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Abstract

Most current model-based diagnosis formalisms and algorithms are defined
only for static systems, which is often inadequate for medical reasoning. In this
paper we describe a model-based framework plus algorithms for diagnosing time-
dependent systems where we can define qualitative temporal scenarios. Complex
temporal behavior is described within a logical framework extended by qualita-
tive temporal constraints. Abstract observations aggregate from observations at
time points to assumptions over time intervals. These concepts provide a very
natural representation and make diagnosis independent of the number of actual
observations and the temporal resolution. The concept of abstract temporal diag-
nosis captures in a natural way the kind of indefinite temporal knowledge which
is frequently available in medical diagnoses. We use viral Hepatitis B (including a
set of real Hepatitis B data) to illustrate and evaluate our framework. The compar-
ison of our results with the results ofHEPAXPERT-I is promising. The diagnosis
computed in our system is often more precise than the diagnosis inHEPAXPERT-I
and we detect inconsistent data sequences which cannot be detected in the latter
system.
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1 Introduction

Due to its enormous complexity, medicine has always been a challenging testbed for
automatic diagnostic systems (e.g. [8, 31]). While most of these systems are based on
shallow reasoning [8, 31], recently several researchers investigated the use of model-
based techniques in medical diagnosis [5, 11, 14, 21]. These techniques allow the
representation of deep knowledge, which is important for the development of more
sophisticated problem solving systems [31].

Time constitutes an integral and important aspect of medical knowledge. Many
diseases are characterized by complex temporal symptom patterns. Examples are in-
fectious disease and diseases present over long time periods. Sophisticated medical
diagnosis systems need formalisms, which allow for modeling complex dynamic be-
havior. Recently, several researcher have investigated temporal reasoning for medi-
cal problem-solving. Keravnou [22] describes temporal diagnostic reasoning based
on time-objects which are defined in a multi-dimensional time space. Shahar and
Musen [28] propose a knowledge-based system for temporal abstraction in clinical
domains. Haimowitz and Kohane [19] are developing a system for the diagnosis of
medical trends. Long [23] describes the addition of temporal reasoning facilities to the
Heart Disease Program (HDP).

The model-based diagnosis approach [13, 26], which has been well studied for
static systems, is based on a model of the structure and function (behavior) of the
system to be diagnosed. The discrepancy and matching between the predicted behavior
and the actual observations form the basis of the calculation of diagnoses. Different
logical characterizations of diagnosis with different forms of explanation have been
worked out: consistency-based [13, 16, 26, 30] and abductive [9, 12, 24, 25] diagnosis.
Since many systems in the real world are dynamic, explicit or implicit representation
of time had to be included in recent approaches. Friedrich and Lackinger [15] propose
a very general extension of the traditional consistency-based approach to deal with
temporal misbehavior, where the dynamic behavior is described by a set of logical
sentences indexed by time. The approaches in [10, 14] approximate a dynamic system
by a sequence of static states, each of which can be modeled using the traditional static
framework. The temporal diagnosis framework in [11] is based on a causal network,
where time intervals are associated with both arcs (representing delays) and nodes
(representing temporal extents).

In this paper we present an alternative framework for the diagnosis of dynamic
systems, which extends previous work in model-based diagnosis in several directions.
Our main focus is the qualitative representation of complex temporal behavior and the
abstraction of observations from single time points to time intervals. This yields an
expressive and efficient framework for the diagnosis of time-dependent systems. In
section 2 we briefly describe the diagnosis of hepatitis B, which motivated our work.
We use it as an example throughout this paper. Section 3 introduces an interval-based
temporal framework which provides a powerful language to represent qualitative tem-
poral information. In section 4 we develop a new framework for temporal diagnosis.
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Based on a process-oriented ontology, the temporal language allows a concise descrip-
tion of dynamic system behavior. We define the concept of an abstract observation as
a temporal abstraction from observations at time points into “value assumptions over
time intervals”. Finally, we give a declarative definition of an explanation and show
how to compute such explanations. Section 5 includes an evaluation of our system
based on the diagnosis of real hepatitis B data samples. Section 6 discusses related
work.

2 Example and Motivation

2.1 Diagnosis of Hepatitis B

Hepatitis B is characterized by the following serological findings: hepatitis B surface
antigen (hbsag) and antibodies (antihbs), hepatitis B envelope antigen (hbeag) and an-
tibodies (antihbe), and antibodies to hepatitis B core antigen (antihbcandigmantihbc).
Each of these antigens and antibodies can take apositive(detectable in the patient’s
serum) or anegativevalue. The natural course of hepatitis B is characterized by a
sequence of these findings. We distinguish four acute and four persisting courses. Fig-
ure 1 shows the typical sequence of findings in the four acute courses of hepatitis B.
The bars indicate the time periods over which the findings are positive, while outside
the findings are negative. Four different stages can be distinguished during the course
of an hepatitis B:incubation, acute, convalescence, andimmunity.

The first stage after an infection with an hepatitis B virus is the incubation stage
which usually lasts from two to four months, although it may be very short (ten days)
or extremely long (nine months) in some cases. Towards the end of this period HBs-
antigen and HBe-antigen is detectable in the patient’s serum. The appearance of
antihbcandigmantihbcantibodies indicates the onset of the acute stage. Usually, after
about ten weeks seroconversion of HBe-antigen occurs andantihbeantibodies appear.
The next stage is the convalescence stage, in which seroconversion of HBs-antigen to
antihbsoccurs. In the first three courses we have a stage between the disappearance
of HBs-antigen and the appearance ofantihbs, which can last from several weeks to
several months. The final stage in the course of an acute hepatitis B is the immunity
stage. It is characterized by positiveantihbsandantihbcantibodies. In some courses
antihbeandigmantihbcantibodies can also be positive. Theantihbcantibodies remain
detectable in the patient’s serum for the rest of his/her life.

2.2 Motivation

Adlassnig and Horak [1, 2] describe an expert system for the automatic interpretation
of hepatitis A and B serology test results. Their system,HEPAXPERT-I, is able to
handle typical courses of viral hepatitis, in addition to the situations of active and
passive immunization against hepatitis A and B. The system does not consider any
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Figure 1: Typical sequence of findings in the four acute courses of hepatitis B.

additional biochemical or clinical data. InHEPAXPERT-I a sample of findings from
a single time point is compared with those serological constellations that may occur
during the course of viral hepatitis. The result of this comparison is an interpretation
text. Since previous test results are not considered, the interpretation is not always
unique.

