
Specification of Heterogeneous Agent Architectures

Simone Marini1, Maurizio Martelli1, Viviana Mascardi1, and Floriano Zini2

1 DISI - Università di Genova
Via Dodecaneso 35, 16146, Genova, Italy.

marini@educ.disi.unige.it
{martelli, mascardi}@disi.unige.it

2 ITC-IRST
Via Sommarive 18, 38050 Povo (Trento), ITALY

zini@itc.it

Abstract. Agent-based software applications need to incorporate agents having
heterogeneous architectures in order for each agent to optimally perform its task.
HEMASL is a simple meta-language used to specify intelligent agents and multi-
agent systems when different and heterogeneous agent architectures must be used.
HEMASL specifications are based on an agent model that abstracts several existing
agent architectures. The paper describes some of the features of the language,
presents examples of its use and outlines its operational semantics. We argue that
addingHEMASL to CaseLP, a specification and prototyping environment for
MAS, can enhance its flexibility and usability.

1 Introduction

Intelligent agents and multi-agent systems (MAS) are increasingly being acknowledged
as the “new” modelling techniques to be used to engineer complex and distributed
software applications [17,9].Agent-basedsoftware development is concerned with the
realization of software applications modelled as MAS. A two-phase approach can be
adopted to develop agent applications at themacro-levelbefore implementing the final
application.

1. Specification of the MAS:
– describe theserviceseach agent provides other agents or human beings with;
– describe the environmentaleventsthat each agent can perceive;
– describe agent-agent, agent-human and agent-environment interactions, ab-

stracting from the agents’ internal structure;
– provide each agent with domain-dependent procedural knowledge, so it can

supply its services and respond to stimuli from the environment.
If a prototypeof the final application is being developed additional specifications of
the environment (and its evolution due to the agents’actions) as well as specifications
of the communication media among agents can be given.

2. Proof of the specification correctness:
– specification properties are formally verified, and/or
– informal testing of the system behaviour by means of a working prototype is

performed.

C. Castelfranchi, Y. Lesp´erance (Eds.): Intelligent Agents VII, LNAI 1986, pp. 275–289, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

276 S. Marini et al.

The first phase leaves thearchitectureof each agent implicit and profitably abstracts from
the internal organization and structure of single agents. Thus, the application developer
is not burdened with the modelling of too many details and the specification phase is
clearer and more modular. On the other hand, the services that an agent provides are
usually variegated and complex and generally involve management of heterogeneous
information using different kinds of behaviour. This diversity has to be taken into account
and the developer must identify “the right agent to do the right thing” [14]. In other words,
an application needs to incorporate agents having heterogeneous architectures in order
for each agent to optimally perform its task.

One good approach is certainly to provide the application developer with a pre-
defined library of architectures from which he/she can choose the most appropriate ones.
Obviously, the architectures in the library have to be specified, verified and tested before
being employed. This process concernsmicro-levelagent development, i.e., building
software systems that include some of the main features of an agent.

The declarative nature oflogic programmingmakes it very suitable for the interactive
development and testing of macro and micro-level agent applications. Logic program-
ming languages can be used to specify agents and MAS at the proper level of abstraction.
They can be executed, thus providing a working prototype “for free”, and thanks to their
well-founded semantics they can be used to formally verify properties of programs,
which is fundamental when safety critical applications are developed. Nevertheless, two
considerations have to be made:

– Industries and programmers mostly use implementation languages such asC, C++,
Visual Basic or Java, and specification languages (mainly non-executable) such
asUML or even less formal ones.

– Logic languages which are most suitable for formal verification of system properties
are definitely not user-friendly. This makes their use even harder than the “simple”
and “user-friendly”Prolog!

Since 1997 the Logic Programming Group at the Computer Science Department of Gen-
ova University has been working on the development of a specification and prototyping
environment for MAS.CaseLP (Complex Application Specification Environment based
on Logic Programming) [13,12] provides a macro and micro-level development method
for agent applications, as well as tools and languages which support the development
steps. In our methodology the more formal and abstract specification of the MAS can
be given using the executable linear logic programming languageEhhf [4], which pro-
vides constructs for concurrency and state-updating. Even ifEhhf has been successfully
adopted as a specification language both at the inter-agent (macro) [1] and intra-agent
(micro) [2] levels of abstraction, its use requires a profound knowledge of the linear
logic [7] syntax and semantics and the language is definitely difficult to adopt.

