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Abstract

Most current model-based diagnosis formalisms and algorithms are defined
only for static systems, which is often inadequate for medical reasoning. In this
paper we describe a model-based framework plus algorithms for diagnosing time-
dependent systems where we can define qualitative temporal scenarios. Complex
temporal behavior is described within a logical framework extended by qualita-
tive temporal constraints. Abstract observations aggregate from observations at
time points to assumptions over time intervals. These concepts provide a very
natural representation and make diagnosis independent of the number of actual
observations and the temporal resolution. The concept of abstract temporal diag-
nosis captures in a natural way the kind of indefinite temporal knowledge which
is frequently available in medical diagnoses. We use viral Hepatitis B (including a
set of real Hepatitis B data) to illustrate and evaluate our framework. The compar-
ison of our results with the results BfePAXPERTI is promising. The diagnosis
computed in our system is often more precise than the diagnddisRAXPERTFI
and we detect inconsistent data sequences which cannot be detected in the latter
system.
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1 Introduction

Due to its enormous complexity, medicine has always been a challenging testbed for
automatic diagnostic systems (e.g. [8, 31]). While most of these systems are based on
shallow reasoning [8, 31], recently several researchers investigated the use of model-
based techniques in medical diagnosis [5, 11, 14, 21]. These techniques allow the
representation of deep knowledge, which is important for the development of more
sophisticated problem solving systems [31].

Time constitutes an integral and important aspect of medical knowledge. Many
diseases are characterized by complex temporal symptom patterns. Examples are in-
fectious disease and diseases present over long time periods. Sophisticated medical
diagnosis systems need formalisms, which allow for modeling complex dynamic be-
havior. Recently, several researcher have investigated temporal reasoning for medi-
cal problem-solving. Keravnou [22] describes temporal diagnostic reasoning based
on time-objects which are defined in a multi-dimensional time space. Shahar and
Musen [28] propose a knowledge-based system for temporal abstraction in clinical
domains. Haimowitz and Kohane [19] are developing a system for the diagnosis of
medical trends. Long [23] describes the addition of temporal reasoning facilities to the
Heart Disease Program (HDP).

The model-based diagnosis approach [13, 26], which has been well studied for
static systems, is based on a model of the structure and function (behavior) of the
system to be diagnosed. The discrepancy and matching between the predicted behavior
and the actual observations form the basis of the calculation of diagnoses. Different
logical characterizations of diagnosis with different forms of explanation have been
worked out: consistency-based [13, 16, 26, 30] and abductive [9, 12, 24, 25] diagnosis.
Since many systems in the real world are dynamic, explicit or implicit representation
of time had to be included in recent approaches. Friedrich and Lackinger [15] propose
a very general extension of the traditional consistency-based approach to deal with
temporal misbehavior, where the dynamic behavior is described by a set of logical
sentences indexed by time. The approaches in [10, 14] approximate a dynamic system
by a sequence of static states, each of which can be modeled using the traditional static
framework. The temporal diagnosis framework in [11] is based on a causal network,
where time intervals are associated with both arcs (representing delays) and nodes
(representing temporal extents).

In this paper we present an alternative framework for the diagnosis of dynamic
systems, which extends previous work in model-based diagnosis in several directions.
Our main focus is the qualitative representation of complex temporal behavior and the
abstraction of observations from single time points to time intervals. This yields an
expressive and efficient framework for the diagnosis of time-dependent systems. In
section 2 we briefly describe the diagnosis of hepatitis B, which motivated our work.
We use it as an example throughout this paper. Section 3 introduces an interval-based
temporal framework which provides a powerful language to represent qualitative tem-
poral information. In section 4 we develop a new framework for temporal diagnosis.
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Based on a process-oriented ontology, the temporal language allows a concise descrip-
tion of dynamic system behavior. We define the concept of an abstract observation as
a temporal abstraction from observations at time points into “value assumptions over
time intervals”. Finally, we give a declarative definition of an explanation and show
how to compute such explanations. Section 5 includes an evaluation of our system
based on the diagnosis of real hepatitis B data samples. Section 6 discusses related
work.

2 Example and Motivation

2.1 Diagnosis of Hepatitis B

Hepatitis B is characterized by the following serological findings: hepatitis B surface
antigen bibsag and antibodiesgntihbg, hepatitis B envelope antigehl{eag and an-
tibodies @ntihbg, and antibodies to hepatitis B core antigant(hbcandigmantihbg.
Each of these antigens and antibodies can tagesitive(detectable in the patient’s
serum) or anegativevalue. The natural course of hepatitis B is characterized by a
sequence of these findings. We distinguish four acute and four persisting courses. Fig-
ure 1 shows the typical sequence of findings in the four acute courses of hepatitis B.
The bars indicate the time periods over which the findings are positive, while outside
the findings are negative. Four different stages can be distinguished during the course
of an hepatitis Bincubation acute convalescenceandimmunity

The first stage after an infection with an hepatitis B virus is the incubation stage
which usually lasts from two to four months, although it may be very short (ten days)
or extremely long (nine months) in some cases. Towards the end of this period HBs-
antigen and HBe-antigen is detectable in the patient's serum. The appearance of
antihbcandigmantihbcantibodies indicates the onset of the acute stage. Usually, after
about ten weeks seroconversion of HBe-antigen occursatiobeantibodies appear.
The next stage is the convalescence stage, in which seroconversion of HBs-antigen to
antihbsoccurs. In the first three courses we have a stage between the disappearance
of HBs-antigen and the appearanceaotihbs which can last from several weeks to
several months. The final stage in the course of an acute hepatitis B is the immunity
stage. It is characterized by positimatihbsandantihbcantibodies. In some courses
antihbeandigmantihbcantibodies can also be positive. Tatihbcantibodies remain
detectable in the patient’s serum for the rest of his/her life.

