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Abstract. In this paper we describe a framework for reasoning about
temporal explanation problems, which is based on our previous work
on model-based diagnosis of dynamic systems. We use an explicit repre-
sentation of qualitative temporal information which provides a simpler
and more natural representation than the situation calculus. We show
how to generate more specific explanations by instantiating explanations
and assuming an Open World Assumption. We argue that a framework
for reasoning about action should be able to deal with concurrent and
durative actions and show how they can be represented in our system.

1 Introduction

Reasoning about action has been a very active topic since Hanks and Mc-
Dermott showed surprising weaknesses of conventional non-monotonic reasoning
formalisms to handle simple problems like the Yale Shooting Problem. The last
years have seen formalizations of various complexities, which often seemed in-
tuitive, only to be contradicted by simple extensions of the same examples they
handled. It can be argued, that finally formalizations have been found for these
examples, but difficulties and uncertainties remain even in the latest papers.

Different styles of reasoning can be distinguished. Given some observations
about an initial situation, what might be true in some later situation? This style
of forward reasoning in time is called temporal prediction. The opposite direction
is reasoning backward in time and is called temporal explanation. Given some
observation we are interested in what happened in previous situations.

In this paper, which extends our work in [5], we focus on the problem of
temporal explanation in reasoning about action examples, and discuss an ap-
proach strongly related to our recent formalism for doing temporal diagnosis in
a model-based reasoning system [12]. In particular, we tackle the following issues:
what do we want to explain, how do we want it to be explained (what are the
abducibles), how can we formalize persistence of fluents, how can we generate
more specific explanations, and how can we represent concurrent actions. Our
formalism is based on a interval-based temporal logic which we argue is a more
suitable representation than conventional situation calculus based formalisms.



2 Introductory Example

One of the most important representational frameworks for reasoning about ac-
tion and change is the Situation Calculus [11]. A situation s is considered to
represent a snapshot of the world. The function Result(a, s) represents the situ-
ation resulting from performing action a in situation s. The predicate Holds(p, s)
asserts that fluent (property) p holds in situation s.

Ezample 1 (The Stolen Car Problem). The most famous temporal explanation
problem is Kautz’s Stolen Car Problem (SCP) [7]. In the initial situation, S0, a
car is not stolen. After waiting two times, S2, the car is stolen. What happened?

—Holds(Stolen, S0), (1)
S2 = Result(Wait, Result(Wait, S0)), (2)
Holds(Stolen, 52) (3)

The intended model is that the car has been stolen during either of the two
waiting phases, there is no reason to prefer one over the other. O

Recently, Shanahan [13] described an interesting approach to formalize tem-
poral explanation within the situation calculus using the SCP as an example.
The key point in Shanahan’s work is that the axioms (1), (2) and (3) do not
constitute a good representation for the SCP. In particular, axiom (2) states
that S2 is the situation after waiting two times in S0, nothing else. As waiting
actions have no effects and we assume persistence of properties, the car should
still be parked in S2 contradicting the observation (axiom 3). The point is that
we do not know exactly what actions occured between S0 and S2. Shanahan’s
alternative representation states only that S2 follows S0 and that there must be
a sequence of actions leading from S0 to S2. The task is to find this sequence
of actions, which represents an explanation for the observation in S2. Shanahan
studied a deductive and an abductive approach for temporal explanation using
the standard and the alternative representation.

The situation calculus is a simple framework and rather expressive. How-
ever, several problems and counterexamples have been identified. The aim of
this paper is to show how temporal explanation problems can be formalized in
our model-based diagnosis framework for dynamic systems and that this formal-
ization yields clearer and more intuitive results. We will use the SCP and the
extensions introduced in [13] as examples throughout the paper.

3 The Basic Temporal Diagnosis Approach

In this section we develop the basic framework for temporal explanation problems
by extending our temporal diagnosis approach [12], which is based on explicit
representation of qualitative temporal information.



Basic relation |Inverse relation |Meaning

I before Io |12 after I L I
Iy meets Io |Is met I

I overlaps I2|I2 overlapped Iy
I starts Is |I2 started Iy S
I during Io |I2 contains [ |——m—
11 finishes I |12 finished Iy ]
I equal I2 I> equal I

Table 1. The 13 basic relations that hold between two intervals.