One of the initial ideas in the design ofCaseLP was to create an environment
which could accommodate various specification and implementation languages as well
as legacy software so that a MAS prototype could be built using a range of techniques
integrated into a common framework. In this paper we attempt to bridge the gap between
the above mentioned users’ habits and our tool for rapid prototyping.

We presentHEMASL (HEterogeneous Multi-Agent Systems Language) which is a
simple, imperative, meta-language for the specification of agent architectures and the

Specification of Heterogeneous Agent Architectures 277

configuration of MAS and which is much closer to widespread existing specification and
implementation languages than logic languages. The basic features ofHEMASL make
it suitable for agent architecture specification and for incorporation of heterogeneous
agents into the same MAS. The operational semantics ofHEMASL is based on the
concepts of “MAS configuration” and “configuration transition”. It defines an abstract
interpreter for the language that can be used to animate specifications within theCaseLP
framework.

HEMASL can be considered as a first step towards defining an “intermediate” lan-
guage which could make it much easier to animate and incorporate traditional specifi-
cation languages intoCaseLP. The possibility to formally verify MAS specifications
usingEhhf , a feature ofCaseLP, can be obviously obtained by an implementation of
HEMASL in Ehhf . A formal mapping betweenHEMASL andEhhf constructs is under
study to make this possibility more valuable.

Some important characteristics ofHEMASL are presented below.

Agent model. The agent model supported byHEMASL is an abstraction of many exist-
ing architectures. This facilitates the development of the architecture specification.
Moreover, since this model is the same as the one we adopted to develop agents in
CaseLP, integration ofHEMASL specifications intoCaseLP is facilitated.

Hierarchy of abstraction levels. HEMASL provides constructs for specifying a MAS
through four different levels of abstraction which support a modular and flexible
representation of the system based on the concepts of abstract and concrete archi-
tecture, agent class and agent instance. This helps to model the heterogeneity of
agent services and architectures.

Situatedness and social ability.The ability of an agent to interact with the surrounding
environment consists in perceiving the events which take place in the environment
and in performing actions which modify it.HEMASL provides an explicit model
of the environment as well as primitives that can be used by agents to sense and
modify it. It also provides constructs for modelling the message exchange among
agents.

In the following sections we expand the concepts outlined above. Section 2 describes
the computational model of our agents and the hierarchy of abstraction levels. Section
3 shows the main features ofHEMASL through the specification of two agent architec-
tures and one MAS embedding agents having these architectures. Section 4 outlines the
operational semantics ofHEMASL. Sections 5 and 6 compare our approach to other
proposals, and conclude the paper by identifying future research possibilities.

2 Agent Model and Structure of a MAS

Since we want to model MAS with agents having different architectures, we need a simple
abstraction which can encompass several of the existing architectures. The agents we
model with our language are characterized, from a computational point of view, by:

– astate,
– aprogram and
– anengine.

278 S. Marini et al.

Domain

specification
dependent

Domain
independent
specification

arch.
Abstract

Concrete Concrete
arch. arch.

Agent
class

Agent
class

instance
Agent

instance
Agent

Fig. 1.Abstraction hierarchy.

The state includes data that may change during the execution of the agent. For
example, the state of a BDI agent [15] contains its beliefs, goals and intentions. The
programcontains the information that does not change during the execution of the agent.
The program of a BDI agent is determined by its plans. Lastly, theenginecontrols the
execution of the agent. A typical BDI engine should be characterized bya) perceiving
an event,b) identifying a set of plans which can be used to manage the perceived event
according to the current beliefs,c) selecting one plan from the set,d) adding the selected
plan to the intention set,e) selecting one intention and executing one instruction of the
selected intention, andf) dropping successful goals.

The engine and the program belong to different abstraction levels: the engine is a
meta-interpreter for the program and the data (state) on which the program operates.
The behaviour of the agent is determined by the application of the agent program on the
agent state by means of the agent engine.

The architecture of an agent is characterized by components which contain its state,
components for the program, and an engine operating on them. The content of the agent
components will be expressed using some architecture dependent object language for
which the engine provides an interpreter. In this paper we do not commit to any particular
object language.