The temporal evolution of the findings is crucial to the diagnosis of a viral hepatitis.
Considering this temporal information might substantially improve the interpretation
of the course of the disease. The following observations motivated our work:

• The typical courses of antigens and antibodies provide a good model for the evo-
lution of a viral hepatitis. Additional diagnostic experience from the physician
is not required to establish a diagnosis.

• The quantitative temporal information in the courses of viral hepatitis represents
average values that usually differ from case to case. The qualitative temporal
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relations among findings are much more reliable.

• All courses of hepatitis B look similar involving basically the same findings.
What distinguishes these courses is the order in which antigens and antibodies
occur.

• The findings are constant over long time periods. We can expect consecutive
serology test results to be frequently identical.

The first observation supports the use of the model-based diagnosis approach. The last
three observations stress the need to consider temporal information such as an explicit
representation of complex temporal behavior or the provision of temporal abstraction
mechanisms to reduce the computational complexity.

3 An Interval-Based Temporal Framework

The temporal language used is a subset of the interval-based temporal logic described
by Allen and Hayes in [4]. The only primitive temporal objects consist of a nonempty
set of time intervalswhich have a positive duration. We assume the existence of a
maximal time intervalimax which includes all other time intervals. This convention
is useful to represent propositions which are always true by stating that they are true
throughoutimax.

There are thirteen basic, mutually exclusive,qualitative temporal relationsbe-
tween two time intervals (table 1). Indefinite knowledge is expressed as disjunction
of basic relations. For example, the relation “time intervalI begins before time inter-
val J begins andI ends beforeJ ends” is represented as(I beforeJ) ∨ (I meetsJ)
∨ (I overlapsJ). To facilitate reading, we will use a set notation and write this dis-
junction asI{before,meets,overlaps}J. The empty relation{} represents inconsistent
temporal knowledge. The relationnoinfo is defined as the set of all basic relations and
indicates that we have no temporal knowledge at all. The relationdisjoint is defined
as the set{before,meets,after,met} and means that two intervals have no common
subinterval.

We do not need the full power of first-order predicate logic and restrict ourselves
to conjunctions of binary relations between two time intervals. In the following we
refer to these relations asqualitative algebra relations, for short QA relations. This
restriction allows us to represent temporal information as binary constraint networks
and to use efficient constraint satisfaction algorithms. A setR of QA relations can
graphically be represented by aQA network, denoted asR . Nodes represent time
intervals. The directed arcs are labeled with the QA relation between the two time
intervals represented by the connected nodes. We neither show arcs from a node to
itself, nor reverse arcs from nodeX to nodeY with inverse temporal relations. A
missing arc between two nodes is implicitly labeled with thenoinfo relation. The
logical equivalent of a QA network is the conjunction of all relations in the network.
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Basic relation Inverse Meaning
I beforeJ J after I I J

I meetsJ J metI
I overlapsJ J overlappedI
I startsJ J startedI
I duringJ J containsI
I finishesJ J finishedI
I equalJ J equalI

Table 1: The basic mutually exclusive qualitative temporal relations that hold between
two time intervals.

Given a QA network, the search for a consistent scenario and all feasible relations
are basic temporal reasoning tasks. Aconsistent scenariois a labeling of the network,
where every label consists of a single basic relation and it is possible to map the nodes
to the time line such that these relations hold. There are only a finite number of con-
sistent scenarios. A basic relationB is feasibleiff there exists a consistent scenario
containingB. Computing the feasible relations amounts to removing all inconsistent
basic relations. A QA network isconsistentiff a consistent scenario exists. In our
temporal framework all of these reasoning tasks are NP-complete [33]. For the pur-
pose of this paper, we are using standard approximation algorithms from the literature,
e.g. [3, 32].

We assume a linear and dense time structure, calledtime line, which is unbound
in both time directions, past and future. Time line intervals are denoted by[B,E],
whereB is the start point andE is the end point of the interval. For convenience,
we represent the time line by real numbers and implicitly assume the corresponding
ordering axioms. These axioms result in QA relations between time line intervals, e.g.
between the two intervals[1,2] and[2,5] we get ameetsrelation.

Given the primitive temporal objects and the time structure, we want to build
propositions about the world by referring to these temporal objects. Time is introduced
as an additional argument to the predicates in our language. For example,fever(high, i)
represents a high fever throughout time intervali.

4 ATD — A Temporal Diagnosis Framework

In this section we present a new temporal diagnosis framework. We will use first-order
predicate logic language. Variable names start with an upper case letter, constant and
predicate names with a lower case letter. QA relations are represented in set notation,
as discussed in the previous section.
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4.1 Process Description

We begin with the description of the basic formalism. While a component-oriented
ontology assuming a predefined structure is appropriate for modeling static systems, a
process-oriented ontology is more suitable for representing dynamic systems. We call
the model of the system theprocess description PD.

A system consists of a setPROCSof processes. One of these processes corre-
sponds to the normal system behavior, while the other processes represent different
faulty behaviors. Processes evolve over time, and it is useful to talk about consecu-
tive states a process passes through. With each process we associate a set of different
states. s(p, i) represents that processp assumes states throughout time intervali. By
writing a process state assumption ass(p, i)∧ τi , the amount of temporal incomplete-
ness is expressed by a conjunction of QA relationsτi constraining the time interval
i. For example,s(p, i)∧ i{starts,during,finishes,equal}[1,10] represents that process
p assumes states some time between1 and10, possibly but not necessarily over the
whole time interval[1,10]. Processes cannot be observed directly, but evoke the ap-
pearance of observable parameters.m(v, i) represents that parameterm assumes value
v throughout time intervali and we use the terms manifestation, symptom, and finding
interchangeably to refer to these effects. Processes are the only causes for changes in
the system behavior. This strong relationship between processes and manifestations is
explicitly captured by the concept of a state description model.

Definition 1 (State Description Model) A state description model SDMof a process
p∈ PROCSis defined as a logical formula

α∧ τα ⊃ β∧ τβ

whereα andβ are conjunctions of process state assumptions and/or manifestations,
andτα andτβ are conjunctions of QA relations. 2

A state description model specifies the causal and temporal relationships between
two or more processes (process states) and between processes (process states) and the
evoked manifestations. A state description model is read as follows: if a processp
assumes the states as specified inα such that the temporal relations inτα are satisfied,
then the manifestations inβ and the temporal relations inτβ are predicted. The process
states inα are possible causes of the manifestations inβ. The use of qualitative tem-
poral relations in a state description model allows a concise representation of complex
temporal relationships among causes and effects.

