by Claim 7) that I Fq ¢ — . This is
true iff there exists A} t¢; with ¢); € T foralli =1...n and Fo A} ¢ — (¢ — 1),
that is, Fo A ¢ A ¢ — ¢ (x). If ¢ € T then (x) yields that I" kg 1, and hence
(by Claim 7) ¢ € T

Item (ii) follows from Claim 7 and the fact that if o ¢ then I' kg ¢.

As for Item (iii), consistency and Item (i) (with ¢» = L) yield that ¢ and —¢ cannot
both belong to I'. Assume that ¢ ¢ I'. Then maximality yields I'U {¢} Fq L, and
hence (Consistency and Negation Exercise) I' Fq —¢. The above claim yields that
—¢ € I'. A similar argument holds that if —¢ € I" then ¢ € T



Item (iv) follows similarly. The propositional tautology p — p V ¢ and uniform
substitution yield Fq ¢ — ¢ V 9. Item (ii) gives ¢ — ¢V € I'. If ¢ € T then
Item (i) yields ¢ V¢ € I'. A similar argument gives the same conclusion under
the assumption ¥ € I". Vice versa, assume that ¢ V¢ € I" and ¢ ¢ I', that is,
—¢ € I by Item (iii). The propositional tautology p V ¢ — (—p — ¢) and uniform
substitution yield o ¢V1) — (—=¢ — ). Item (ii) and two applications of Item (i)
give ¢ € I

Ex. 61 — Strong Completeness. Prove that S5 is strongly complete w.r.t.
the class of universal frames.

Answer (ex. 61) — Let M L(P) be the basic modal language. S5 is strongly
complete w.r.t. the class of frames the accessibility relation of which is of equiv-
alence. In particular, the canonical model M55 is based on such a frame. Take
any I'-consistent set of M L(P) formulas and its S5-MCS extension (which exists
due to the Lindebaum lemma). Take the submodel MEP of MS® generated by I'™;
since RS® is of equivalence, Mﬁf is based on a universal frame. By the satisfia-
bility preservation theorem on generated submodels, we know that MSP, I'T =T
iff MS® T = T'. The canonical model theorem states that M55 I'* |= T'; thus
M3 T+ =T



