Relational Probabilistic Models

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Relational Probabilistic Models

Often we want a random variable for each individual in a population

- build a probabilistic model before knowing the individuals
- learn the model for one set of individuals
- apply the model to new individuals
- allow complex relationships between individuals

Predicting students errors

Predicting students errors

Predicting students errors

What if there were multiple digits

Predicting students errors

What if there were multiple digits, problems

Predicting students errors

What if there were multiple digits, problems, students

Predicting students errors

What if there were multiple digits, problems, students, times?

Predicting students errors

What if there were multiple digits, problems, students, times? How can we build a model before we know the individuals?

Multi-digit addition with parametrized BNs / plates

$x_{j_{x}}$	\cdots	x_{2}	x_{1}
+	$y_{j_{z}}$	\cdots	y_{2}

Parametrized Random Variables: $x(D, P), y(D, P)$, knows_carry (S, T), knows_add $(S, T), c(D, P, S, T)$, $z(D, P, S, T)$ for digit D, problem P, student S, time T.
There is a random variable for each assignment of a value to D and a value to P in $x(D, P) \ldots$

Parametrized Bayesian networks / Plates

Parametrized Bayes Net:

Bayes Net

Individuals:

$$
i_{l}, \ldots, i_{k}
$$

Parametrized Bayesian networks / Plates (2)

Creating Dependencies

Instances of plates are independent, except by common parents or children.

Common Parents

Observed Children

Overlapping plates

Relations: likes (P, M), young (P), genre (M)
likes is Boolean, young is Boolean, genre has range $\{$ action, romance, family $\}$

Overlapping plates

Relations: likes (P, M), young (P), genre (M)
likes is Boolean, young is Boolean, genre has range \{action, romance, family\}
Three students: sam (s), chris (c), kim (k)
Two movies: rango (r), terminator (t)

Representing Conditional Probabilities

- $P($ likes $(P, M) \mid$ young (P), genre $(M))$ - parameter sharing individuals share probability parameters.
- $P($ happy $(X) \mid$ friend (X, Y), mean $(Y))$ - needs aggregation - happy (a) depends on an unbounded number of parents.
- the carry of one digit depends on carry of the previous digit
- probability that two authors collaborate depends on whether they have a paper authored together

Creating Dependencies: Exploit Domain Structure

Creating Dependencies: Relational Structure

Independent Choice Logic

- A language for first-order probabilistic models.
- Idea: combine logic and probability, where all uncertainty in handled in terms of Bayesian decision theory, and a logic program specifies consequences of choices.
- Parametrized random variables are represented as logical atoms, and plates correspond to logical variables.

Independent Choice Logic

- An alternative is a set of ground atomic formulas. \mathcal{C}, the choice space is a set of disjoint alternatives.
- \mathcal{F}, the facts is a logic program that gives consequences of choices.
- P_{0} a probability distribution over alternatives:

$$
\forall A \in \mathcal{C} \sum_{a \in A} P_{0}(a)=1
$$

Meaningless Example

$$
\begin{aligned}
& \mathcal{C}=\left\{\left\{c_{1}, c_{2}, c_{3}\right\},\left\{b_{1}, b_{2}\right\}\right\} \\
& \mathcal{F}=\left\{f \leftarrow c_{1} \wedge b_{1}, \quad f \leftarrow c_{3} \wedge b_{2},\right. \\
& d \leftarrow c_{1}, \\
& e \leftarrow \leftarrow \leftarrow, \quad e \leftarrow \sim c_{2} \wedge b_{1}, \\
& P_{0}\left(c_{1}\right)=0.5 \quad P_{0}\left(c_{2}\right)=0.3 \quad P_{0}\left(c_{3}\right)=0.2 \\
& P_{0}\left(b_{1}\right)=0.9 \\
& P_{0}\left(b_{2}\right)=0.1
\end{aligned}
$$

Semantics of ICL

- There is a possible world for each selection of one element from each alternative.
- The logic program together with the selected atoms specifies what is true in each possible world.
- The elements of different alternatives are independent.

Meaningless Example: Semantics

$$
\begin{aligned}
& \mathcal{F}=\left\{f \leftarrow c_{1} \wedge b_{1}, \quad f \leftarrow c_{3} \wedge b_{2},\right. \\
& d \leftarrow c_{1}, \quad d \leftarrow \sim c_{2} \wedge b_{1}, \\
& e \leftarrow f, \quad e \leftarrow \sim d\} \\
& P_{0}\left(c_{1}\right)=0.5 \quad P_{0}\left(c_{2}\right)=0.3 \quad P_{0}\left(c_{3}\right)=0.2 \\
& P_{0}\left(b_{1}\right)=0.9 \quad P_{0}\left(b_{2}\right)=0.1 \\
& \text { selection logic program } \\
& P(e)=0.45+0.27+0.03+0.02=0.77
\end{aligned}
$$

Belief Networks, Decision trees and ICL rules

- There is a local mapping from belief networks into ICL.
prob ta: 0.02 .
prob fire : 0.01.

alarm $\leftarrow t a \wedge$ fire $\wedge a t f$.
alarm $\leftarrow \sim$ ta \wedge fire \wedge antf.
alarm \leftarrow ta $\wedge \sim$ fire \wedge atnf.
alarm $\leftarrow \sim$ ta $\wedge \sim$ fire \wedge antnf.
prob atf: 0.5.
prob antf: 0.99.
prob atnf: 0.85 .
prob antnf : 0.0001.
smoke \leftarrow fire $\wedge s f$.
prob sf: 0.9.
smoke $\leftarrow \sim$ fire \wedge snf.
prob snf: 0.01.