Example 1 (Hepatitis B) The various possible courses of hepatitis B are described in
terms of nine processes:PROCS= {no contact, course1, . . . ,course8}. The first pro-
cessno contact(no contact with the virus) represents the normal situation. In this case,
all possible findings are negative. Since only pathophysiological conditions need to be
explained, theno contactprocess is disregarded in the following. The other processes,
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course1 to course8, stand for the various Hepatitis-B-related antibody and antigen
titre time courses. The various stages in hepatitis B are represented as process states:
incubation, acute, convalescenceand immunity. Each of the courses is characterized
by a specific pattern of positive and negative findings. We denote the six hepatitis B
findings ashbsag, antihbs, hbeag, antihbe, antihbc, andigmantihbcand their possible
values aspos(positive) andneg(negative). A portion of the state description model
for the first course of hepatitis B is given below:

∀Iin∀Iac∀Ico∀Iim∃Ihbsag. . .∃Iigmantihbc

incubation(course1, Iin)∧ . . .∧ immunity(course1, Iim)∧
Iin{meets}Iac∧ Iac{meets}Ico∧ Ico{meets}Iim
⊃ hbsag(pos, Ihbsag)∧ . . .∧ igmantihbc(pos, Iigmantihbc)∧

Ihbsag{contains}Ihbeag∧ . . .∧ Iigmantihbc{starts}Iantihbc∧
Iin{overlaps}Ihbsag∧ . . .∧ Iim{after}Ihbsag∧ . . .

The antecedent specifies the causes: the four stages of Hepatitis B and the QA rela-
tions between these stages. The consequent specifies the effects: the positive findings,
the QA relations among these findings, and the QA relations among the states in the
antecedent and the findings in the conclusion. 2

We refer to the qualitative temporal relationsτα∪τβ astemporal behaviorof a state
description model. Graphically, we represent the temporal behavior as a QA network.
The nodes represent the temporal extent of process states and manifestations. The arcs
are labeled with the relations inτα∪τβ. We denote the nodes by the atemporal proposi-
tion rather than by the time interval and show only a part of the temporal relations. The
QA network representing the temporal behavior ofcourse1 is depicted in figure 2. It
differs from the temporal behavior of the other courses only by the temporal relations
among the findings.

The state description model is the only concept to represent causal relationships
among processes and evoked manifestations. Our main focus is on modeling faulty
behavior and on generating explanations for abnormal observations. In the hepati-
tis example negative findings are normal, while positive findings represent abnormal
values. Therefore, we use only the positive findings to describecourse1.

In many applications additional knowledge is available and/or required. In the
hepatitis example we relate a whole course to its four specific stages. To represent
such knowledge we introduce definitional axioms.

Definition 2 (Definitional Axiom) A definitional axiomis defined as a logical for-
mula

γ⊃ δ

whereγ andδ are conjunctions of various domain concepts including QA relations.2
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Figure 2: Temporal behavior ofcourse1 using positive findings only (convalescenceis
abbreviated byconval, course1 is abbreviated byc1).

A definitional axiom allows us to relate various domain concepts to each other
or to define new concepts from other concepts. This leads to a simpler knowledge
representation and provides different views of the domain. Unlike state description
models, definitional axioms do not represent causal knowledge and will not be used to
explain observations.

While a manifestation assumes different values over different time intervals, only
one value at a time is allowed. Similarly, only one course of a viral hepatitis actually
occurs. This leads to the definition of exclusiveness axioms.

Definition 3 (Exclusiveness Axioms)Theexclusiveness axiomsfor properties / pro-
cesses are defined as follows:

• a propertymcan assume only one value at a time:

∀V1∀V2∀I1∀I2 m(V1, I1)∧m(V2, I2)∧V1 6= V2 ⊃ I1{disjoint}I2
• two processesp1 andp2 are mutually exclusive:

∀I1∀I2 active(p1, I1)∧active(p2, I2) ⊃ I1{disjoint}I2
whereactive(p, I) means that processp occurs over time intervalI . 2

Example 2 (Hepatitis B continued) We complete the modeling of hepatitis B by
adding definitional and exclusiveness axioms to the process description. For each of
the eight courses one definitional axiom linking the stages to the course is added. The
definitional axiom forcourse1 is given as

∀Iin∀Iac∀Ico∀Iim∃Icourse1 incubation(course1, Iin)∧acute(course1, Iac)∧
convalescence(course1, Ico)∧ immunity(course1, Iim)∧
Iin{meets}Iac∧ Iac{meets}Ico∧ Ico{meets}Iim
⊃ active(course1, Icourse1)∧ Iin{starts} Icourse1∧ Iim{finishes} Icourse1
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For each of the six findings we include an exclusiveness of properties axiom. For
hbsagthis axiom is given as

∀V1∀V2∀I1∀I2 hbsag(V1, I1)∧hbsag(V2, I2)∧V1 6= V2 ⊃ I1{disjoint}I2
Only one course of hepatitis B actually occurs. This knowledge is captured by:

∀P1∀P2∀I1∀I2 active(P1, I1)∧active(P2, I2)∧P1 6= P2 ⊃ I1{disjoint}I2
If a processP1 occurs over time intervalI1 and a processP2 which is different fromP1

occurs over time intervalI2, thenI1 andI2 have no common subinterval. 2

Sometimes a stronger form of exclusiveness is necessary which not only forces two
processes to be disjoint, but additionally requires that only one of them can occur at
all. Such knowledge can be represented by using the empty relation{} instead of the
disjoint relation in the corresponding exclusiveness of processes axiom.

4.2 Observations and Abstract Observations

Observations tell us how the system actually behaves. Anobservationis defined as
a measurement of an observable parameter at a particular time point. In the hepati-
tis example, observations are the results of hepatitis B serology tests. For example,
hbsag(pos,1) represents a positive test result forhbsagat time1.

For hepatitis, but also in other domains it is reasonable to assume continuous per-
sistence of parameters. This allows a more intuitive and natural interpretation of ob-
servations over time intervals. We define the following temporal abstraction strategy:

1. For each observation construct a small time intervali around the observation
point, such that the parameterm assumes valuev throughouti, i.e. we use only
intervals in our representation and algorithms.