A specification language for heterogeneous MAS should ensure modularity and flex-
ibility in the definition of agent architectures. Therefore, we introduce a four abstraction
level hierarchy, illustrated in Fig 1.

Abstract architecture.The abstract architecture defines the components in the archi-
tecture and the basic structure of the engine. It is possible to provide guidelines on
the realization of any “macro-instruction” (procedure) present in the engine without
necessarily giving all the implementation details.

Specification of Heterogeneous Agent Architectures 279

Concrete architecture.Concrete architecture is defined by starting from an abstract
architecture: each component is assigned a type chosen among the ones the language
provides; each macro-instruction of the engine is implemented.

Agent class.A class is defined by instantiating the components in the concrete architec-
ture which contain the program of the agent.

Agent instance.Starting from an existing class, the initialization of the architecture
components containing the state identifies an agent instance.

HEMASL allows the definition of all these abstraction levels. Intuitively, an abstract
architecture defines the data structures and the engine that organize agent internal ac-
tivities without going into too many details. For example, the way data structures are
implemented or how an intention is selected in a BDI architecture are irrelevant details
at this level. An abstract architecture can give rise to several concrete architectures. This
level of abstraction makes the data structures used for architecture components as well
as the detailed functioning of the agent concrete. The same concrete architecture can
be employed for agents that work on various application domains. Domain dependent
behavioural patterns are given by defining the agent program at the class level. Finally,
a MAS may require several instances of the same agent class that work by starting from
different initial states. This is captured in our hierarchy by defining an agent instance
level in which state components are filled.

Besides its internal representation, an agent is also characterized by the ability to
perceive the surrounding environment and to interact with other agents in the system.
In HEMASL the environment(env) is modelled as a collection of facts representing
the physical environment features which are relevant to the application domain. Agents
are able to directly perceive the environment, but they can only modify it by interacting
with an “environment agent”. Suppose that an agentrobot is able to perform the action
turn the engine on. There are several consequences of the action on the environment,
for example, noise, temperature and pollution will increase. It is not realistic that the
robot would know all the consequences of its actions, thus it could not directly modify
the environment. Therefore we employ a domain-dependent “environment agent” whose
task is to evaluate all the relevant consequences of primitive agent actions, and to update
the environment consequently.

As far as communication is concerned, an agent interacts with the “environment
agent” and with other agents by means of theether(eth), a data structure where messages
are collected, and from which they are retrieved.HEMASL provides primitives for
communication.

3 Syntax and Examples of Use

3.1 Primitive Instructions and Statements

HEMASL provides primitive instructions for managing the information contained in the
architecture components, for delivering and receiving messages, for perceiving events
from the environment, for generating events which modify it, and for performing actions

280 S. Marini et al.

in it. These basic instructions can be composed with the statements:variable declara-
tion andassignment; procedure call; deterministic choice(if-then-else); loop (while);
concatenation(;); non deterministic choice(|); concurrent execution(||).

The instructions which operate on the agent’s internal components are

– get comp(c, m, v),
– put comp(c, m, e), and
– del comp(c, m)

wherec stands for the name of the component,v is a variable,e is an expression andm is
the mode of insertion, extraction or deletion of an element into/from a component, that
depends on the component type. For example, if the component is a list,m can assume
head andtail as values.

The instructions for message exchange are

– send(r, m),
– rec(s, m), and
– block rec(s, m)

wherer, m, ands represent respectively the receiver, the message, and the sender. When
a blocking reception is performed, execution of the agent program is blocked until agent
s sends a message. In the not-blocking reception, the execution goes on even if no
message coming froms may be retrieved from the ether.

The instructions for perception and generation of an evente in the MAS environment
are

– perceive(e),
– put event(e), and
– removeevent(e).

Insertion and deletion of an event into/from the environment are reserved operations
that can be executed only by the “environment agent”. Perception operations can be
performed by all the agents in the system.

Lastly, any agent can execute an actiona using the primitive

– exec(a).

The effect of this primitive is to send a message with contenta to the “environment
agent”. This agent evaluates the consequences of performinga in the environment and
modifies it by means ofput event(e) andremove event(e) primitives.