Belief Networks, Decision trees and ICL rules

- Rules can represent decision tree with probabilities:

$e \leftarrow a \wedge b \wedge h_{1}$.
$P_{0}\left(h_{1}\right)=0.7$
$e \leftarrow a \wedge \sim b \wedge h_{2}$.

$$
P_{0}\left(h_{2}\right)=0.2
$$

$e \leftarrow \sim a \wedge c \wedge d \wedge h_{3}$.

$$
P_{0}\left(h_{3}\right)=0.9
$$

$$
e \leftarrow \sim a \wedge c \wedge \sim d \wedge h_{4}
$$

$$
P_{0}\left(h_{4}\right)=0.5
$$

$e \leftarrow \sim a \wedge \sim c \wedge h_{5}$.
$P_{0}\left(h_{5}\right)=0.3$

Movie Ratings

prob young (P) : 0.4.
prob genre(M, action) : 0.4, genre(M, romance) : 0.3, genre(M, family) : 0.4.
$\operatorname{likes}(P, M) \leftarrow \operatorname{young}(P) \wedge \operatorname{genre}(M, G) \wedge l y(P, M, G)$.
$\operatorname{likes}(P, M) \leftarrow \sim \operatorname{young}(P) \wedge \operatorname{genre}(M, G) \wedge \operatorname{lny}(P, M, G)$.
prob $l y(P, M$, action $): 0.7$.
prob $\operatorname{ly}(P, M$, romance $)$: 0.3.
prob ly (P, M, family $): 0.8$.
prob $\operatorname{lny}(P, M$, action $): 0.2$.
prob $\operatorname{lny}(P, M$, romance $): 0.9$.
prob $\operatorname{Iny}(P, M$, family $): 0.3$.

Example: Multi-digit addition

ICL rules for multi-digit addition

$$
\begin{aligned}
& z(D, P, S, T)=V \leftarrow \\
& \quad x(D, P)=V x \wedge \\
& y(D, P)=V y \wedge \\
& c(D, P, S, T)=V c \wedge \\
& \operatorname{knows}-a d d(S, T) \wedge \\
& \neg \operatorname{mistake}(D, P, S, T) \wedge \\
& V \text { is }\left(V_{x}+V_{y}+V_{c}\right) \text { div } 10 .
\end{aligned}
$$

Alternatives:
$\forall D P S T\{$ noMistake (D, P, S, T), mistake $(D, P, S, T)\}$
$\forall D P S T\{$ selectDig $(D, P, S, T)=V \mid V \in\{0 . .9\}\}$

Hidden Variables

Student	Course	Grade
s_{1}	c_{1}	A
s_{2}	c_{1}	C
s_{1}	c_{2}	B
s_{2}	c_{3}	B
s_{3}	c_{2}	B
s_{4}	c_{3}	B
s_{3}	c_{4}	$?$
s_{4}	c_{4}	$?$

Hidden Variables

Student	Course	Grade		$\operatorname{int}(S)$	$\operatorname{diff}(C)$	$\operatorname{grade}(S, C)$			
	s_{1}	c_{1}	A			A	B	C	
s_{2}	c_{1}	C		true	true	0.5	0.4	0.1	
s_{1}	c_{2}	B		true	false	0.9	0.09	0.01	
s_{2}	c_{3}	B		false	true	0.01	0.1	0.9	
s_{3}	c_{2}	B		false	false	0.1	0.4	0.5	
s_{4}	c_{3}	B							
s_{3}	c_{4}	$?$		$P(\operatorname{int}(S))=0.5$					
s_{4}	c_{4}	$?$		$P(\operatorname{diff}(C))=0.5$					

Hidden Variables

Student	Course	Grade	$\operatorname{int}(S)$	$\operatorname{diff}(C)$	$\operatorname{grade}(S, C)$		
s_{1}	C_{1}	A			A	B	C
s_{2}	c_{1}	C	true	true	0.5	0.4	0.1
s_{1}	c_{2}	B	true	false	0.9	0.09	0.01
s_{2}	c_{3}	B	false	true	0.01	0.1	0.9
S3	c_{2}	B	false	false	0.1	0.4	0.5
s_{4}	c_{3}	B					
S_{3}	c_{4}	?	$P(\operatorname{int}(S))=0.5$				
s_{4}	c_{4}	?	$P(\operatorname{diff}(C))=0.5$				