2. Join consecutive time intervals representing the same parameter assuming the
same value and construct larger intervals. Consecutive time intervals for the
same parameter assuming different values are constrained by themeetsrelation.

The first abstraction is justified by the continuous persistence of parameter values in
dynamic systems and the dense time model we are using. The second highly depends
on the dynamics of the system as well as on the measurement frequency. Including
such information is beyond the scope of this paper and not necessary in the hepatitis
domain. More sophisticated methods on measurement abstraction from time points
into time intervals are described in the literature, e.g. [27, 28, 29].

The result of performing this temporal abstraction for a set of observations is a set
of parameter assumptions over time intervals plus a set of QA relations constraining
these intervals. This leads to the concept of an abstract observation.
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Definition 4 (Abstract Observation) An abstract observationfor a parameterm as-
suming valuev during time intervali is defined as a logical formula

m(v, i)∧ τ

whereτ is a conjunction of QA relations between the temporal extenti and the real
time line and/or other abstract observations. 2

Example 3 (Hepatitis B continued) Suppose that a patient’s blood is examined each
month for hepatitis B antigens and antibodies. The results of these examinations are
shown in figure 3a. The letters “p” and “n” denote positive and negative test results.
From these observations we construct fourteen abstract observations indicated by thick
lines for positive and by thin lines for negative values. The symbol “?” indicates an
uncertain time of parameter value change. A portion of the abstract observations is
given below:

hbsag(neg, i1)∧hbsag(pos, i2)∧hbsag(neg, i3)∧antihbs(neg, i4)∧ . . .∧
i1{meets}i2∧ i2{meets}i3∧ i2{during}i4∧ . . .∧
i1{overlaps}[1,2]∧ i2{overlapped}[1,2]∧ i2{overlaps}[5,6]∧ . . .

For example,hbsagturns positive between time1 and2 and turns again negative be-
tween times5 and6; the time interval of positivehbsagis during the time interval of
negativeantihbs. 2

Two different types of qualitative temporal information can be distinguished: tem-
poral location and order. For an abstract observationm(v, i)∧ τ, the temporal loca-
tion consists of those relations inτ which constrain the temporal extenti relative to
the time line. In the above example, the temporal location of the positivehbsagis
i2{overlapped}[1,2] ∧ i2{contains}[5,6]. The temporal orderof an abstract obser-
vation m(v, i)∧ τ consists of all relations inτ between the temporal extenti and the
temporal extent of other abstract observations. A portion of the temporal order of the
positivehbsagin the above example isi1{meets}i2 ∧ i2{meets}i3 ∧ i2{during}i4.

AOBSdenotes a set of abstract observations. The qualitative temporal relations of
a setAOBSare graphically represented by a QA networkAOBS . The nodes in the
upper level represent the temporal order. The lower level represents the real time line.
The arcs between the two levels represent the temporal location. Figure 3b shows part
of the QA network for the abstract observations in the above example. For clarity, not
all relations are shown.

The concept of abstract observations is an important shift from a discrete view
based on time points to a view driven by changes of observations. This can consid-
erably improve the efficiency of the diagnostic process. In the worst case the value
of a parameter changes at every observation. Then each abstract observation covers
exactly one observation. Our example shows that in many cases parameters are stable
over long time periods.
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The concept of abstract observations can also express indefinite knowledge per se.
Patients frequently do not remember the exact time course of their symptoms, but are
able to temporally relate the symptoms to each other. By using theequalrelation, an
abstract observation can also represent exact temporal knowledge.

4.3 Abstract Temporal Diagnoses

The aim of diagnostic reasoning is to find an explanation for the observed abnormal
system behavior. Using abstract observations as described above, we will provide a
declarative definition of the concept of explanation in our framework, and develop an
algorithm for computing diagnostic explanations.

4.3.1 Declarative Definition

First, we have to determine those literals which we accept as an explanation. Follow-
ing the terminology of abductive reasoning we refer to these literals as abducibles. An
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abducibleis a literal for which no further explanation can be generated, and hence
should be accepted unconditionally. This is the case for all literals occurring only
in the antecedent of state description models, for example process state assumptions
(acute(course1, i) etc.) Usually, it is not possible to determine the exact temporal ex-
tent of such process state assumptions, although they can be constrained using tempo-
ral relations. As a consequence, an explanation may include temporal relations, which
are also abducible literals. Using such abducibles, we are able to generate explanations
like acute(course1, i) ∧ i{overlapped}[2,3] ∧ i{overlaps}[4,6], stating that the acute
stage ofcourse1 starts between time2 and3 and ends between4 and6.

Two extremes of diagnostic reasoning using different notions of explanation
have widely been used: consistency-based diagnosis [13, 16, 26, 30] where an ex-
planation has to be consistent with the observations, and abduction-based diagno-
sis [9, 12, 24, 25] where an explanation logically entails the observations. Follow-
ing [12] we develop an abduction-based framework with additional consistency con-
straints. Abnormal observations are explained abductively, and it is required that an
explanation is consistent with all observations, both normal and abnormal observa-
tions. Recall that abstract observations are denoted byAOBS. AOBS+ ⊆ AOBSde-
notes the abnormal abstract observations. In the hepatitis example positive findings
are abnormal, while negative findings are normal.

Definition 5 ( def:atd Abstract Temporal Diagnosis Given are a process description
PD and abstract observations〈AOBS+,AOBS〉, whereAOBS+ ⊆ AOBSare the ab-
normal abstract observations. A conjunction∆ of abducibles is anabstract temporal
diagnosisfor 〈AOBS+,AOBS〉 iff

1. PD∪∆ |= AOBS+

2. PD∪∆∪AOBSis consistent.

2

Condition (1) captures the abductive part: abnormal abstract observationsAOBS+

are logically entailed by the process description and∆. Condition (2) captures the
consistency-based part: an explanation is consistent with the process description and
all abstract observations. By including the temporal order and/or temporal location
into AOBS+, we can force stronger temporal conditions for specific temporal relations,
establishing various forms of abstract temporal diagnoses. Which temporal relations
should be included inAOBS+ depends mainly on the available domain knowledge. A
detailed discussion on this issue is given in [17].