2.2 Motivation

Adlassnig and Horak [1, 2] describe an expert system for the automatic interpretation
of hepatitis A and B serology test results. Their systéfBPAXPERTI, is able to
handle typical courses of viral hepatitis, in addition to the situations of active and
passive immunization against hepatitis A and B. The system does not consider any
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Figure 1. Typical sequence of findings in the four acute courses of hepatitis B.

additional biochemical or clinical data. HHEPAXPERTI a sample of findings from
a single time point is compared with those serological constellations that may occur
during the course of viral hepatitis. The result of this comparison is an interpretation
text. Since previous test results are not considered, the interpretation is not always
unique.

The temporal evolution of the findings is crucial to the diagnosis of a viral hepatitis.
Considering this temporal information might substantially improve the interpretation
of the course of the disease. The following observations motivated our work:

e The typical courses of antigens and antibodies provide a good model for the evo-
lution of a viral hepatitis. Additional diagnostic experience from the physician
is not required to establish a diagnosis.

¢ The quantitative temporal information in the courses of viral hepatitis represents
average values that usually differ from case to case. The qualitative temporal
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relations among findings are much more reliable.

e All courses of hepatitis B look similar involving basically the same findings.
What distinguishes these courses is the order in which antigens and antibodies
occur.

e The findings are constant over long time periods. We can expect consecutive
serology test results to be frequently identical.

The first observation supports the use of the model-based diagnosis approach. The last
three observations stress the need to consider temporal information such as an explicit
representation of complex temporal behavior or the provision of temporal abstraction
mechanisms to reduce the computational complexity.

3 An Interval-Based Temporal Framework

The temporal language used is a subset of the interval-based temporal logic described
by Allen and Hayes in [4]. The only primitive temporal objects consist of a nonempty
set oftime intervalswhich have a positive duration. We assume the existence of a
maximal time intervalmax Which includes all other time intervals. This convention

is useful to represent propositions which are always true by stating that they are true
throughout max

There are thirteen basic, mutually exclusiegialitative temporal relationde-
tween two time intervals (table 1). Indefinite knowledge is expressed as disjunction
of basic relations. For example, the relation “time intetivakgins before time inter-
val J begins and ends beforel ends” is represented &b beforeJ) v (I meetsJ)

Vv (I overlapsJ). To facilitate reading, we will use a set notation and write this dis-
junction asl {before meetsoverlapgJ. The empty relatiod } represents inconsistent
temporal knowledge. The relatiominfois defined as the set of all basic relations and
indicates that we have no temporal knowledge at all. The relaligjoint is defined

as the set before meetsafter, met and means that two intervals have nho common
subinterval.

We do not need the full power of first-order predicate logic and restrict ourselves
to conjunctions of binary relations between two time intervals. In the following we
refer to these relations apialitative algebra relationsfor short QA relations. This
restriction allows us to represent temporal information as binary constraint networks
and to use efficient constraint satisfaction algorithms. ARsef QA relations can
graphically be represented by@A network denoted ak. Nodes represent time
intervals. The directed arcs are labeled with the QA relation between the two time
intervals represented by the connected nodes. We neither show arcs from a node to
itself, nor reverse arcs from nod€ to nodeY with inverse temporal relations. A
missing arc between two nodes is implicitly labeled with ti@nfo relation. The
logical equivalent of a QA network is the conjunction of all relations in the network.



Basic relation Inverse Meaning

| beforeJ J after | 4 3
| meets] Jmetl —_—
| overlaps)  Joverlapped ——
| startsJ J startedl _
| duringJ J containsl —_
| finishesJ Jfinishedl I
| equald Jequall —_

Table 1: The basic mutually exclusive qualitative temporal relations that hold between
two time intervals.

Given a QA network, the search for a consistent scenario and all feasible relations
are basic temporal reasoning taskscakhsistent scenariis a labeling of the network,
where every label consists of a single basic relation and it is possible to map the nodes
to the time line such that these relations hold. There are only a finite number of con-
sistent scenarios. A basic relati@nis feasibleiff there exists a consistent scenario
containingB. Computing the feasible relations amounts to removing all inconsistent
basic relations. A QA network isonsistentff a consistent scenario exists. In our
temporal framework all of these reasoning tasks are NP-complete [33]. For the pur-
pose of this paper, we are using standard approximation algorithms from the literature,
e.g. [3, 32].

We assume a linear and dense time structure, céileel ling which is unbound
in both time directions, past and future. Time line intervals are denotel, i),
whereB is the start point andE is the end point of the interval. For convenience,
we represent the time line by real numbers and implicitly assume the corresponding
ordering axioms. These axioms result in QA relations between time line intervals, e.g.
between the two intervalg, 2] and[2, 5] we get ameetgelation.

Given the primitive temporal objects and the time structure, we want to build
propositions about the world by referring to these temporal objects. Time is introduced
as an additional argument to the predicates in our language. For ex&enpléhigh,i)
represents a high fever throughout time inteival

4 ATD — A Temporal Diagnosis Framework

In this section we present a new temporal diagnosis framework. We will use first-order
predicate logic language. Variable names start with an upper case letter, constant and
predicate names with a lower case letter. QA relations are represented in set notation,
as discussed in the previous section.



4.1 Process Description

We begin with the description of the basic formalism. While a component-oriented
ontology assuming a predefined structure is appropriate for modeling static systems, a
process-oriented ontology is more suitable for representing dynamic systems. We call
the model of the system thggocess description PD

A system consists of a s®tROCSof processes. One of these processes corre-
sponds to the normal system behavior, while the other processes represent different
faulty behaviors. Processes evolve over time, and it is useful to talk about consecu-
tive states a process passes through. With each process we associate a set of different
states s(p,i) represents that procepsaassumes statethroughout time interval. By
writing a process state assumptionsag, i) A Tj, the amount of temporal incomplete-
ness is expressed by a conjunction of QA relatipnsonstraining the time interval
i. For examples(p,i) Ai{startsduring, finishesequal}[1,10] represents that process
p assumes statesome time betweeh and 10, possibly but not necessarily over the
whole time intervall,10]. Processes cannot be observed directly, but evoke the ap-
pearance of observable parametenév, i) represents that parametarassumes value
v throughout time intervaland we use the terms manifestation, symptom, and finding
interchangeably to refer to these effects. Processes are the only causes for changes in
the system behavior. This strong relationship between processes and manifestations is
explicitly captured by the concept of a state description model.