$P(\operatorname{grade}(s 3, c 4, a) \mid O b s)=0.491$,
$P($ grade $(s 3, c 4, b) \mid O b s)=0.245, P(\operatorname{grade}(s 3, c 4, c) \mid O b s)=0.264$
$P(\operatorname{grade}(s 4, c 4, a) \mid O b s)=0.264$,
$P(\operatorname{grade}(s 4, c 4, b) \mid O b s)=0.245, P(\operatorname{grade}(s 4, c 4, c) \mid O b s)=0.491$

Learning Relational Models with Hidden Variables

User	Item	Date	Rating
Sam	Terminator	$2009-03-22$	5
Sam	Rango	$2011-03-22$	4
Sam	The Holiday	$2010-12-25$	1
Chris	The Holiday	$2010-12-25$	4
\ldots	\ldots	\ldots	

Netflix: 500,000 users, 17,000 movies, 100,000,000 ratings.

Learning Relational Models with Hidden Variables

User	Item	Date	Rating
Sam	Terminator	$2009-03-22$	5
Sam	Rango	$2011-03-22$	4
Sam	The Holiday	$2010-12-25$	1
Chris	The Holiday	$2010-12-25$	4
\ldots	\ldots	\ldots	

Netflix: 500,000 users, 17,000 movies, $100,000,000$ ratings.
$r_{u i}=$ rating of user u on item i
$\hat{r_{u i}}=$ predicted rating of user u on item i
$D=$ set of (u, i, r) tuples in the training set
Sum squares error:

$$
\sum_{(u, i, r) \in D}\left(\hat{r_{u i}}-r\right)^{2}
$$

Learning Relational Models with Hidden Variables

- Predict same for all ratings: $\hat{r_{u i}}=\mu$

Learning Relational Models with Hidden Variables

- Predict same for all ratings: $\hat{r_{u i}}=\mu$
- Adjust for each user and item: $\hat{r_{u i}}=\mu+b_{i}+c_{u}$

Learning Relational Models with Hidden Variables

- Predict same for all ratings: $\hat{r_{u i}}=\mu$
- Adjust for each user and item: $\hat{r_{u i}}=\mu+b_{i}+c_{u}$
- One hidden feature: f_{i} for each item and g_{u} for each user

$$
\hat{r_{u i}}=\mu+b_{i}+c_{u}+f_{i} g_{u}
$$

Learning Relational Models with Hidden Variables

- Predict same for all ratings: $\hat{r_{u i}}=\mu$
- Adjust for each user and item: $\hat{r_{u i}}=\mu+b_{i}+c_{u}$
- One hidden feature: f_{i} for each item and g_{u} for each user

$$
\hat{r_{u i}}=\mu+b_{i}+c_{u}+f_{i} g_{u}
$$

- k hidden features:

$$
\hat{r_{u i}}=\mu+b_{i}+c_{u}+\sum_{k} f_{i k} g_{k u}
$$

Learning Relational Models with Hidden Variables

- Predict same for all ratings: $\hat{r_{u i}}=\mu$
- Adjust for each user and item: $\hat{r_{u i}}=\mu+b_{i}+c_{u}$
- One hidden feature: f_{i} for each item and g_{u} for each user

$$
\hat{r_{u i}}=\mu+b_{i}+c_{u}+f_{i} g_{u}
$$

- k hidden features:

$$
\hat{r_{u i}}=\mu+b_{i}+c_{u}+\sum_{k} f_{i k} g_{k u}
$$

- Regularize

$$
\begin{array}{r}
\operatorname{minimize} \sum_{(u, i) \in K}\left(\mu+b_{i}+c_{u}+\sum_{k} f_{i k} g_{k u}-r_{u i}\right)^{2} \\
+\lambda\left(b_{i}^{2}+c_{u}^{2}+\sum_{k} f_{i k}^{2}+g_{k u}^{2}\right)
\end{array}
$$

Parameter Learning using Gradient Descent

$\mu \leftarrow$ average rating
assign $f[i, k], g[k, u]$ randomly assign $b[i], c[u]$ arbitrarily
repeat:
for each $(u, i, r) \in D$:

$$
\begin{aligned}
& e \leftarrow \mu+b[i]+c[u]+\sum_{k} f[i, k] * g[k, u]-r \\
& b[i] \leftarrow b[i]-\eta * e-\eta * \lambda * b[i] \\
& c[u] \leftarrow c[u]-\eta * e-\eta * \lambda * c[u]
\end{aligned}
$$

for each feature k :

$$
\begin{aligned}
& f[i, k] \leftarrow f[i, k]-\eta * e * g[k, u]-\eta * \lambda * f[i, k] \\
& g[k, u] \leftarrow g[k, u]-\eta * e * f[i, k]-\eta * \lambda * g[k, u]
\end{aligned}
$$