4.3.2 Computation

The computation of diagnoses is best understood as a non-monotonic process, where
assumptions are successively revised until some termination criteria are satisfied.
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These assumptions consist of abducibles and represent hypotheses about the func-
tioning of the system to be diagnosed. The strategy to compute an abstract temporal
diagnosis can roughly be described as follows: we start with the empty assumption set
and consistently backchain from the abnormal abstract observations to the abducibles
by applying the cause-effect relationships. Two sequential tasks can be distinguished:
abduction and prediction. The idea ofabductionis to find a set of abducibles which,
together with the model, logically entail the data to be explained. In the context of
our framework, abduction looks for a process description model which predicts a
nonempty set of abstract observations inAOBS+. The literals in the antecedent of
such a model are introduced as new assumptions, which can either be abducibles or
need to be explained by further abduction steps. Theprediction task is a deductive
process and explicitly infers all new facts which logically follow from a knowledge
base. In the context of our framework, after the introduction of new assumptions in the
abductive step, the prediction task infers all new facts which follow from the process
description and the actual assumptions.

In the algorithms for computing abstract temporal diagnoses we make the follow-
ing assumptions which are all satisfied in the hepatitis example:

• The process descriptionPD is acyclic, i.e. we cannot build chains of state de-
scription models such that a parameter appears more than once. Put more for-
mally, for each causal chainα1 ⊃ α2, α2 ⊃ α3, . . . , αn−1 ⊃ αn, αi ground, a
parameter appears at most in one of theαi ’s. This assumption is reasonable in
any causal theory, since a parameter cannot be explained by itself.

• The abnormal abstract observationsAOBS+ contain no temporal relations. No
temporal relations are abductively explained, but are only used for consistency
checking. This restriction makes the computation of diagnoses more efficient.
Moreover, since the process description models in the hepatitis example contain
only definite temporal knowledge (single basic QA relations), using the temporal
order only for consistency checking yields the same diagnoses as explaining the
temporal order abductively.

• The temporal abstraction from the observations into the abstract observations is
correct.

• Each abstract observation has only one cause, i.e. the entire temporal extent of
an abstract observation can be explained by a single state description model.

In some applications the latter three assumptions are rather restrictive. It remains part
of our future work to extend the algorithms for more general cases.

ATD

The recursive functionATD in figure 4 implements the main algorithm to compute
abstract temporal diagnoses.ATD has four input parameters: the process description
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PD; a setC of data which have to be covered by an abstract temporal diagnosis and at
the first call is equal toAOBS+; a QA networkN which at the first call is equal to the
QA relations inAOBS; a setA of abducibles which at the first call is equal to the empty
set. ATD returns all abstract temporal diagnoses forAOBS+ andAOBS, respectively.
A andN together define a partial abstract temporal diagnosis, which initially is equal
to the empty diagnosis and is extended during the computation process. The setD is
used to collect the diagnoses computed so far and is initialized to the empty set. Since
every parameter has a temporal extent, a consistency check of a diagnosis amounts
to testing temporal consistency. The global networkN is used to maintain temporal
consistency.

If C is empty, all abnormal data are consistently covered. The functionDIAGNOSIS

constructs an abstract temporal diagnosis consisting of the abduciblesA and those QA
relations inN , that exist among these abducibles and from these abducibles to the time
line. ATD terminates and returnsD.

Otherwise, there are still data to be covered. We begin with the abduction and con-
sider each relevant state description model combined with each possible covering of
data inC by that model. A state description model is relevant in a particular state of the
diagnostic process, if it predicts some elements inC. Given a particular state descrip-
tion modelSDM of the formα∧ τα ⊃ β∧ τβ, we abductively infer the antecedent of
SDMas an explanation for those elements inC which are covered by a manifestation in
β. Pairs of a manifestation inβ and a covered element inC are specified in the binding
list BL. The binding list is a nonempty set of tuples〈m,c〉, wherem is a manifestation
in β, c is an element inC, andmandc both represent the same parameter and the same
value. Then the functionASSUME is invoked, which extends the global networkN by
the temporal behavior ofSDMand returns the networkNtmp.

If Ntmp is consistent, we usePREDICTION (simple forward-chaining).
PREDICTION recursively infers all new facts triggered by assuming the antecedent
of SDM in the abductive step. It applies the definitional axioms and the exclusiveness
axioms, possibly extending the global networkN by new nodes and new temporal
constraints. This process is repeated until no additional rules can be applied or until an
inconsistency is detected. The global network may be altered during prediction and is
returned inNnew.

If Nnew is consistent,SDM consistently explains a nonempty subset ofC. We add
the abducibles inα to A, remove the covered data inBL from C, and add the non-
abducibles inSDM toC1. Now ATD is called recursively to compute all diagnoses for
AOBS+new by extending the actual partial diagnosis.

1The antecedent ofSDM might contain both abducibles and non-abducibles. The non-abducibles
introduced by assuming the antecedent ofSDM must be explained by other models. In the hepatitis
example the state description models contain only abducibles in the antecedent.
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function ATD(PD,C,N ,A) returns set of all abstract temporal diagnoses
inputs PD. . . process description

C. . . data to be covered; at the first call,C is equal to the setAOBS+

N . . . QA network; at the first call,N is equal to the QA relations inAOBS
A. . . set of abducibles; at the first call,A is equal to the empty set

begin
D ← /0
if C = /0 then % No more data have to be covered

D ← DIAGNOSIS(A,N )
else

% Apply a state description model to explain a nonempty set of elements in C

for eachRelevantSDMof the formα∧ τα ⊃ β∧ τβ in PD and
binding listBL among manifestations inβ and data inC do

begin
% Add the temporal behavior of SDM to the global network N

Ntmp ← ASSUME(SDM,BL,N )
if CONSISTENT(Ntmp) then
begin

% Infer all new facts triggered by assuming the antecedent α∧ τα

Nnew ← PREDICTION(PD,SDM,Ntmp)
if CONSISTENT(Nnew) then
begin

% SDM explains some elements in C; update A and C

Anew ← A∪{Abducibles inα}
Cnew ← C\{Covered data inBL}∪{Non-abducibles inα}
% Compute all diagnoses for Cnew by extending the

% current partial diagnosis represented by Nnew and Anew

D ← D∪ATD(PD,Cnew,Nnew,Anew)
end

end
end

return D
end

Figure 4: FunctionATD which computes all abstract temporal diagnoses.
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Assume

The functionASSUMEin figure 5 has three input parameters: a state description model
SDM, a binding listBL, and the global networkN . The return value isN extended
by the temporal behavior ofSDMand containing only the feasible relations. The basic
task of the function is to “assume” the abducibles inSDM. This is done by adding the
temporal behavior ofSDM to the global networkN and then computing all feasible
relations of the extended network.