Definition 1 (State Description Model) A state description model SDbf a process
p € PROCSs defined as a logical formula

AATq DO BATg

wherea and[3 are conjunctions of process state assumptions and/or manifestations,
andty andtg are conjunctions of QA relations. a

A state description model specifies the causal and temporal relationships between
two or more processes (process states) and between processes (process states) and the
evoked manifestations. A state description model is read as follows: if a prpcess
assumes the states as specified Buch that the temporal relationsig are satisfied,
then the manifestations hand the temporal relations 13 are predicted. The process
states imx are possible causes of the manifestationB.ifThe use of qualitative tem-
poral relations in a state description model allows a concise representation of complex
temporal relationships among causes and effects.

Example 1 (Hepatitis B) The various possible courses of hepatitis B are described in
terms of nine processeBROCS= {no_contact coursd., ..., courseé}. The first pro-
cessno_contact(no contact with the virus) represents the normal situation. In this case,
all possible findings are negative. Since only pathophysiological conditions need to be
explained, theo_contactprocess is disregarded in the following. The other processes,
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coursd to course, stand for the various Hepatitis-B-related antibody and antigen
titre time courses. The various stages in hepatitis B are represented as process states:
incubation acute convalescencandimmunity Each of the courses is characterized

by a specific pattern of positive and negative findings. We denote the six hepatitis B
findings ashbsag antihbs hbeag antihbe antihbg andigmantihbcand their possible

values agos(positive) andneg(negative). A portion of the state description model

for the first course of hepatitis B is given below:

v|inV|acV|coV|imE”hbsag- . -E”igmantihbc
incubatior{coursé, lin) A ... Aimmunity course, lim) A
lin{meet$lac A lac{meet$lco A lco{ meetslim
O hbsadpos Ihpsag A - - - Aigmantihb§pos ligmantinbd /A
Ihbsag{containglhbeag/\ RRRVAN Iigmamihbc{starts}IamithA
lin{overlaps Ihpsag! - - - Alim{after} lhpsagh - - -

The antecedent specifies the causes: the four stages of Hepatitis B and the QA rela-
tions between these stages. The consequent specifies the effects: the positive findings,
the QA relations among these findings, and the QA relations among the states in the
antecedent and the findings in the conclusion. a

We refer to the qualitative temporal relationgJ1g astemporal behavioof a state
description model. Graphically, we represent the temporal behavior as a QA network.
The nodes represent the temporal extent of process states and manifestations. The arcs
are labeled with the relations g Utg. We denote the nodes by the atemporal proposi-
tion rather than by the time interval and show only a part of the temporal relations. The
QA network representing the temporal behaviocofirsd is depicted in figure 2. It
differs from the temporal behavior of the other courses only by the temporal relations
among the findings.

The state description model is the only concept to represent causal relationships
among processes and evoked manifestations. Our main focus is on modeling faulty
behavior and on generating explanations for abnormal observations. In the hepati-
tis example negative findings are normal, while positive findings represent abnormal
values. Therefore, we use only the positive findings to descobesél.

In many applications additional knowledge is available and/or required. In the
hepatitis example we relate a whole course to its four specific stages. To represent
such knowledge we introduce definitional axioms.

Definition 2 (Definitional Axiom) A definitional axiomis defined as a logical for-
mula

y>9d

wherey andd are conjunctions of various domain concepts including QA relatigns.
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A definitional axiom allows us to relate various domain concepts to each other
or to define new concepts from other concepts. This leads to a simpler knowledge
representation and provides different views of the domain. Unlike state description
models, definitional axioms do not represent causal knowledge and will not be used to
explain observations.

While a manifestation assumes different values over different time intervals, only
one value at a time is allowed. Similarly, only one course of a viral hepatitis actually
occurs. This leads to the definition of exclusiveness axioms.

Definition 3 (Exclusiveness Axioms)The exclusiveness axionfigr properties / pro-
cesses are defined as follows:

e a propertymcan assume only one value at a time:
YW1iWLYI1VIo m(Vi,11) Am(Vo,12) AVL # Ve D I1{disjoint}>

e two processep; andp, are mutually exclusive:

VI11V1, active(ps, 1) Aactive(pg,l2) D I1{disjoint}I>

whereactive(p,|) means that procegsoccurs over time interval O

Example 2 (Hepatitis B continued) We complete the modeling of hepatitis B by
adding definitional and exclusiveness axioms to the process description. For each of
the eight courses one definitional axiom linking the stages to the course is added. The
definitional axiom forcoursdl. is given as

VlinVlacVlcoVlim3lcoursa. incubatior(coursd, li) A acutdcoursd, l5c) A

convalescendeoursé, l¢o) Aimmunity course, lim) A

lin{meet$lac A lac{meetglco A lco{meetslim

D activgcoursd, lcoursa ) A lin{starts} lcoursa A lim{finisheg lcoursa
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For each of the six findings we include an exclusiveness of properties axiom. For
hbsagthis axiom is given as

YWiYWLVI1VIo hbsadVa, 1) AhbsadVa,12) AVL # Ve D 11{disjoint}l;
Only one course of hepatitis B actually occurs. This knowledge is captured by:
VPVPVI1VIo activePy, 1) Aactive(Po, 12) APL £ P> D I1{disjoint}l

If a proces$?; occurs over time intervdl and a procesB, which is different fromPy
occurs over time intervdp, thenl; andl> have no common subinterval. O

Sometimes a stronger form of exclusiveness is necessary which not only forces two
processes to be disjoint, but additionally requires that only one of them can occur at
all. Such knowledge can be represented by using the empty refgtimstead of the
disjointrelation in the corresponding exclusiveness of processes axiom.

4.2 Observations and Abstract Observations

Observations tell us how the system actually behaves.ol#servationis defined as
a measurement of an observable parameter at a particular time point. In the hepati-
tis example, observations are the results of hepatitis B serology tests. For example,
hbsadpos 1) represents a positive test result fdrsagat time 1.