3.2 Abstract Architecture Definition

To define an abstract architecture, we declare its components, its engine and the engine
procedures. As an example, consider a BDI-like architecture. As previously described,
it is characterized by four components: one for beliefs, one for goals, one for intentions
and one for plans.

The definition of an abstract BDI architecture is depicted in Figure 2. The key-
word classmeans that theplanscomponentwill be instantiated during the definition

Specification of Heterogeneous Agent Architectures 281

abstract architecture {bdi} {
components{

classplanscomponent;
agentbeliefscomponent, goalscomponent, intentionscomponent;

};
procedures

{ . . . definition of the engine′s procedures . . . }
engine{

declevent, selectedevent, triggeredplans, selectedplans;
while true do

perceiveevent();
plan triggering();
plan selection();
upgradeintentionscomponent();
execintention();
drop succesfulgoals();

endwhile
}

}

Fig. 2.BDI abstract architecture.

upgradeintentionscomponent(){
declplan, empty;
is emptyselectedplans(!empty);
if not (empty)then

selectplan(!plan);
put intentionscomponent(gettupla(plan,3))

else skip
}

Fig. 3.A partially defined procedure.

of the agent class, and thus that the data contained in it represent theprogramof the
agent. The keywordagentsuggests thatbeliefscomponent, goalscomponentandinten-
tions componentwill contain information representing the agent’s state.

The engine consists in a “while” loop continuously executing a sequence of macro-
instructions defined as procedure calls.Global variablesdeclarations can be included
in the engine body. The body of a procedure may be only partially specified in the ab-
stract architecture. This means that the implementation details of the macro-instruction
defined by the procedure will be completely described when defining the concrete ar-
chitecture. A macro-instruction can also be left completely undefined. In this example,
perceiveevent()is not defined at all, whileupgradeintentionscomponent()is partially
defined, as depicted in Figure 3.

282 S. Marini et al.

The procedure body contains declarations oflocal variables at the be-
ginning. The proceduresis emptyselectedplans(!empty), selectplan(!plan)1, and
put intentionscomponent(gettupla(plan,3))are not defined at the abstract architecture
level.

3.3 Concrete Architecture Definition

In the definition of the concrete architecture, all the components are assigned a type, the
global variables are initialized, and the definitions of partially specified procedures are
completed. To illustrate two different implementation choices, we consider two concrete
BDI architectures,bdi1 andbdi2, obtained from the previously defined abstract BDI
architecturebdi.

In concrete architecturebdi1, planscomponentis assigned a typestack, be-
liefs componenthas typeset, goalscomponenthas typeset andintentionscomponent
has a typequeue. External events are either events generated by the environment or
messages sent by other agents in the system. An agent which is implemented using this
architecture will have both reactivity and social ability.

In the architecturebdi2, planscomponent, beliefscomponentandgoalscomponent
aresets, while intentionscomponentis astack2. The only perceived events are those
generated by the environment. This architecture gives origin to strongly reactive agents
without the ability to receive messages. In both concrete architectures, perceived events
are collected in the global variableeventwhich has typequeue.

The implementation of the BDI concrete architectures is depicted in Figure 4 and
5. In bdi1, an event is perceived from the environment by means of theperceive(e 1)
procedure. The global variableeventis updated by inserting the perceived event into it.
A message fromsenderis received in parallel with the perception of the environment,
and the received message is also put into the event queue. Inbdi2, only events taking
place in the environment are perceived and inserted in the event queue.

3.4 Definition of Agent Classes and Instances

After the concrete architectures have been defined the MAS is instantiated (Figure 6).
The classes of agents are defined, the environmentenvand the etherethare initialized
and finally the instances of the agents are created. Due to space constraints we will not
go into further detail on this aspect of the language.

4 Operational Semantics

The operational semantics ofHEMASL specifications is given by a tree that represents
the transitions between tuples ofMAS configurations. A full account of the semantics
can be found in [10], while a brief account is given here. A MAS configuration has the
form

1 The symbol “!” in the procedure call means that the argument is passed by reference.
2 These types are probably not the most reasonable to assign to BDI components. They have been

chosen to demonstrate language flexibility.

Specification of Heterogeneous Agent Architectures 283

architecture {bdi1} is a{bdi} {
components{

planscomponent:stack;
belief component, goalscomponent:set;
intentioncomponent:queue

};
init global vars { . . .};
procedures{

perceiveevent(){
declsender, e1, e 2;(

perceive(e 1); event :=insqueue(event, e1)
)

‖(
get belief component(“sender”, !sender);rec(sender, e2);

event :=insqueue(event, e2)
)

};
. . .