For each process state assumption and manifestation in the state description model
a new node inN is created. We then compute temporal constraints among these
new nodes and the old nodes inN . This task is performed within two loops rang-
ing over the new and the old nodes, respectively. Three cases are distinguished.
First, two nodes representing a pair in the binding listBL are constrained by the
equal relation. Second, if two nodes represent the same parameter value assump-
tion, but are not in the binding list, the first node is either within the second one
or it is strictly before or after the second one. This is represented by the relation
{before,after,starts,during,finishes,equal}. Finally, if none of the two previous cases
is given, we assert thenoinfo relation. The QA relations resulting from this analysis
plus the temporal behavior ofSDM are added to the global networkN , which then
is passed to the functionFEASIBLE to compute all feasible relations of the extended
network.

Example 4 (Hepatitis B continued) In this example, the computation of abstract tem-
poral diagnoses is illustrated in detail for hepatitis B. The process descriptionPD con-
sists of a state description model and a definitional axiom for each of the eight courses
of hepatitis B, one exclusiveness of processes axiom, and one exclusiveness of prop-
erties axiom for each of the six findings. We compute all abstract temporal diagnoses
for the abstract observations which result from the observations shown in figure 3a.
The abnormal abstract observations which have to be covered by a diagnosis are the
positive abstract observations without any temporal constraints, i.e.

AOBS+ = {hbsag(pos, ihbsag),antihbs(pos, iantihbs),
hbeag(pos, ihbeag),antihbe(pos, iantihbe),
antihbc(pos, iantihbc), igmantihbc(pos, i igmantihbc)}

SinceC is not empty (it is equal toAOBS+), we start to consider each relevant state
description model. Suppose that we begin with the modelSDMc1 for course1 and a
binding list BL which contains six tuples like〈hbsag(pos, Ihbsag),hbsag(pos, ihbsag)〉
for the positivehbsag(Ihbsagis an existentially quantified variable,ihbsagis a constant).
The functionASSUME adds the temporal behavior ofSDMc1 to the global network
N and adds anequal relation between each manifestation inSDMc1 and the corre-
sponding abstract observation. The networkNtmp returned byASSUME is consistent.
We invoke the functionPREDICTION. The exclusiveness axioms for properties yield
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function ASSUME(SDM,BL,N ) returns modifiedN
inputs SDM. . . state description modelα∧ τα ⊃ β∧ τβ

BL. . . binding list
N . . . QA network

begin
Tmp← /0
N ← N ∪NEW-NODES(α∪β) % Add new nodes for α∪β to N

for eachNew noden1 in N do
for eachOld noden2 in N do
begin

if 〈n1,n2〉 represents a pair inBL then
% Manifestation n1 covers abstract observation n2

R ← n1{equal}n2

else ifn1 andn2 represent the same parameter assumption
(but are not a pair in the binding list)then

% n1 is within n2 or completely outside

R ← n1{before,after,starts,during,finishes,equal}n2

else
R ← n1{noinfo}n2

Tmp← Tmp∪{R}
end

return FEASIBLE(N ∪ τα∪ τβ∪Tmp)
end

Figure 5: FunctionASSUME which adds the temporal behavior of a state description
model to the global network and computes all feasible relations.

a disjoint relation between each manifestation inSDMc1 and each corresponding neg-
ative abstract observation. Finally, the feasible relations of the extended network are
computed and returned asNnew (see figure 6).Nnew is consistent. We update the set of
abduciblesA and get

Anew = {incubation(course1, Iin),acute(course1, Iac),
convalescence(course1, Ico), immunity(course1, Iim)}

Sincecourse1 covers all abstract observations inC and does not introduce new non-
abducibles, the setCnew is empty.

ATD is called recursively in order to compute all diagnoses forCnew. In the next
call, C is empty, and the functionDIAGNOSIS composes the first final diagnosis∆.
Figure 7 shows a portion of the global network, where∆ is indicated by light nodes
and arcs. Manifestations and the covered abstract observations are represented by a
single node. The first recursive call ofATD successfully terminates and returns∆
which is collected inD. In turn, the remaining courses are considered; all of them
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{meets}
{meets}

{disjoint}

{overlapped}

{equal}

{disjoint}

incubation(c1) [1,2]

hbeag(pos)

antihbs(pos)

antihbc(pos)

antihbe(pos)

hbsag(neg)hbsag(neg)antihbc(pos)

antihbe(pos)

antihbs(pos)

hbeag(pos)

hbsag(pos) hbsag(pos)

{overlaps}
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Figure 6: A portion of the networkNnew after inserting the temporal behavior of
course1 into the networkN and applying the exclusiveness and definitional axioms.

are temporally inconsistent with the abstract observations. The original call ofATD
terminates and returns the setD which contains the abstract temporal diagnosis

∆ = ∃Iin∃Iac∃Ico∃Iim incubation(course1, Iin)∧acute(course1, Iac)∧
convalescence(course1, Ico)∧ immunity(course1, Iim)∧
Iin{overlaps}[2,3]∧ Iac{overlapped}[2,3]∧ Iac{overlaps}[4,6]∧
Ico{overlapped}[4,6]∧ Ico{overlaps}[5,9]∧ Iim{overlapped}[5,9]∧
Iin{meets}Iac∧ Iac{meets}Ico∧ Ico{meets}Iim

The incubation stage starts before time2, in the interval[2,3] the incubation stage
finishes and the acute stage starts, in the interval[4,6] the acute stage finishes and the
convalescence stage starts, in the interval[5,9] the convalescence stage finishes and the
immunity stage starts, the latter one lasts beyond time9. Themeetsrelation constrains
consecutive stages.