For hepatitis, but also in other domains it is reasonable to assume continuous per-
sistence of parameters. This allows a more intuitive and natural interpretation of ob-
servations over time intervals. We define the following temporal abstraction strategy:

1. For each observation construct a small time intenaound the observation
point, such that the paramet@erassumes value throughout, i.e. we use only
intervals in our representation and algorithms.

2. Join consecutive time intervals representing the same parameter assuming the
same value and construct larger intervals. Consecutive time intervals for the
same parameter assuming different values are constrained mettterelation.

The first abstraction is justified by the continuous persistence of parameter values in
dynamic systems and the dense time model we are using. The second highly depends
on the dynamics of the system as well as on the measurement frequency. Including
such information is beyond the scope of this paper and not necessary in the hepatitis
domain. More sophisticated methods on measurement abstraction from time points
into time intervals are described in the literature, e.g. [27, 28, 29].

The result of performing this temporal abstraction for a set of observations is a set
of parameter assumptions over time intervals plus a set of QA relations constraining
these intervals. This leads to the concept of an abstract observation.
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Definition 4 (Abstract Observation) An abstract observatiofor a parametem as-
suming valuer during time interval is defined as a logical formula

m(v,i) AT

whereTt is a conjunction of QA relations between the temporal exientd the real
time line and/or other abstract observations. a

Example 3 (Hepatitis B continued) Suppose that a patient’s blood is examined each
month for hepatitis B antigens and antibodies. The results of these examinations are
shown in figure 3a. The letters “p” and “n” denote positive and negative test results.
From these observations we construct fourteen abstract observations indicated by thick
lines for positive and by thin lines for negative values. The symbol “?” indicates an
uncertain time of parameter value change. A portion of the abstract observations is
given below:

hbsadnegii) A hbsadposiz) A hbsagnegiz) Aantihbgnegia) A ... A
i1{meetsis Aix{meet3iz Ai{during}iaA... A
i1{overlapg[1,2] Nix{overlapped[1,2] Aix{overlapg[5,6] A ...

For examplehbsagturns positive between timkand2 and turns again negative be-
tween times and6; the time interval of positivéibsagis during the time interval of
negativeantihbs O

Two different types of qualitative temporal information can be distinguished: tem-
poral location and order. For an abstract observatigni) A T, the temporal loca-
tion consists of those relations mwhich constrain the temporal extentelative to
the time line. In the above example, the temporal location of the pogitrgagis
io{overlapped|[1,2] A ix{containg[5,6]. Thetemporal orderof an abstract obser-
vation m(v,i) A T consists of all relations im between the temporal extenand the
temporal extent of other abstract observations. A portion of the temporal order of the
positivehbsagin the above example is{meetsi, A io{meetsiz A io{during}is.

AOBSdenotes a set of abstract observations. The qualitative temporal relations of
a setAOBSare graphically represented by a QA netwotk‘BS. The nodes in the
upper level represent the temporal order. The lower level represents the real time line.
The arcs between the two levels represent the temporal location. Figure 3b shows part
of the QA network for the abstract observations in the above example. For clarity, not
all relations are shown.

The concept of abstract observations is an important shift from a discrete view
based on time points to a view driven by changes of observations. This can consid-
erably improve the efficiency of the diagnostic process. In the worst case the value
of a parameter changes at every observation. Then each abstract observation covers
exactly one observation. Our example shows that in many cases parameters are stable
over long time periods.
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Figure 3: (a) Observations (b) QA network representing the temporal relations of the
positive abstract observations.

The concept of abstract observations can also express indefinite knowledge per se.
Patients frequently do not remember the exact time course of their symptoms, but are
able to temporally relate the symptoms to each other. By usingdhalrelation, an
abstract observation can also represent exact temporal knowledge.

4.3 Abstract Temporal Diagnoses

The aim of diagnostic reasoning is to find an explanation for the observed abnormal
system behavior. Using abstract observations as described above, we will provide a
declarative definition of the concept of explanation in our framework, and develop an
algorithm for computing diagnostic explanations.

4.3.1 Declarative Definition

First, we have to determine those literals which we accept as an explanation. Follow-
ing the terminology of abductive reasoning we refer to these literals as abducibles. An
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abducibleis a literal for which no further explanation can be generated, and hence
should be accepted unconditionally. This is the case for all literals occurring only

in the antecedent of state description models, for example process state assumptions
(acutgcoursd,, i) etc.) Usually, it is not possible to determine the exact temporal ex-
tent of such process state assumptions, although they can be constrained using tempo-
ral relations. As a consequence, an explanation may include temporal relations, which
are also abducible literals. Using such abducibles, we are able to generate explanations
like acutecoursd, i) A i{overlapped|2,3] A i{overlapg[4,6], stating that the acute

stage ofcoursd starts between tim2 and3 and ends betweehand6.

Two extremes of diagnostic reasoning using different notions of explanation
have widely been used: consistency-based diagnosis [13, 16, 26, 30] where an ex-
planation has to be consistent with the observations, and abduction-based diagno-
sis [9, 12, 24, 25] where an explanation logically entails the observations. Follow-
ing [12] we develop an abduction-based framework with additional consistency con-
straints. Abnormal observations are explained abductively, and it is required that an
explanation is consistent with all observations, both normal and abnormal observa-
tions. Recall that abstract observations are denoted®8S AOBS C AOBSde-
notes the abnormal abstract observations. In the hepatitis example positive findings
are abnormal, while negative findings are normal.

Definition 5 ( def:atd Abstract Temporal Diagnosis Given are a process description
PD and abstract observatiogdOBS ,AOBS, whereAOBS™ C AOBSare the ab-
normal abstract observations. A conjunctidof abducibles is amabstract temporal
diagnosisfor (AOBS", AOBS iff

1. PDUA = AOBS
2. PDUAUAOBSIs consistent.

O

Condition (1) captures the abductive part: abnormal abstract observARBS
are logically entailed by the process description @andCondition (2) captures the
consistency-based part: an explanation is consistent with the process description and
all abstract observations. By including the temporal order and/or temporal location
into AOBS", we can force stronger temporal conditions for specific temporal relations,
establishing various forms of abstract temporal diagnoses. Which temporal relations
should be included idOBS™ depends mainly on the available domain knowledge. A
detailed discussion on this issue is given in [17].

