Relational Probabilistic Models

o flat or modular or hierarchical

@ explicit states or features or individuals and relations

@ static or finite stage or indefinite stage or infinite stage
o fully observable or partially observable

@ deterministic or stochastic dynamics

@ goals or complex preferences
@ single agent or multiple agents
@ knowledge is given or knowledge is learned

@ perfect rationality or bounded rationality

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 14.3, Page 1



Relational Probabilistic Models

Often we want a random variable for each individual in a
population
build a probabilistic model before knowing the individuals

@ learn the model for one set of individuals
@ apply the model to new individuals
°

allow complex relationships between individuals
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Predicting students errors

X2 X1
+ 2y
z3 22 A
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Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A
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Predicting students errors

Knows_Add

X2 X1
+ 2 n
z3 Z2 7

What if there were multiple digits
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Predicting students errors

Knows_Add

X2 X1
+ 2 n
z3 Z2 7

What if there were multiple digits, problems
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Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A

What if there were multiple digits, problems, students
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Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A

What if there were multiple digits, problems, students, times?
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Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A

What if there were multiple digits, problems, students, times? How
can we build a model before we know the individuals?
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Multi-digit addition with parametrized BNs / plates

ST
knows_add(S.T)

Xj, X2 X1 /
+ Y, o Yen
Z oz a | QD———RGers

Parametrized Random Variables: x(D, P), y(D, P),
knows_carry(S, T), knows_add(S, T), ¢(D,P,S, T),
z(D,P,S, T) for digit D, problem P, student S, time T.
There is a random variable for each assignment of a value to D
and a value to P in x(D, P)....
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Parametrized Bayesian networks / Plates

Parametrized Bayes Net:

@ Bayes Net
— - @@

Individuals:

i],...,ik
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Parametrized Bayesian networks / Plates (2)

Individuals:

i],...,lk
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Creating Dependencies

Instances of plates are independent, except by common parents or
children.

Common @

Parents

Observed

Children ¥ oo
@
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Overlapping plates

Person

N >

Movie

Relations: likes(P, M), young(P), genre(M)
likes is Boolean, young is Boolean,
genre has range {action, romance, family}
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Overlapping plates

Person

N >

Movie

Relations: likes(P, M), young(P), genre(M)
likes is Boolean, young is Boolean,

genre has range {action, romance, family}
Three students: sam (s), chris (c), kim (k)
Two movies: rango (r), terminator (t)
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Representing Conditional Probabilities

o P(likes(P, M)|young(P), genre(M)) — parameter sharing —
individuals share probability parameters.

e P(happy(X)|friend(X,Y), mean(Y)) — needs aggregation
— happy(a) depends on an unbounded number of parents.

@ the carry of one digit depends on carry of the previous digit

@ probability that two authors collaborate depends on whether
they have a paper authored together
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Creating Dependencies: Exploit Domain Structure

|G
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Creating Dependencies: Relational Structure

author(A,P)

-
L4
collaborators(A,A')
A' A

author( a; pj ) author(a v pj )
collaborators( a,a k)

~v

Val.EA Ya (EAaza kijEP
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Independent Choice Logic

@ A language for first-order probabilistic models.

@ lIdea : combine logic and probability, where all uncertainty in
handled in terms of Bayesian decision theory, and a logic
program specifies consequences of choices.

@ Parametrized random variables are represented as logical
atoms, and plates correspond to logical variables.
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Independent Choice Logic

@ An alternative is a set of ground atomic formulas.
C, the choice space is a set of disjoint alternatives.

e F, the facts is a logic program that gives consequences of
choices.

@ Py a probability distribution over alternatives:

VAEC > Po(a)=1.

acA
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Meaningless Example

C = {{c1, e, c3},{b1, b2}}

.F:{f(—cl/\bl, f < c3 A by,
d <+ c, d <+ ~c A by,
e+ f, e+ ~d}

Po(Cl) =05 PO(C2) =0.3 Po(C3) =0.2
Po(b1) = 0.9 Py(by) = 0.1
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Semantics of ICL

@ There is a possible world for each selection of one element
from each alternative.

@ The logic program together with the selected atoms specifies
what is true in each possible world.

@ The elements of different alternatives are independent.
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Meaningless Example: Semantics

.FZ{f(—Cl/\bl, f(—C3/\b2,
d <+ c, d <+ ~cy A by,
e+ f, e+ ~d}

Po(Cl) =0.5 PO(C2) =0.3 Po(C3) =0.2
Po(b1) = 0.9 Py(by) = 0.1

selection logic program
— —_—

w1 |: C1 b1 f d € P(Wl) =0.45
wo E ¢ b ~f ~d e P(w,) = 0.27
w3 |: C3 b1 ~f d ~e P(W3) =0.18
Wy ’: C1 b2 ~f d ~e P(W4) = 0.05
Whs ': ()] b2 ~f ~d e P(W5) =0.03
We ): C3 b2 f ~d e P(W6) =0.02

P(e) = 0.45 + 0.27 +0.03 4 0.02 = 0.77
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Belief Networks, Decision trees and ICL rules

@ There is a local mapping from belief networks into ICL.

prob ta: 0.02.
prob fire : 0.01.

@ e alarm < ta A fire N\ atf.
alarm < ~ta A fire A\ antf.
alarm < ta N\ ~fire \ atnf.