3.1 Temporal Framework

We use a subset of the interval-based temporal logic described by Allen and Hayes
in [1]. The basic temporal primitives are time intervals with a positive duration.
Time points are introduced as unique meeting places of intervals having zero
duration. Based on these primitives the following mutually exclusive qualitative
temporal relations are defined: 13 relations between two intervals (see table 1),
5 relations between a point (an interval) and an interval (a point), {before,
starts, during, finishes, after} ({before, finished, contains, started, after}) , and
3 relations between two points, {before, equal, after}. Indefinite knowledge is
expressed as disjunction of basic relations.

Properties are used to denote that something is true over a time period. We
do not allow for properties to hold at time points. An important characteristic of
properties is homogeneity: a homogeneous property holds during a time interval
I iff it holds during each subinterval of I. Intuitively, the notion of properties
captures the static behavior of the world.

Events are classified as durative and instantaneous. Durative events occur
during time intervals and are intended to take time. Instantaneous events occur
at time points and are durationless. Intuitively, they can be considered as causing
transitions of properties, and thus represent the dynamic behavior of the world.
The most important type of events in this paper are actions.

3.2 Formalizing the Domain Theory

We use a sorted First Order Language and a Prolog-like notation: Variables
begin with an upper case letter, constants and predicates with a lower case
letter. Unless stated otherwise, time intervals are denoted by I (i) (possibly
indexed), time points by P (p) (possibly indexed). Qualitative temporal relations
are represented by 2-ary predicates with the obvious meaning.

Definition 1. An Action Model for an action « is defined as a first order for-
mula, o A 8 — -y, where 3 represents the preconditions and  the effect of a.

To describe the temporal behavior of an action, both preconditions 3 and the
effect v may contain qualitative temporal relations.



{starts}
steal(Car,Ps) stolen(Car,Isc)

Fig. 1. Temporal behavior of the steal action.

Example 2. Following Shanahan’s alternative representation of the SCP we have
an action steal (axiom (ARS5) in [13]) represented by the action model

YV CarVP,31,. steal(Car, Ps) — stolen(Car, I.) A starts(Ps, Is)

Stealing a car Car at time point P starts an interval, I, during which the car
is stolen. This action has no preconditions. a

We use a graphical representation for the temporal behavior of an action
model. The nodes represent the temporal extent of the actions and properties.
The arcs are labeled with the qualitative temporal relation between them and
are denoted as a set of basic relations. The temporal behavior of the steal ac-
tion is shown in figure 1. For clarity, the nodes are denoted by the whole action
(property) expression rather than by the corresponding temporal extent, rectan-
gular boxes represent time points, and rounded boxes represent time intervals.
We follow this convention through the rest of the paper.

The steal action in the above example is an instantaneous action with an
immediate effect. In general, we allow for durative actions as well as more com-
plex, possibly indefinite temporal relationships between the action and its effects.
Sometimes the effect of an action is delayed which is easily represented in our
framework, e.g. overlaps. The representation of delayed effects in the situation
calculus is not straightforward, as it requires the representation of time and the
assumption of an additional action taking place after the real action which would
lead to the situation where the effect holds [6]. In the event calculus [8] the effects
of events take place immediately corresponding to the starts-relation.

3.3 Observations and Abstract Observations

Observations describe what we know about the actual behavior of the world
and are usually given in terms of properties at time points. This is difficult to
imagine from a cognitive point of view, as time points are durationless entities. A
more intuitive interpretation of observations in dynamic systems is to interpret
them over time periods “around” the observation time point. This is captured
by the concept of an abstract observation, which represents the assumption that
there exists a time interval during which a property holds. Usually, we neither
determine exactly the extent of an abstract observation nor its location on the
real time line, rather we only constrain it using qualitative temporal relations.

Definition 2. An Abstract Observation is defined as a formula 37 o(I) A p(I),
where o is a predicate which states that a property holds during a time interval
I, and the (temporal) anchor p is a conjunction of qualitative temporal relations
constraining I relative to the real time line and/or other abstract observations.
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Fig. 2. Abstract observations in the SCP.