4.3.2 Computation

The computation of diagnoses is best understood as a non-monotonic process, where
assumptions are successively revised until some termination criteria are satisfied.
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These assumptions consist of abducibles and represent hypotheses about the func-
tioning of the system to be diagnosed. The strategy to compute an abstract temporal
diagnosis can roughly be described as follows: we start with the empty assumption set
and consistently backchain from the abnormal abstract observations to the abducibles
by applying the cause-effect relationships. Two sequential tasks can be distinguished:
abduction and prediction. The ideaabductionis to find a set of abducibles which,
together with the model, logically entail the data to be explained. In the context of
our framework, abduction looks for a process description model which predicts a
nonempty set of abstract observationsA@BS . The literals in the antecedent of
such a model are introduced as new assumptions, which can either be abducibles or
need to be explained by further abduction steps. pieelictiontask is a deductive
process and explicitly infers all new facts which logically follow from a knowledge
base. In the context of our framework, after the introduction of new assumptions in the
abductive step, the prediction task infers all new facts which follow from the process
description and the actual assumptions.

In the algorithms for computing abstract temporal diagnoses we make the follow-
ing assumptions which are all satisfied in the hepatitis example:

e The process descriptidPD is acyclic, i.e. we cannot build chains of state de-
scription models such that a parameter appears more than once. Put more for-
mally, for each causal chaim; D a3, a; D asz, ..., 0p_1 D Ay, A; ground, a
parameter appears at most in one of dtys. This assumption is reasonable in
any causal theory, since a parameter cannot be explained by itself.

e The abnormal abstract observatioh®BS™ contain no temporal relations. No
temporal relations are abductively explained, but are only used for consistency
checking. This restriction makes the computation of diagnoses more efficient.
Moreover, since the process description models in the hepatitis example contain
only definite temporal knowledge (single basic QA relations), using the temporal
order only for consistency checking yields the same diagnoses as explaining the
temporal order abductively.

e The temporal abstraction from the observations into the abstract observations is
correct.

e Each abstract observation has only one cause, i.e. the entire temporal extent of
an abstract observation can be explained by a single state description model.

In some applications the latter three assumptions are rather restrictive. It remains part
of our future work to extend the algorithms for more general cases.

ATD

The recursive functio®ATD in figure 4 implements the main algorithm to compute
abstract temporal diagnose&TD has four input parameters: the process description
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PD; a setC of data which have to be covered by an abstract temporal diagnosis and at
the first call is equal t&AOBS"; a QA network? which at the first call is equal to the

QA relations inAOBS a setA of abducibles which at the first call is equal to the empty

set. ATD returns all abstract temporal diagnosesA@BS™ and AOBS respectively.

A and\ together define a partial abstract temporal diagnosis, which initially is equal

to the empty diagnosis and is extended during the computation process. Thésset
used to collect the diagnoses computed so far and is initialized to the empty set. Since
every parameter has a temporal extent, a consistency check of a diagnosis amounts
to testing temporal consistency. The global netw@fks used to maintain temporal
consistency.

If Cis empty, all abnormal data are consistently covered. The funBliaBNOSIS
constructs an abstract temporal diagnosis consisting of the abdusiblesthose QA
relations inA/, that exist among these abducibles and from these abducibles to the time
line. ATD terminates and returri3.

Otherwise, there are still data to be covered. We begin with the abduction and con-
sider each relevant state description model combined with each possible covering of
data inC by that model. A state description model is relevant in a particular state of the
diagnostic process, if it predicts some elementS.ifGiven a particular state descrip-
tion modelSDM of the forma A1q D B A1, We abductively infer the antecedent of
SDMas an explanation for those element€iwhich are covered by a manifestation in
. Pairs of a manifestation ipand a covered element@are specified in the binding
list BL. The binding list is a nonempty set of tuplés, c), wheremis a manifestation
in B, cis an element i€, andm andc both represent the same parameter and the same
value. Then the functioAssuMEis invoked, which extends the global netwdkk by
the temporal behavior @DMand returns the networkgmp.

If Amp is consistent, we usePREDICTION (simple forward-chaining).
PREDICTION recursively infers all new facts triggered by assuming the antecedent
of SDMin the abductive step. It applies the definitional axioms and the exclusiveness
axioms, possibly extending the global netwdkk by new nodes and new temporal
constraints. This process is repeated until no additional rules can be applied or until an
inconsistency is detected. The global network may be altered during prediction and is
returned inM\pew

If Ahewis consistentSDM consistently explains a nonempty subse€CofWe add
the abducibles imx to A, remove the covered data BL from C, and add the non-
abducibles irSDMto C1. Now ATD is called recursively to compute all diagnoses for
AOBS,,, by extending the actual partial diagnosis.

The antecedent DM might contain both abducibles and non-abducibles. The non-abducibles
introduced by assuming the antecedenS@fM must be explained by other models. In the hepatitis
example the state description models contain only abducibles in the antecedent.
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function ATD (PD,C, A/, A) returns set of all abstract temporal diagnoses
inputs PD...process description
C...data to be covered; at the first céllis equal to the sedOBS
AL. .. QA network; at the first calf\ is equal to the QA relations iIAOBS
A...set of abducibles; at the first calljs equal to the empty set
begin
D—0
if C=0then % No more data have to be covered
D <« DIAGNOSIS(A,N\)
else
06 Apply a state description model to explain a nonempty set of elements in C
for eachRelevantSDM of the forma Atq D BATg in PD and
binding listBL among manifestations and data irC do
begin
% Add the temporal behavior of SDM to the global network N
Aimp — ASSUME(SDM,BL, N()
if CONSISTENT(Agmp) then
begin
% Infer all new facts triggered by assuming the antecedent 0 ATy
Apew < PREDICTION(PD, SDM, Agmp)
if CONSISTENT(Agew) then
begin
% sDM explains some elements in C; update A and C
Anew < AU{Abducibles ina}
Chew — C\ {Covered data iBL} U{Non-abducibles i}

% Compute all diagnoses for Chew by extending the
9% current partial diagnosis represented by Apew and  Anew
D « DUATD (PD,Cnew Apew Anew)
end
end
end
return D

end

Figure 4: FunctiorATD which computes all abstract temporal diagnoses.
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Assume

The functionAssuUMEiIn figure 5 has three input parameters: a state description model
SDM, a binding listBL, and the global networl/. The return value i$\_ extended
by the temporal behavior 8DM and containing only the feasible relations. The basic
task of the function is to “assume” the abducibleSIDM. This is done by adding the
temporal behavior o8DM to the global network\[ and then computing all feasible
relations of the extended network.