}
}

Fig. 4.Definition of concrete architecturebdi1.

[env, eth, sa1 , . . . , san
, senv agt]

whereenv andeth represent respectively the state of the MAS environment and the
state of the MAS ether,sa1 , . . . , san

represent the states of the “common” agents and
senv agt is the state of the “environment agent”.

The environmentenv is a set of pairs〈fact, value〉, wherefact is a string represent-
ing a relevant fact characterizing the MAS environment (for example,“temperature”),
andvalue is a string representing the current value of the observed fact (for example,
“25”). The ethereth is a set of triples of strings〈sender, receiver, content〉. The term
sender must be instantiated by the name of the sender andreceiver may be instantiated
by an agent name or with the string“all”, to model broadcast communication. The ether
contains all the messages that have been delivered but have yet to be received by an
agent.

The state of the agenta is a pair〈ex enva, cmpa〉. It contains information about
the architecture components content (cmpa) and about the execution environment of the
agent engine (ex enva)3. Coherently with the meaning assigned to the execution envi-
ronment in the imperative languages semantics,ex enva is a function which associates
values to variables and local execution environments to procedure identifiers.

The relation
MAS7−→ defines the transitions between MAS configurations. The actions

of the “environment agent” may affect its state, the ether and the MAS environment,

and thus the relation
env agt7−→ is defined overenvironment agent configurationsof the

form (senv agt, eth, env). Conversely, the actions of a “common agent”a cannot

3 Some confusion could arise due to the presence of the agents’ execution environmentex enva

and the MAS environmentenv. The context always clarifies the meaning of the term “environ-
ment”.

284 S. Marini et al.

architecture {bdi2} is a{bdi} {
components{

planscomponent, beliefcomponent, goalscomponent:set;
intentioncomponent:stack

};
init global vars { . . .};
procedures{

perceiveevent(){
decle;
perceive(e); event :=insqueue(event, e)

};
. . .

};
}

Fig. 5.Definition of concrete architecturebdi2.

MAS {
classagent{arch name1, classagent name1} {

init comp comp name1 [elem11 , . . . , elem1i]; . . .
};
...
init ENV [event1, . . . , evente];
init ETH [msg1, . . . , msgm];
create agent(classagent namet1 , agent name1) {

init comp comp name1 [elem11 , . . . , elem1i]; . . .
};
...

}

Fig. 6.MAS definition schema.

directly modify the MAS environment, and thusagt
7−→
a

is defined overagent configurations

(sa, eth). Let A be the set of names of the agents in the MAS. The above concepts are
formalized by the meta-rules

(senv agt, eth, env)
env agt7−→ (s′

env agt, eth′, env′)

[env, eth, S, senv agt]
MAS7−→ [env′, eth′, S, s′

env agt]

(sa, eth) agt
7−→
a

(s′
a, eth′)

[env, eth, S, senv agt]
MAS7−→ [env, eth′, S′, senv agt]

a ∈ A

whereS′ is obtained by substitutingsa with s′
a in S.

To give an overview of the language semantics we will describe some meta-rules
governing the execution of “common” agents. The meta-rules for the “environment

Specification of Heterogeneous Agent Architectures 285

agent” execution are similar to the following ones; in addition, they also define the
semantics ofput eventandremove event. The relationagt

7−→
a

is defined by the meta-rule

(〈ex enva, cmpa〉, eth)
ins7−→
a,i

(〈ex env′
a, cmp′

a〉, eth′)

(〈ex enva, cmpa〉, eth) agt
7−→
a

(〈ex env′
a, cmp′

a〉, eth′)

a ∈ A
N I(a) = i

The functionN I(a) returns the next instruction which agenta must execute. The

relation
ins7−→
a,i

is defined over agent configurations and depends on the agent performing

the instruction and on the instruction itself. We give its definition for someHEMASL
basic constructs.