To verify thatcourse2 is not a diagnosis, let us look at the relation between the
positivehbsagand the positiveantihbe: the state description model predicts abefore
relation, and in the abstract observations there is anoverlapsrelation. 2

A few remarks are worthwhile. The use of abstract observations instead of obser-
vations in the diagnostic process leads to an event-driven [18] reasoning independent
of the number of specific observations and the temporal resolution. A total of54 ob-
servations at single time points have been reduced to14 abstract observations to be
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Figure 7: A portion of the global networkN after the termination of the function
ATD. Light nodes and arcs indicate the computed abstract temporal diagnosis.

considered by the diagnosis function. The diagnosis systems discussed in [10, 14],
that approximate a dynamic system by a sequence of static systems, generate local
diagnoses for each observation time and combine them to global diagnoses, possibly
leading to a large number of global diagnoses. In the above example, these systems
generate local diagnoses at nine time points. Let us look at the observations at time6,
7 and8 in figure 3a. At each of these time points both the convalescence and the im-
munity stage provide an explanation, yielding four possibilities for global diagnoses.
Contrary to [10, 14], we get a single abstract temporal diagnosis which captures all
these possible diagnoses. Obviously, the efficiency gain from our framework highly
depends on the frequency and persistence of observations.

Another issue concerns the natural representation of indefinite temporal knowl-
edge. Abstract temporal diagnoses as process state assumptions over indefinite time
intervals represent in a natural way the vague knowledge humans often have about the
evolution of a system. We believe that a representation in terms of QA relations is
more natural than representing different alternative diagnoses as in [10, 14].

5 Evaluation

We implemented a prototype of our temporal diagnosis systemATD and performed a
practical evaluation. A set of real hepatitis B data samples was used. From a total of
approximately5000patients with an overall of more than24000serological hepatitis B
test results we randomly chose100patients as test cases:32of them consisted of only
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a single test result and68 consisted of more than one data sample from different time
points, the most being23data samples in one test case. The functionATD was run on
each of these100 test cases, and we compared the computed abstract temporal diag-
noses with the interpretation of the data samples (each at a time) by theHEPAXPERT-I
system [1, 2].

Two differences between the two diagnosis systems are important to keep in mind
during the analysis. First, whileATD only uses the eight typical courses of hepati-
tis B, HEPAXPERT-I uses additional knowledge such as the courses after an active or
passive immunization. Hence, some data samples which are correctly interpreted in
HEPAXPERT-I are inconsistent inATD. Second, because of the different nature of
diagnosis in the two systems, a comparison is not always straightforward. An abstract
temporal diagnosis explains the sequence of all data samples in a test case as a whole
by specifying the temporal extension of various stages. This “overall” diagnosis must
be compared with theHEPAXPERT-I-interpretation text generated for each single data
sample. Since the interpretation of a single data sample is not always unique, the
generated text captures all possible interpretations.

Before we present a detailed analysis, let us briefly summarize the results of this
practical evaluation (see table 2). In65 casesATD returned an abstract temporal di-
agnosis, whereas in35 casesATD was not able to generate a diagnosis at all. The
HEPAXPERT-I system considered96 test cases as consistent (all data samples are con-
sistent), only four cases were inconsistent (at least one data sample is inconsistent).
All 65 cases for whichATD computed a diagnosis were considered consistent in
HEPAXPERT-I. Similarly, for all cases thatHEPAXPERT-I found at least one incon-
sistent data sample,ATD computed no diagnosis. A more detailed analysis of our
practical evaluation is summarized in table 3 and is discussed in the next section.

ATD HEPAXPERT-I
A diagnosis computed 65 All data samples are consistent 96
No diagnosis computed 35 At least one data sample is inconsistent 4

Table 2: Overall evaluation of 100 test cases:ATD versusHEPAXPERT-I.

5.1 Consistent Test Cases

Let us consider the65 test cases for whichATD computed at least one abstract tem-
poral diagnosis. InHEPAXPERT-I all data samples of these cases were interpreted as
consistent data samples and this interpretation did not contradict the abstract tempo-
ral diagnosis. In fifteen cases the abstract temporal diagnosis is considerably more
specific than theHEPAXPERT-I interpretation. Two aspects should be stressed: First,
ATD explicitly distinguishes between different courses of hepatitis B, which is not the
case in the interpretation texts ofHEPAXPERT-I. Second, an abstract temporal diag-
nosis rules out several possible interpretations of a single isolated data sample, which
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Result ofATD Number of test cases
Consistent test cases 65

More specific thanHEPAXPERT-I 15
Inconsistent test cases 35

Due to a single data sample 20
ATD andHEPAXPERT-I 4
ATD only 16

Due to a data sequence (ATD only) 15
Oscillatingantihbc 8
antihbc(pos){before}antihbc(neg) 7
antihbc(pos){before}hbsag(pos) 2

Table 3: Detailed evaluation of100test cases:ATD versusHEPAXPERT-I.

have to be considered in theHEPAXPERT-I interpretation text. The accuracy ofATD
is mainly a result of the ability to consider previous data and to interpret the whole
sequence of data samples.

We illustrate the power of abstract temporal diagnoses on a test case which consists
of data samples at three consecutive time points as shown in table 4. The interpretation
of these three data samples inHEPAXPERT-I can be summarized as follows: the first
data sample indicates the immunity stage, the acute stage, or the convalescence stage
of an acute course of hepatitis B; the second data sample indicates either the transition
from the acute to the convalescence stage of an acute course, the immunity stage of
an acute course, or a persisting course of hepatitis B; the interpretation of the third
data sample states that in general the serum is not infectious, but to be sure, additional
tests are recommended.ATD identifies the fourth course of an acute hepatitis B with
the following temporal constrains: incubation and acute stages finish before time1;
the convalescence stage starts before time1 and finishes before time2; the immunity
stage starts before time2 and persists beyond time3. This diagnosis is much more
specific than theHEPAXPERT-I interpretation: we rule out the acute stage mentioned
in the interpretation text of the first data sample, since the acute stage finishes before
time1; we rule out some of the possibilities in the interpretation text of the second data
sample; we identify the third data sample as the immunity stage and therefore do not
recommend additional tests.

Findings Test results
hbsag neg neg neg
antihbs pos neg
antihbc pos pos
Time points 1 2 3

Table 4: A test case with hepatitis B data samples at three consecutive time points.
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5.2 Inconsistent Test Cases

In 35casesATD was not able to compute a diagnosis at all. Assuming that our knowl-
edge about hepatitis B is complete we consider them as inconsistent cases. In20cases
the inconsistency was caused by a single data sample. In the remaining15 cases each
single data sample was consistent, but evaluating the sequence of data samples yielded
an inconsistency.