For each process state assumption and manifestation in the state description model
a new node i\l is created. We then compute temporal constraints among these
new nodes and the old nodesdd. This task is performed within two loops rang-
ing over the new and the old nodes, respectively. Three cases are distinguished.
First, two nodes representing a pair in the binding B&t are constrained by the
equalrelation. Second, if two nodes represent the same parameter value assump-
tion, but are not in the binding list, the first node is either within the second one
or it is strictly before or after the second one. This is represented by the relation
{before after, starts during, finishesequal;. Finally, if none of the two previous cases
is given, we assert theoinforelation. The QA relations resulting from this analysis
plus the temporal behavior &DM are added to the global netwofi, which then
is passed to the functioREASIBLE to compute all feasible relations of the extended
network.

Example 4 (Hepatitis B continued) In this example, the computation of abstract tem-
poral diagnoses is illustrated in detail for hepatitis B. The process descripifimon-

sists of a state description model and a definitional axiom for each of the eight courses
of hepatitis B, one exclusiveness of processes axiom, and one exclusiveness of prop-
erties axiom for each of the six findings. We compute all abstract temporal diagnoses
for the abstract observations which result from the observations shown in figure 3a.
The abnormal abstract observations which have to be covered by a diagnosis are the
positive abstract observations without any temporal constraints, i.e.

AOBS = {hbsadpos inpsag), antihbgpos iantihbs),
hbeadpos inbeag , antihb&pos iantinbe),
antihbdpos iantihbc) , igmMantinb§pos iigmantinbd }

SinceC is not empty (it is equal tAOBS"), we start to consider each relevant state
description model. Suppose that we begin with the m&I&M.; for coursd and a
binding list BL which contains six tuples likghbsadpos Inbsag, hbsagpos inpsag)
for the positivehbsag(lhpsagis an existentially quantified variablgpsagis a constant).
The functionAssUME adds the temporal behavior 8DM;; to the global network
A and adds amqualrelation between each manifestationSBDM.; and the corre-
sponding abstract observation. The netwgk, returned byASSUME is consistent.
We invoke the functiorPREDICTION. The exclusiveness axioms for properties yield
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function AssumE(SDM, BL, () returns modified Al
inputs  SDM. ... state description modelAtq D BATg
BL. .. binding list
AL... QA network
begin
Tmp«— 0
N — A UNEW-NODES(a U ) % Add new nodes for aUB to A
for each New noden, in A’ do
for each Old noden, in A’ do
begin
if (n1,np) represents a pair iBL then
% Manifestation n; covers abstract observation ny
R «— ni{equalny
else ifny andn, represent the same parameter assumption
(but are not a pair in the binding listhen
% ny is within ny, or completely outside
R «— ni{beforeafter, starts during, finishesequal n,
else
R — ni{noinfo}n,
Tmp — Tmpu{R}
end
return FEASIBLE(A UTqUTgUTmp
end

Figure 5: Functiom ssUME which adds the temporal behavior of a state description
model to the global network and computes all feasible relations.

adisjoint relation between each manifestatiorSBM.; and each corresponding neg-
ative abstract observation. Finally, the feasible relations of the extended network are
computed and returned agew (see figure 6)Apewis consistent. We update the set of
abduciblesA and get

Anew = {incubatior{coursd.,li,),acutdcoursd, lyc),
convalescendeoursd, | ), immunitycoursel, i) }

Sincecoursd. covers all abstract observations@nand does not introduce new non-
abducibles, the s€l,ey is empty.
ATD is called recursively in order to compute all diagnosedgs,. In the next
call, C is empty, and the functioDIAGNOSIS composes the first final diagnogls
Figure 7 shows a portion of the global network, whéres indicated by light nodes
and arcs. Manifestations and the covered abstract observations are represented by a
single node. The first recursive call 8iTD successfully terminates and returfs
which is collected inD. In turn, the remaining courses are considered; all of them
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{digoint}

{equal}

{overlaps}

incubation(cl1)

Figure 6: A portion of the network\pew after inserting the temporal behavior of
coursd into the networkA/ and applying the exclusiveness and definitional axioms.

are temporally inconsistent with the abstract observations. The original cAl DOf
terminates and returns the €etvhich contains the abstract temporal diagnosis

A = 3FljpTlacTleoTlim incubatior{coursd, lin) A acutdcoursd, l5c) A
convalescendgeoursd, I¢o) Aimmunity coursé, lim) A
lin{overlapg[2,3] A lac{overlapped |2, 3] A lac{overlapg [4, 6] A
lco{OVverlapped[4, 6] A lco{overlapg [5,9] A lim{overlapped[5,9] A
lin{meet$lac A lac{meetglco A lco{meetslim

The incubation stage starts before tiein the interval[2, 3] the incubation stage
finishes and the acute stage starts, in the intddvél the acute stage finishes and the
convalescence stage starts, in the intefy#] the convalescence stage finishes and the
immunity stage starts, the latter one lasts beyond inlEhemeetgelation constrains
consecutive stages.