Event perception

f
e exp
7−→

ex enva
f ′

(〈ex enva, cmpa〉, eth)
ins
7−→

a,perceive((f,x))
(〈ex enva[v/x], cmpa〉, eth)

a ∈ A
(f ′, v) ∈ env
x ∈ d(ex enva)

The relation e exp
7−→

ex enva

evaluates an expression according to the current execution environ-

ment of agenta. The functiond(ex enva) returns the domain of the functionex enva

andex enva[v/x] is obtained by composingex enva with the function which associates
v to x. The effect of a perception instruction is to modify the agent’s state by creating a
new association between the variable argument ofperceiveand the value associated to
the perceived fact.

Message delivery

r
e exp
7−→

ex enva

r′ c
e exp
7−→

ex enva

c′

(〈ex enva, cmpa〉, eth)
ins7−→

a,send(r,c)
(〈ex enva, cmpa〉, eth ∪ {(a, r′, c′)})

a ∈ A

The effect of asendis the insertion of a new triple in the ether.

Message reception

s
e exp
7−→

ex enva
s′

(〈ex enva, ca〉, eth)
ins
7−→

a,rec(s,x)
(〈ex enva[c/x], ca〉, eth/{(s′, a, c)})

a ∈ A
(s′, a, c) ∈ eth
x ∈ d(ex enva)
a 6= ′′all′′

This meta-rule can be applied when the receiver of the message is a particular agent and
not the string“all”. The effect of arec is to associate the content of the received message
to the variable argument ofrec and to remove the read message from the ether. If the
receiver is“all”, the message is not removed from the ether until all the agents in the
system have read it4.

4 The ether takes care that the receivers of a broadcast message read it only once, and that the
message is removed when all the recipients have read it.

286 S. Marini et al.

The same rules are also given for the blocking reception instruction. The difference
between not-blocking and blocking reception semantics is that for non-blocking recep-
tion a third meta-rule exists. It can be applied when the desired message is not present in
the ether. In this case the effect of arec is to create an association between the variable
argument ofrec and the string“null”, with no side-effects on the ether. Conversely, the
semantics of the blocking reception is undefined if the message is not present in the ether
thus forcing the agent to block its execution.

Action execution

act
e exp
7−→

ex enva
act′

(〈ex enva, cmpa〉, eth)
ins
7−→

a,exec(act)
(〈ex enva, cmpa〉, eth ∪ { (a, env ag, act′) }

a ∈ A

The semantics of anexecinstruction is to send a message to the “environment agent”
containing the action to be performed. This is achieved by modifying the ether.

5 Comparison

In this section we compare our approach to the specification of heterogeneous agent
architectures with other proposals: [5], by Fisher; [8], by Hindriks et al.; [3], by Treur et
al., [6] by De Giacomo et al. and [16] by van Eijk et al.. The proposals will be compared
with respect to their capabilities to specify architectures that comply with the model of
the agent presented in Section 2, i.e., in terms of state, program and engine.

In [5], Fisher presents the specification of an “abstract agent architecture” using
Concurrent MetateM, a specification language based on temporal logics. The architec-
ture model allows us to encompass different kinds ofbehaviour, performed bygroups
of sub-agents. Each behaviour is described as a set of temporal logics rules that spec-
ify how the future state of agent computation should be obtained by starting from its
present state. Examples are presented on the specification ofreactive, deliberative, and
socialbehaviour and on the composition of these types of behaviour in different kinds
of layered architectures. This approach seems highly suitable to represent the agent pro-
gram thanks to the expressiveness of temporal logic. On the other hand, this approach
does not give explicit representation of agent state and engine which are implicitly main-
tained in theinterpreterfor Concurrent MetateM, that executesConcurrent MetateM
specifications.

Hindriks et al. follow a different approach. They mainly focus on specifications
of agent engines that can be used as meta-interpreters for many different object level
languages used to give agent programs. They assume that agent computation may be well
expressed using programming languages based on the concept ofbeliefs, goalsandrules
and define an imperative meta language that is used to describe a “standard” engine cycle
which includessensing, rule application, andgoal execution. They argue that aglass
box approach for defining agent engines which makes internal functioning of engines
visible to the MAS developer, is the “right” approach. In such a way the developer can
directly program the control of the agent’s internal activities. Following the approach by
Hindriks et al., the development of agent engines is natural and immediate. However, it

Specification of Heterogeneous Agent Architectures 287

constrains the agent state to be composed by beliefs and goals, and the agent program
to be composed by rules. Even if most of the agent architectures are designed in terms
of these abstractions, the approach could not be as general as needed to fit some agent
applications.