5.2.1 Inconsistent Data Samples

First, we consider those twenty test cases that are inconsistent due to a single data
sample. In four cases, the inability ofATD to compute a diagnosis agrees with the
interpretation ofHEPAXPERT-I, i.e. each of these test cases contains at least one data
sample whichHEPAXPERT-I classified as inconsistent.HEPAXPERT-I identified no
other inconsistencies (see also table 2).

The remaining sixteen inconsistencies were only found inATD. Three different
patterns of findings were responsible for these inconsistencies. Since none of these
patterns occurs in any of the eight typical courses, they are beyond the knowledge
base incorporated inATD. Fourteen cases contained a data sample with a positive
antihbsand a negativeantihbc, which contradicts the fact that after a natural course of
an hepatitis Bantihbcwill be detectable in the patient’s serum for the rest of his/her
life. HEPAXPERT-I interpreted this data sample as follows: “The patient is immune
to the hepatitis B virus owing to vaccination or passive immunization. In one case an
inconsistency arose due to a positivehbsagwhich coincides with a positiveantihbs.
HEPAXPERT-I interpreted this constellation as the late acute stage of an acute hepati-
tis B. Finally, in one case a positivehbeagand a positiveantihbscoincided, which was
interpreted as a very improbable constellation byHEPAXPERT-I. So HEPAXPERT-I
uses additional knowledge beyond the eight typical courses, e.g. courses of findings
after an immunization.

We can extend our system in order to capture such knowledge by including addi-
tional state description models into the process description or by relaxing some of the
constraints in the eight typical courses. For example, the case that a positivehbsag
coincides with a positiveantihbscould be explained bycourse4 if we relax themeets
relation between these two findings to the indefinite relation{meets,overlaps}. In fact,
due to the variability of biological systems themeetsrelation is rather strong.

5.2.2 Inconsistent Sequences of Data Samples

In fifteen casesATD detected an inconsistent sequence of data samples. These incon-
sistencies could of course not be detected byHEPAXPERT-I. In eight cases we had an
oscillatingantihbc. In two casesantihbcappeared beforehbsag. In seven cases the test
result ofantihbcwas first positive and later negative. All these inconsistencies were
correctly detected with respect to the eight typical courses of hepatitis B.
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5.3 Final Discussion

The practical evaluation illustrates the benefits of explicitly representing tempo-
ral information and diagnosing whole sequences of data samples. In fifteen cases
the abstract temporal diagnosis was much more concise than the interpretation in
HEPAXPERT-I. The four inconsistencies detected inHEPAXPERT-I were detected in
ATD as well. The remaining31 inconsistencies that were only detected inATD are
justified. Sixteen of them were caused by a single data sample due to the fact thatATD
used only the eight typical courses. The remaining fifteen inconsistencies, caused by
an inconsistent sequence of (consistent) data samples, were correctly detected byATD.

Reasoning explicitly with temporal information is rather important to detect in-
consistent data, in particular inconsistent data sequences due to measurement errors
or faulty documentation of test results. Depending on the domain and the accuracy of
measurements, the recognition of inconsistent data sequences is an important reason-
ing task. An isolated interpretation of the most recent data sample cannot detect such
inconsistencies and might yield wrong diagnoses.

6 Comparison to Related Work

A few researchers have recently begun to develop frameworks for diagnosing time-
dependent systems [6, 7, 10, 11, 14, 15]. The approach described by Brusoni et al.
in [6, 7] is most closely related to our work. Brusoni et al. propose a logical char-
acterization of temporal abductive diagnosis as well as an algorithm to compute such
diagnoses. Their approach extends the traditional model-based approach for atempo-
ral abductive diagnosis by a temporal constraint language and a temporal reasoning
system. This temporal diagnosis framework is strongly related to our system, with a
few but significant differences. In the state description models we distinguish temporal
relations appearing in the antecedent from those appearing in the consequent, which is
not the case in an explanatory formula representing cause-effect relationships in [6].
This distinction allows us to capture a larger class of logical definitions of temporal di-
agnoses. Depending on the specification of abnormal abstract observations (AOBS+),
we can explain various temporal relations in an abductive way. Brusoni et al. cannot
explain any temporal relations abductively, rather temporal relations are only used for
consistency checking. We capture their definition of a diagnosis ifAOBS+ contains
no temporal relations. While Brusoni et al. use a more expressive temporal language
(including qualitative and quantitative temporal constraints) and a more efficient tem-
poral reasoning system than we do, they provide no temporal abstraction mechanisms
like our concept of abstract observations.
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7 Conclusion

We proposed a framework for model-based diagnosis of dynamic systems, which ex-
tends previous work in this field in several ways. The use of an interval-based temporal
language considerably improves the expressiveness at the knowledge representation
level. In the process description we represent a dynamic system in terms of processes
and process states present over time intervals. Each of these process states represents
a part of the process evolution and is characterized by a complex pattern of predicted
parameters and their values, that are present over arbitrary time intervals related by
qualitative temporal relations. We introduced the concept of an abstract observation
which allows us to summarize consecutive observations for the same parameter taking
the same value. Abstract observations make us independent from the actual number of
observations and the temporal resolution, leading an efficient event-driven diagnosis
process. Given a process description and abstract observations, we defined an abstract
temporal diagnosis as a conjunction of process state assumptions over indefinite time
intervals constrained by QA relations. This represents in a natural way indefinite tem-
poral knowledge about the causes of the observations. We applied our framework to
the diagnosis of hepatitis B and evaluated it by using real patient data, comparing the
abstract temporal diagnoses with the interpretation of these data by theHEPAXPERT-I
system. The results are promising and show the importance to consider sequences of
findings in the diagnosis of hepatitis B.
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[5] I. Bratko, I. Mozetǐc, and N. Lavrǎc, KARDIO: A Study in Deep and Qualitative
Knowledge for Expert Systems(MIT Press, 1989).

[6] V. Brusoni, L. Console, P. Terenziani, and D. Theseider Dupré, Characterizing
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[9] L. Console, D. Theseider Dupré, and P. Torasso, A theory of diagnosis for incom-
plete causal models, inProceedings of the 11th International Joint Conference
on Artificial Intelligence(Morgan Kaufmann Publishers, Inc., 1989) 1311–1317.

[10] L. Console, L. Portinale, D. Theseider Dupré, and P. Torasso, Diagnostic reason-
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