To verify thatcourse is not a diagnosis, let us look at the relation between the
positivehbsagand the positiveantinbe the state description model predictbefore
relation, and in the abstract observations there is\amlapsrelation. a

A few remarks are worthwhile. The use of abstract observations instead of obser-
vations in the diagnostic process leads to an event-driven [18] reasoning independent
of the number of specific observations and the temporal resolution. A to% ol-
servations at single time points have been reducetitabstract observations to be
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incubation(cl) acute(cl) conval(cl) immunity(cl)
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{contains} {finishes}
Y \
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{overlaps} overlaps} {containg}

igmantihbc(pos)

{overlaps}
{ overlapped} { overlapped} { overlapped}
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{overlapped} {overlaps)
[2,3] [4,6] [5,9]

Figure 7: A portion of the global networR( after the termination of the function
ATD. Light nodes and arcs indicate the computed abstract temporal diagnosis.

considered by the diagnosis function. The diagnosis systems discussed in [10, 14],
that approximate a dynamic system by a sequence of static systems, generate local
diagnoses for each observation time and combine them to global diagnoses, possibly
leading to a large number of global diagnoses. In the above example, these systems
generate local diagnoses at nine time points. Let us look at the observations @t time

7 and8in figure 3a. At each of these time points both the convalescence and the im-
munity stage provide an explanation, yielding four possibilities for global diagnoses.
Contrary to [10, 14], we get a single abstract temporal diagnosis which captures all
these possible diagnoses. Obviously, the efficiency gain from our framework highly
depends on the frequency and persistence of observations.

Another issue concerns the natural representation of indefinite temporal knowl-
edge. Abstract temporal diagnoses as process state assumptions over indefinite time
intervals represent in a natural way the vague knowledge humans often have about the
evolution of a system. We believe that a representation in terms of QA relations is
more natural than representing different alternative diagnoses as in [10, 14].

5 Evaluation
We implemented a prototype of our temporal diagnosis syst€m and performed a
practical evaluation. A set of real hepatitis B data samples was used. From a total of

approximatelyp000patients with an overall of more th&4000serological hepatitis B
test results we randomly cho&B0patients as test case®2 of them consisted of only
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a single test result andB consisted of more than one data sample from different time
points, the most being3 data samples in one test case. The funcB®D was run on

each of thesd00test cases, and we compared the computed abstract temporal diag-
noses with the interpretation of the data samples (each at a time) biethvex PERFI
system [1, 2].

Two differences between the two diagnosis systems are important to keep in mind
during the analysis. First, whil&TD only uses the eight typical courses of hepati-
tis B, HEPAXPERFI uses additional knowledge such as the courses after an active or
passive immunization. Hence, some data samples which are correctly interpreted in
HEPAXPERFI are inconsistent ilATD. Second, because of the different nature of
diagnosis in the two systems, a comparison is not always straightforward. An abstract
temporal diagnosis explains the sequence of all data samples in a test case as a whole
by specifying the temporal extension of various stages. This “overall” diagnosis must
be compared with thelEPAXPERFI-interpretation text generated for each single data
sample. Since the interpretation of a single data sample is not always unique, the
generated text captures all possible interpretations.

Before we present a detailed analysis, let us briefly summarize the results of this
practical evaluation (see table 2). 8 casesATD returned an abstract temporal di-
agnosis, whereas i85 casesATD was not able to generate a diagnosis at all. The
HEPAXPERTI system considere@6 test cases as consistent (all data samples are con-
sistent), only four cases were inconsistent (at least one data sample is inconsistent).
All 65 cases for whichATD computed a diagnosis were considered consistent in
HEPAXPERFI. Similarly, for all cases thaHEPAXPERTI found at least one incon-
sistent data samplédTD computed no diagnosis. A more detailed analysis of our
practical evaluation is summarized in table 3 and is discussed in the next section.

ATD HEPAXPERTI
A diagnosis computed 65 All data samples are consistent 96
No diagnosis computed 35 At least one data sample is inconsistent 4

Table 2: Overall evaluation of 100 test casA$D versusHEPAXPERTFI.

5.1 Consistent Test Cases

Let us consider thé5 test cases for whichTD computed at least one abstract tem-
poral diagnosis. IlHEPAXPERTI all data samples of these cases were interpreted as
consistent data samples and this interpretation did not contradict the abstract tempo-
ral diagnosis. In fifteen cases the abstract temporal diagnosis is considerably more
specific than theHEPAXPERTI interpretation. Two aspects should be stressed: First,
ATD explicitly distinguishes between different courses of hepatitis B, which is not the
case in the interpretation texts BfiEPAXPERTFI. Second, an abstract temporal diag-
nosis rules out several possible interpretations of a single isolated data sample, which
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Result of ATD Number of test cases

Consistent test cases 65

More specific tharHEPAXPERTI 15

Inconsistent test cases 35
Due to a single data sample 20

ATD andHEPAXPERFI 4

ATD only 16

Due to a data sequenc&TD only) 15

Oscillatingantihbc 8

antihbdpos){beforg antihbqneg 7

antihbdpos){before-hbsagpos) 2

Table 3: Detailed evaluation df00test casesATD versusHeEPAXPERTI.

have to be considered in tidEPAXPERTFI interpretation text. The accuracy ATD
is mainly a result of the ability to consider previous data and to interpret the whole
sequence of data samples.

We illustrate the power of abstract temporal diagnoses on a test case which consists
of data samples at three consecutive time points as shown in table 4. The interpretation
of these three data sampleshHiEPAXPERFI can be summarized as follows: the first
data sample indicates the immunity stage, the acute stage, or the convalescence stage
of an acute course of hepatitis B; the second data sample indicates either the transition
from the acute to the convalescence stage of an acute course, the immunity stage of
an acute course, or a persisting course of hepatitis B; the interpretation of the third
data sample states that in general the serum is not infectious, but to be sure, additional
tests are recommendeATD identifies the fourth course of an acute hepatitis B with
the following temporal constrains: incubation and acute stages finish befordtime
the convalescence stage starts before tiraed finishes before tim2 the immunity
stage starts before tim&and persists beyond tinf® This diagnosis is much more
specific than theHEPAXPERTI interpretation: we rule out the acute stage mentioned
in the interpretation text of the first data sample, since the acute stage finishes before
time 1; we rule out some of the possibilities in the interpretation text of the second data
sample; we identify the third data sample as the immunity stage and therefore do not
recommend additional tests.