Ezample 3. The two observations, the car is not stolen in S0 (axiom (1)) and
the car is stolen in S2 (axiom (3)), are represented by the abstract obser-
vations 31, stolen(car, Ins.) N contains(Ins.,0) and . stolen(car, Is.) A
contains(Is.,2), stating that the time period over which the car is not stolen
(stolen) contains time 0 (2). We represent time by the real numbers and assume
the ordering axioms of real numbers. This avoids to state explicitly that S2
follows S0, as through axiom (2), or in [13] through axiom (AR3). O

Ezclusiveness of abstract observations. The temporal constraints in the above
example do not prevent [, from including time 2, which contradicts the sec-
ond observation. From the homogeneity assumption of properties it follows that
two intervals I; and I» during which a property and its negation hold are ex-
clusive. This can be expressed as before(I1,1I2) V meets(I1,ls) V met(l1,I2)
V after(I, ). In particular, in the above example we get before(Iysc, Isc) V
meets(Inse, Ise)-

Mazximality of abstract observations. An abstract observation is maximal iff it
persists as long as possible in both direction of time, into the past and the future.
From this assumption follows that consecutive maximal abstract observations
which represent that a property holds and that it does not hold, are constrained
by the relation meets. Maximal abstract observations capture the persistence
assumption of properties: properties persist unless there is some reason to assume
otherwise. We make this assumption throughout most of the paper. This concept
of maximal abstract observations is different from chronological minimization
[14], which assumes persistence of properties only forward in time, and in the
SCP would conclude that the car has been stolen during the second waiting
action.

Example 4. Given that we use homogeneous properties and maximal abstract
observations, we get the final set of abstract observations in the SCP
AOBS = { 3,5 —stolen(car, Ins.) A contains(Inse, 0) A meets(Inse, Isc),
;. stolen(car, Is.) A contains(Ise,2) A met(Ise, Inse) }

A graphical representation of AOBS is shown in figure 2. To make the temporal
relationships clearer we added the interval [0, 2]. O

The concept of abstract observations allows also to represent exact knowledge
about the temporal extent of properties. For instance, we represent the fact that
property f holds during the time interval [0,2] as 3I f(I) A equal(1, 0, 2]).



3.4 Abstract Temporal Diagnosis

The aim of temporal diagnostic reasoning is to find an explanation in terms of
abducible expressions for the actual abstract observations [12].

Abducible Expressions. Intuitively, an abducible expression is one for which no
further explanation can be generated. This is the case for the truth-value true, as
well as for all expressions occuring only on the left-hand side of action models, in
particular actions itself. To get a temporal diagnosis additionally the qualitative
temporal relations must be abducible even if they appear also in the right-hand
side of action models. Later we will discuss the need for additional abducible
expressions if one assumes an Open World Assumption.

Similar to [4] we use a combination of abductive and consistency-based diag-
nosis: a diagnosis must abductively explain a “subset” of abstract observations,
AOBS™ while being consistent with the set of all abstract observations, AOBS.

Definition 3. A set D of abducible expressions is an Abstract Temporal Diag-
nosis for a theory T and a set of abstract observations AOBS iff

— D covers AOBS™,i.e. TUD = AOBS™.
— D is consistent with AOBS, i.e. T'U D U AOBS is consistent.

The set AOBS™ consists basically of the abnormal abstract observations.
Assuming persistence of properties, each change of a property without known
cause is abnormal. In general we cannot entail the temporal extent of abstract
observations and their temporal location on the real time line. We define AOBS ™
to consist of the abnormal abstract observations without their temporal anchors
relative to the real time line and relative to normal abstract observations. This
gives an explicit notion about what to include in AOBS™, in contrast to the
vague characterization in [13].