TheDESIRE research focuses on the study of compositional MAS for complex tasks
and development methods for these systems. The structure ofDESIRE specifications is
based on the notion of compositional architecture: an architecture composed of compo-
nents with hierarchical relations among themselves. This approach flexibly supports the
definition of different heterogeneous architectures. Some architecture components may
contain the agent’s state and some others the agent’s program. The different purposes of
these two kinds of components do not arise, however, either from a syntactical or from a
semantical point of view. The flow of information among the components is described by
the specification of communication links. There is not an engine governing the execution
flow inside the agent’s components. Even if theDESIRE framework does not provide
explicit support for defining agent architectures in terms of state, program and engine,
it has been successfully adopted to develop a library of heterogeneous architectures
ranging from reactive and proactive ones, to reflective and BDI ones.

ConGolog specifies the agent’s behaviour based on the actions an agent can execute.
The language adopted for this purpose is thesituation calculus, a first-order language
(with some second order features) for representing dynamic domains.ConGolog also
includes facilities for prioritizing the execution of concurrent processes, interrupting
the execution when certain conditions become true, and dealing with exogenous actions.
These features make adoption of the language for implementing reactive agents possible.
On the other hand, the ascription of mental attitudes to agents can easily be achieved by
adapting the possible worlds model of knowledge to the situation calculus. Communica-
tive capabilities can also be modelled in the framework.ConGolog provides the means
for describing both the declarative and the procedural knowledge of agents with very
different capabilities ranging from reactivity to rationality. Nevertheless, this is always
done at the “program” level. The engine for these programs is always the same, as is the
agent architecture.

Finally, [16] defines a multi-agent programming language in which concepts from
the object-oriented paradigm are adapted and generalized in the light of communication
among agents. An agent classA is a tuple(C, Q, D, S, φ). C is a first-order system
describing the language and operators the agents in the class employ to represent and
process information.Q is a set of question templates the agents in the class can answer,
and represents the interface of the class.S denotes a programming statement in which
procedures that are declared inD can be invoked: upon its creation each agent of the
class will start to execute this statement.φ ∈ C constitutes the initial information
store of the agents in the class. There are many similarities betweenHEMASL and this
language: as far as the agent model is concerned,C resembles thearchitecture engine,
which can be different for different classes,S corresponds to theagent programandφ to
theagent state. The language for composing statements provides, likeHEMASL does,
atomic operations for updating the information store and for communication, as well
as nondeterministic choice and parallelism operators. The semantics of the language is
given in terms of transition rules quite similar to the ones given forHEMASL.

288 S. Marini et al.

HEMASL lets the architecture designer choose the most suitable components and
agent programming languages, in order for the agent state and program to encompass
a great variety of representations, and for the architecture to provide a high degree
of flexibility. Furthermore, theHEMASL primitives allow the architecture designer to
build the engine as he/she wants. We argue that an “opaque box” approach is the best
solution for agent-based software development. The MAS developer should know the
main characteristics of the architectures he/she can use for the applications, but he/she is
not usually an expert and does not need to be burdened with implementation details about
architecture control. By giving a great deal of freedom in architecture development, we
can obtain a library including architectures with several data structures and control flows.
In such a way, the MAS developer can (hopefully) find the architectures that fits his/her
needs in the library.

6 Conclusions

The realization of MAS often involves the choice of agents with heterogeneous archi-
tectures, so that each agent can optimally provide its services.HEMASL is a simple
meta-language which is used to specify heterogeneous agent architectures, in terms of
the components that form the agent state and program, and the engine that implements
the mechanisms concerning control of the agent’s internal activities. These specifications
can be subsequently implemented into a library of architectures that MAS developers
can use.

Adding HEMASL to CaseLP, our specification and prototyping environment for
MAS, enhances its flexibility and usability. In fact,HEMASL can be the “intermedi-
ate language” through which non-executable specification languages (both formal and
commercial) can be integrated intoCaseLP and thus animated usingCaseLP working
prototypes. Moreover, we think thatHEMASL can be used as a specification language for
the development of agents which will be implemented into commercial, object-oriented
programming languages. Translation ofHEMASL specifications intoJava programs is
presently being investigated [11].