Findings Test results
hbsag neg neg neg
antihbs pos neg
antihbc pos pos

Time points 1 2 3

Table 4: A test case with hepatitis B data samples at three consecutive time points.
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5.2 Inconsistent Test Cases

In 35casesATD was not able to compute a diagnosis at all. Assuming that our knowl-
edge about hepatitis B is complete we consider them as inconsistent ca2@sates

the inconsistency was caused by a single data sample. In the remaintages each

single data sample was consistent, but evaluating the sequence of data samples yielded
an inconsistency.

5.2.1 Inconsistent Data Samples

First, we consider those twenty test cases that are inconsistent due to a single data
sample. In four cases, the inability &TD to compute a diagnosis agrees with the
interpretation oHEPAXPERTI, i.e. each of these test cases contains at least one data
sample whichHEPAXPERTFI classified as inconsistentHEPAXPERTI identified no

other inconsistencies (see also table 2).

The remaining sixteen inconsistencies were only foundTiD. Three different
patterns of findings were responsible for these inconsistencies. Since none of these
patterns occurs in any of the eight typical courses, they are beyond the knowledge
base incorporated iIATD. Fourteen cases contained a data sample with a positive
antihbsand a negativantihbg which contradicts the fact that after a natural course of
an hepatitis Bantinbcwill be detectable in the patient’s serum for the rest of his/her
life. HEPAXPERTFI interpreted this data sample as follows: “The patient is immune
to the hepatitis B virus owing to vaccination or passive immunization. In one case an
inconsistency arose due to a positiMesagwhich coincides with a positivantihbs
HEPAXPERTFI interpreted this constellation as the late acute stage of an acute hepati-
tis B. Finally, in one case a positivdbeagand a positivantihbscoincided, which was
interpreted as a very improbable constellationHyPAXPERTFI. So HEPAXPERTI
uses additional knowledge beyond the eight typical courses, e.g. courses of findings
after an immunization.

We can extend our system in order to capture such knowledge by including addi-
tional state description models into the process description or by relaxing some of the
constraints in the eight typical courses. For example, the case that a pbbisag
coincides with a positivantihbscould be explained bgoursel if we relax themeets
relation between these two findings to the indefinite relafioeetsoverlaps. In fact,
due to the variability of biological systems theeetgelation is rather strong.

5.2.2 Inconsistent Sequences of Data Samples

In fifteen case@\TD detected an inconsistent sequence of data samples. These incon-
sistencies could of course not be detectedH®mpAXPERFI. In eight cases we had an
oscillatingantinbc In two casesntihbcappeared beforebsag In seven cases the test
result ofantinbcwas first positive and later negative. All these inconsistencies were
correctly detected with respect to the eight typical courses of hepatitis B.
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5.3 Final Discussion

The practical evaluation illustrates the benefits of explicitly representing tempo-
ral information and diagnosing whole sequences of data samples. In fifteen cases
the abstract temporal diagnosis was much more concise than the interpretation in
HEPAXPERTFI. The four inconsistencies detectedHiEPAXPERTI were detected in
ATD as well. The remainin@1l inconsistencies that were only detectedAiiD are
justified. Sixteen of them were caused by a single data sample due to the &I hat
used only the eight typical courses. The remaining fifteen inconsistencies, caused by
an inconsistent sequence of (consistent) data samples, were correctly dete€tdal. by
Reasoning explicitly with temporal information is rather important to detect in-
consistent data, in particular inconsistent data sequences due to measurement errors
or faulty documentation of test results. Depending on the domain and the accuracy of
measurements, the recognition of inconsistent data sequences is an important reason-
ing task. An isolated interpretation of the most recent data sample cannot detect such
inconsistencies and might yield wrong diagnoses.

6 Comparison to Related Work

A few researchers have recently begun to develop frameworks for diagnosing time-
dependent systems [6, 7, 10, 11, 14, 15]. The approach described by Brusoni et al.
in [6, 7] is most closely related to our work. Brusoni et al. propose a logical char-
acterization of temporal abductive diagnosis as well as an algorithm to compute such
diagnoses. Their approach extends the traditional model-based approach for atempo-
ral abductive diagnosis by a temporal constraint language and a temporal reasoning
system. This temporal diagnosis framework is strongly related to our system, with a
few but significant differences. In the state description models we distinguish temporal
relations appearing in the antecedent from those appearing in the consequent, which is
not the case in an explanatory formula representing cause-effect relationships in [6].
This distinction allows us to capture a larger class of logical definitions of temporal di-
agnoses. Depending on the specification of abnormal abstract observARBS ),

we can explain various temporal relations in an abductive way. Brusoni et al. cannot
explain any temporal relations abductively, rather temporal relations are only used for
consistency checking. We capture their definition of a diagnosk©OBS™ contains

no temporal relations. While Brusoni et al. use a more expressive temporal language
(including qualitative and quantitative temporal constraints) and a more efficient tem-
poral reasoning system than we do, they provide no temporal abstraction mechanisms
like our concept of abstract observations.
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7 Conclusion

We proposed a framework for model-based diagnosis of dynamic systems, which ex-
tends previous work in this field in several ways. The use of an interval-based temporal
language considerably improves the expressiveness at the knowledge representation
level. In the process description we represent a dynamic system in terms of processes
and process states present over time intervals. Each of these process states represents
a part of the process evolution and is characterized by a complex pattern of predicted
parameters and their values, that are present over arbitrary time intervals related by
gualitative temporal relations. We introduced the concept of an abstract observation
which allows us to summarize consecutive observations for the same parameter taking
the same value. Abstract observations make us independent from the actual number of
observations and the temporal resolution, leading an efficient event-driven diagnosis
process. Given a process description and abstract observations, we defined an abstract
temporal diagnosis as a conjunction of process state assumptions over indefinite time
intervals constrained by QA relations. This represents in a natural way indefinite tem-
poral knowledge about the causes of the observations. We applied our framework to
the diagnosis of hepatitis B and evaluated it by using real patient data, comparing the
abstract temporal diagnoses with the interpretation of these data bietvexPERFI

system. The results are promising and show the importance to consider sequences of
findings in the diagnosis of hepatitis B.
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