The basic procedure to compute an abstract temporal diagnosis is a
backward-chaining procedure. Starting from the initial set AOBS™ we choose an
action model which predicts a non-empty set of abstract observations in AOBS ™
not yet explained. In first order logic we would unify the explained observations
with the effects predicted by the chosen action model. In our temporal logic, we
instead cover them by adding an equal relationship between the explained ob-
servations and the predicted effects, which leads to an instantiation of variables
and connects the temporal networks of the chosen action model with AOBS™.
The left-hand side of the instantiated action model represents the abductive hy-
pothesis. The connection of networks leads to additional temporal relationships
between action model, abstract observations and hypothesis. Similar to first or-
der logic, where the unified literals are dropped, we can also drop the covered
literals and the corresponding temporal relations, though we need additional
assumptions to avoid losing information in this step. Specifically, we have to
assume maximal persistence of properties!. An action with preconditions can

1 This is similar to the assumption of maximal abstract observations.
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Fig. 3. Explanation (in boldface) and AOBS in the SCP.

give rise to new abnormal property changes, in which case we extend AOBS™
accordingly (see example 5). If all abstract observations in AOBS™ are covered,
the conjunction of the generated hypotheses represents an abstract temporal
diagnosis.

Example 5. The theory T for the SCP contains the action model for steal,
YV CarV P31, steal(Car, Ps) — stolen(Car, I.) A starts(Ps, Is.). The set of ab-
stract observations, AOBS, is calculated as in example 4. Initially the car is not
stolen and due to the persistence assumption we should be able to conclude
that it is still not stolen at time 2. However, we observe the contrary, indi-
cating an abnormal property change which needs an abductive explanation, so
AOBS*t = {3, stolen(car, I,.)}?. We cover this abstract observation with the
effect stolen(Car, I,.) of the steal action, which instantiates the variable Car to
car and unifies the interval variables from action model and observation giving
stolen(car, Is.). In the consistency based step, which includes the temporal an-
chors of AOBS, we then get the additional temporal relation during(Ps, [0,2]).
We can now drop stolen(car, I,.). All abstract observations in AOBS™ are cov-
ered and we get the abstract temporal diagnosis (see figure 3)

3P; steal(car, Ps) A during(Ps, [0, 2])
This is the intended explanation and corresponds to Shanahan’s one. a

Even if the above explanation is the intended one and it is not very probable
that the car has been brought back and stolen again, we should at least not
be forced to exclude it. If we do not use maximal abstract observations, i.e.
constrain the two abstract observations by before V meets instead of meets, we
can consistently assume several steal actions between time 0 and 2. To explain
the abstract observations abductively one steal action still suffices.

4 Extending the Basic Approach

Additional problems in reasoning about action and change arise, when precon-
ditions for actions are introduced. Following Shanahan [13] we extend the SCP.

2 meets(Inse, Isc) is a relation to a normal abstract observation, overlapped (Ise, [0,2])
is a relation to the real time line. Both of them are excluded from AOBS™.



on_duty(Sec,Id)

{during}

lazy(Sec,Ils)

steal(Car,Ps)

{equal}

-guarded(Car,Ingc)

{starts}

-guarded(Car,Ingc) stolen(Car,Isc)

{contains}
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lazy(fred,ilf) {contemporary} + {overlaps}
N {meets} .
{equal} {contains} -stolen(car,Insc) = stolen(car,Isc)
{contains} {contains}
Y {overlaps} {overlapped}

Fig. 4. Action models and abstract observations in the extended SCP.

Ezample 6 (Azioms AR through AR10 in [13]). In order for a steal action to
be successful, the car must be unguarded. This action has a precondition
and is represented by the action model VCarVPVI,4.3I,. steal(Car, Ps) A
—guarded(Car, Ing.) A during(Ps,Ing.) — stolen(Car,Is.) A starts(Ps, Is.). A
second action is introduced for a security guard to be on duty. If a lazy security
guard comes on duty, he immediately falls asleep, and the car will be unguarded
for the time he is on duty. Initially the car is guarded, and Fred is known to be
a lazy security guard. The actions and the abstract observations of the extended
SCP are shown in figure 4 (contemporary is an abbreviation for the disjunction
of the basic relations overlaps, starts, during, finishes, equal and their inverses).
Properties which are always true, such as Fred being lazy, are represented by
abstract observations, whose temporal extent is equal to a maximal interval 4,4 .
Turning to the generation of an explanation, we start with the same set
AOBS™ as before and hypothesize I1gc3Ps ~guarded(car, Ing.) A steal(car, Py)
A during(Ps, Ing.). Testing consistency with AOBS yields during(Ps,|0,2])
and during(Inge, [0,2]) V finishes(Inge,[0,2]) V overlapped(Inge,[0,2]). This
hypothesis contains the non-abducible —guarded(car,I,4c) representing an
abnormal property change violating the persistence assumption. We add
Alge ~guarded(car, Ing.) to AOBS™' and continue the diagnostic process.
The action on_duty predicts the desired property, and we cover the effect
—guarded(Car, Ing.). From this and the equal-relation in the action model
we get contains(ly, Ps), which we include in the final explanation, and drop
—guarded(Car, I,4c) and the corresponding temporal relationships