Acknowledgments. The authors thank Valeria Perricone for her helpful contribution
in improving the presentation of the paper, and the anonymous referees for their useful
comments.

This research was carried out while Floriano Zini was at DISI, Universit`a di
Genova, Italy.

References

1. A. Aretti. Semantica di Sistemi Multi-Agente in Logica Lineare. Master’s thesis, DISI –
Università di Genova, Genova, Italy, 1999. In Italian.

2. M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Multi-Agent Systems
Development as a Software Engineering Enterprise. In G. Gupta, editor,Proc. of First Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’99), number 1551
in Lecture Notes in Computer Science. Springer-Verlag, 1999.

Specification of Heterogeneous Agent Architectures 289

3. F. Brazier, B. Dunin Keplcz, N. R. Jennings, and J. Treur. Formal Specification of Multi-Agent
Systems: a Real-World Case. InProc. of International Conference on Multi Agent Systems
(ICMAS’95), San Francisco, CA, USA, 1995.

4. G. Delzanno and M. Martelli. Proofs as Computations in Linear Logic.Theoretical Computer
Science. To appear.

5. M. Fisher. Representing Abstract Agent Architectures. In M. P. Singh J. P. Mueller and A. S.
Rao, editors,Intelligent Agents V, number 1555 in Lecture Notes in Artificial Intelligence.
Springer-Verlag, 1999.

6. G. De Giacomo, Y. Lesp´erance, and H. J. Levesque. ConGolog, a concurrent programming
language based on the situation calculus.Artificial Intelligence, 121(1-2):109–169, 2000.

7. J. Y. Girard. Linear logic.Theoretical Computer Science, 50:1:1–102, 1987.
8. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. C. Meyer. Control Structures of

Rule-Based Agent Languages. In M. P. Singh J. P. Mueller and A. S. Rao, editors,Intelligent
Agents V, number 1555 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.

9. N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent Research and Devel-
opment.Autonomous Agents and Multi-Agent Systems, 1:7–38, 1998.

10. S. Marini. Specifica di Sistemi Multi-Agente Eterogenei. Master’s thesis, DISI - Universit`a
di Genova, Genova, Italy, 1999. In Italian.

11. S. Marini, M. Martelli, V. Mascardi, and F. Zini. HEMASL: A Flexible Language to Specify
Heterogeneous Agents. In A. Corradi, A. Omicini, and A. Poggi, editors,WOA 2000. Dagli
Oggetti agli Agenti, Parma, Italy, 2000.

12. M. Martelli, V. Mascardi, and F. Zini. Towards Multi-Agent Software Prototyping. In H. S.
Nwana and D. T. Ndumu, editors,Proc. of The Third International Conference and Exhibition
on The Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM’98),
London, UK, 1998.

13. M. Martelli, V. Mascardi, and F. Zini. Specification and Simulation of Multi-Agent Systems
in CaseLP. In M. C. Meo and M. Vilares Ferro, editors,Proc. of Appia–Gulp–Prode 1999,
L’Aquila, Italy, 1999.

14. J. P. Müller. The RightAgent (Architecture) to Do the Right Thing. In M. P. Singh J. P. Mueller
and A. S. Rao, editors,Intelligent Agents V, number 1555 in Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1999.

15. A. S. Rao and M. Georgeff. BDI Agents: from Theory to Practice. InProc. of International
Conference on Multi Agent Systems (ICMAS’95), San Francisco, CA, USA, 1995.

16. R. M. van Eijk, F. S. de Boer, W. van der Hoek, and J. C. Meyer. Generalised Object-Oriented
Concepts for Inter-Agent Communication. In C. Castelfranchi and Y. Lesp´erance, editors,
Intelligent Agents VII, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001. In this
volume.

17. M. Wooldridge. Agent-based Software Engineering.IEE Proc. of Software Engineering,
144(1), 1997.

	Specification of Heterogeneous Agent Architectures
	Introduction
	Agent Model and Structure of a MAS
	Syntax and Examples of Use
	Primitive Instructions and Statements
	Abstract Architecture Definition
	Concrete Architecture Definition
	Definition of Agent Classes and Instances

	Operational Semantics
	Comparison
	Conclusions
	Acknowledgments.
	References