D = 3Sec3I;31,3Ps on_duty(Sec, I4) A lazy(Sec, Ijs) A steal(car, Ps) A
during(I4, I;s) N contains(Iy, Ps)
— while a lazy security was on duty the car has been stolen. In this and the
following examples we leave out constraints stating that all this happens between

time 0 and 2. This explanation corresponds to Shanahan’s one in his deductive
approach. O
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Fig. 5. Explanation D; — while Fred was on duty the car has been stolen.

4.1 Specifying Explanations

The explanation in the last example is not satisfactory as it does not exploit
the fact that Fred is a lazy security guard, and it contains the non-abducible
expression lazy(Sec, I15).

Instantiating Fxplanations. As we know that Fred is a lazy security guard, we
want to specify the explanation and instantiate the variable Sec to fred. To
formalize this we represent a fact f as a formula true — f, and extend the
abduction policy by instantiating variables and eliminating non-abducibles in
an explanation by using known facts, i.e. abstract observations not in AOBS™.

Ezxample 7. Fred is a lazy security guard is represented as true — lazy(fred, ;)
A equal(iif, imaz). Using this rule we instantiate the variable Sec in D to fred,
eliminate the non-abducible lazy(Sec, I;5) and get the first intended explanation

Dy = 31,3 Ps on_duty(fred, I4) A steal(car, Ps) A contains(Iy, Ps)

— while Fred was on duty the car has been stolen (see also figure 5) O

Open World Assumption. The Open World Assumption (OWA) admits the ex-
istence of objects not currently known. This allows us to generate explanations
on the existence assumption of such objects rather than on known facts. Using
the OWA we must extend the set of abducible expressions accordingly.

Example 8. We hypothesize the existence of a lazy security guard other than
Fred by adding the rule 3Sec3I;s lazy(Sec, I;s) A Sec # fred — lazy(Sec, I;s)
to the theory. We add the left-hand side of this rule to the set of abducible
expressions and generate the second intended explanation

Dy = 3Sec31;311,3Ps on_duty(Sec, I4) A lazy(Sec, I1s) N Sec # fred A
steal(car, Ps) A during (I, I1s) A contains (14, Ps)

— while a lazy security guard other than Fred was on duty the car has been
stolen. a



Shanahan’s deductive approach can only generate the general explanation D,
while his abductive approach only provides the specific explanation D;. We gen-
erate in each case explanation D;. If we use the OWA we additionally generate
the specific explanation Dy. Hence, we always are more specific than Shanahan.

Unknown Actions. One might argue that our approach just encodes the solution
as all actions used in the explanation are explicitly represented. In the original
formulation of the SCP through axioms (1), (2) and (3) we have only the wait-
ing action which, however, does not change the truth value of stolen. In order
to get a model we have to introduce unknown changes which in [9] are called
miracles. While it is arguable, if we should include the steal action in our theory
or not, miracles seem to be too abstract. We know at least, that some action
has taken place which results in our car to be stolen, and we should include
this knowledge in our theory. We exploit once again the OWA and hypothesize
the existence of an unknown action. We use a slightly modified representation
of actions, and represent the steal action as VCarVP;3I. action(steal, Car, Ps)
— stolen(Car, Is.) N starts(Ps,Is.). Then the unknown action U is repre-
sented as VCarVP,3I,.3U action(U, Car,P,) N U # steal — stolen(Car, I.)
A starts(P,, Is.) and leads to an additional explanation — an unknown action
other than the steal action caused the car to be stolen. If we do not use the
steal action at all we remove the precondition U # steal, and we get exactly one
explanation — an unknown action caused the car to be stolen.

4.2 Concurrent and Durative Actions

Shanahan’s approach is based on the observation that S2 cannot be the situation
from just waiting two times in S0. He goes on to assume a sequence of actions
between S0 and 52, and only states that S2 follows S0. Now he cannot express
anymore that we already know an action sequence characterizing the interval
between S0 and S2 (while not sufficient to explain the changed properties).

Ezample 9. We extend the story again. The owner of the car, after parking the
car at time 0, goes to lunch. He comes back at time 2 and the car is stolen.
The new action lunch is durative and takes place from time 0 to time 2, i.e.
3L, lunch(owner, Ii,) A equal(Ij,, [0,2]). As going to lunch hardly affects the
properties used so far, this is consistent with all our explanations and we can
conclude, for example, that the theft of his car occured during lunch. O

Now Shanahan can assume some other action between S0 and S2 without
affecting the explanation, which however has to be instantaneous and not con-
current with another action. Because of this restriction caused by the situation
calculus, Shanahan has to say that the owner went to lunch between S0 and 52,
either before or after the steal action. This is one of the major drawbacks of the
situation calculus that concurrent actions as well as durative actions cannot be
represented without introducing major extensions [6, 10] leading to quite com-
plex formalisms. Aside from really concurrent actions we can represent various
other complex temporal relationships between actions in a very natural fashion.



5 Discussion

Even if the situation calculus is rather simple and expressive, the underlying on-
tology is problematic for many problems. The notion of a situation representing
an instantaneous snapshots of the world, which is originally defined as a sequence
of actions, has been criticized by several authors. Shanahan [13] proposed an al-
ternative representation for temporal explanation within the situation calculus
and studied in detail a deductive and an abductive approach. Even if his alter-
native representation improves the standard approach, we have shown that our
temporal diagnosis approach leads to better results. In particular, by instantiat-
ing explanations and allowing to use an Open World Assumption we can always
give more specific explanations. Moreover, we have shown the need for concur-
rent and durative actions, which cannot be represented in the situation calculus
without major extensions [6].

An alternative framework to deal with action and change is the event calculus
[8]. The basic primitives are events which start or finish a time period, while in
our framework the primitives are time intervals and time points derived from in-
tervals [1]. In the event calculus properties persist until they are clipped by some
contradicting event. This behavior is realized in our approach by the concept of
maximal abstract observations. If we do not use maximal abstract observations,
properties can cease to hold earlier, for example depending on quantitative tem-
poral information. While we allow arbitrarily complex temporal relationships
between actions and their effects, events in the event calculus have immediate
effects corresponding to the meets-relation in our framework.

6 Conclusion

In this paper we propose a framework for temporal explanation based on our
model-based temporal diagnosis approach. We focus mainly on the expressive
power of our framework and on the natural and easy representation of temporal
knowledge in reasoning about change. We use an explicit representation of qual-
itative temporal relations between properties holding during time intervals and
actions occuring at time points or during time intervals. This provides a pow-
erful language for modeling actions with preconditions and effects. The concept
of maximal abstract observations capture the persistence assumption of prop-
erties and can easily be extended to various forms of persistence assumptions.
Temporal explanations are generated by using abduction and testing additional
consistency constraints. We give a concise characterization of what needs to be
explained and what can be used in an explanation. We show how our framework
deals with an open world assumption and how this leads to additional, more
specific explanations. Finally, we argue that concurrent and durative actions
are useful in reasoning about action and change, and can be handled in a very
natural way in our framework.

Current and future work include an exact formalization of our approach in
first order logic as well as detailed complexity analysis and a detailed comparison



to abductive reasoning in first order logic, such as worked out for example in

3,

2]. We are also investigating which kind of temporal knowledge is required to

abductively explain various temporal relations. Another important topic is how
to exploit temporal knowledge in order to reduce the computational complexity
inherently in abductive reasoning. Finally we consider various forms of persis-
tence assumptions for different properties, such as adding quantitative temporal
information.
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