@ @ alarm < ~ta N ~fire A antnf.
prob atf : 0.5.
prob antf : 0.99.
@ prob atnf : 0.85.
prob antnf : 0.0001.
smoke < fire A sf.
prob sf : 0.9.
smoke < ~fire A\ snf.
prob snf : 0.01.
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Belief Networks, Decision trees and ICL rules

@ Rules can represent decision tree with probabilities:

A
7/ N

C B
\ N\ e« aAbAh. Po(h1) = 0.7
0.3 /D\02 0.7 e an~bAh. Po(ho) = 0.2
0.5 0.9 e+ ~aNcAdA h3. Po(h3) =09
e+ ~aAcA~dA hg. Po(h4):05
P(elA,B,C,D) e+ ~aA~CAhs.  Po(hs)=0.3
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Person

E o &

Movie

prob young(P) : 0.4.

prob genre(M, action) : 0.4, genre(M, romance) : 0.3,
genre(M, family) : 0.4.

likes(P, M) < young(P) N genre(M, G) A ly(P, M, G).

likes(P, M) <— ~young(P) A genre(M, G) A Iny(P, M, G).

prob ly(P, M, action) : 0.7.

prob ly(P, M, romance) : 0.3.

prob ly(P, M, family) : 0.8.

prob Iny(P, M, action) : 0.2.

prob Iny(P, M, romance) : 0.9.

prob Iny(P, M, family) : 0.3.
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Example: Multi-digit addition

S,T

DP X
Xj, X2 X1 /—’
t Y. o y2en

z
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ICL rules for multi-digit addition

Z(D7P757T):V% Z(D,P,S,T):V%
x(D,P) = Vx A knows_add(S, T) A
y(D,P) = VyA mistake(D, P, S, T) A
c¢(D,P,5, T)=VcA selectDig(D,P,S, T) = V.
knows_add(S, T) A z(D,P,S, T)=V «
—mistake(D,P,S, T) A —knows_add(S, T) A
Vis (Vx + Vy + Vc) div 10. selectDig(D,P,S, T) = V.

Alternatives:

VDPST{noMistake(D, P, S, T), mistake(D, P,S, T)}
VDPST {selectDig(D,P,S, T) =V | V € {0..9}}
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Hidden Variables

Student | Course | Grade
51 (5] A
So c1 C
S1 ()] B
So C3 B
S3 (o) B
Sa c3 B
S3 C4 ?
S4 Cy ?
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Hidden Variables

Student | Course | Grade  int(S) diff(C) grade(S, C)
S1 (o] A A B C
S c1 C true true 05 04 0.1
s1 1)) B true false 0.9 0.09 0.01
S c3 B false  true 0.01 0.1 09
3 1)) B false false 01 04 05
Sa c3 B
S3 Cy ? P(int(S)) =05
S4 Ca ? P(diff(C)) =0.5
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Hidden Variables

Student | Course | Grade  int(S) diff(C) grade(S, C)
S1 (o] A A B C
S c1 C true true 05 04 0.1
s1 1)) B true false 0.9 0.09 0.01
S c3 B false  true 0.01 0.1 09
3 1)) B false false 01 04 05
Sa c3 B
S3 Cy ? P(int(S)) =05
S4 Ca ? P(diff(C)) =0.5

P(grade(s3, c4, a)|Obs) = 0.491,

P(grade(s3, c4, b)|Obs) = 0.245, P(grade(s3, c4,c)|Obs) = 0.264
P(grade(s4, c4, a)|Obs) = 0.264,
P(grade(s4, c4, b)|Obs) = 0.245, P(grade(s4, c4,c)|Obs) = 0.491

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 14.3, Page 31



Learning Relational Models with Hidden Variables

User | Item Date Rating
Sam | Terminator | 2009-03-22 | 5
Sam | Rango 2011-03-22

4
Sam | The Holiday | 2010-12-25 | 1
Chris | The Holiday | 2010-12-25 | 4

Netflix: 500,000 users, 17,000 movies, 100,000,000 ratings.
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Learning Relational Models with Hidden Variables

User | Item Date Rating
Sam | Terminator | 2009-03-22 | 5
Sam | Rango 2011-03-22 | 4
Sam | The Holiday | 2010-12-25 | 1
Chris | The Holiday | 2010-12-25 | 4

Netflix: 500,000 users, 17,000 movies, 100,000,000 ratings.
ryi = rating of user u on item |

ryi = predicted rating of user u on item

D = set of (u,i,r) tuples in the training set

Sum squares error:

Z (roi = r)?

(u,i,r)eD
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Learning Relational Models with Hidden Variables

@ Predict same for all ratings: rj; = p
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Learning Relational Models with Hidden Variables

@ Predict same for all ratings: rj; = p
@ Adjust for each user and item: rj; = u+ b + ¢,
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Learning Relational Models with Hidden Variables

@ Predict same for all ratings: rj; = p
@ Adjust for each user and item: rj; = u+ b + ¢,
@ One hidden feature: f; for each item and g, for each user

rZi:M+bi+Cu+f}gu
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Learning Relational Models with Hidden Variables

@ Predict same for all ratings: rj; = p
@ Adjust for each user and item: rj; = u+ b + ¢,
@ One hidden feature: f; for each item and g, for each user

rZi:M+bi+Cu+f}gu

@ k hidden features:

Foi =t bi+ cut Y B
K
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Learning Relational Models with Hidden Variables

Predict same for all ratings: r}j = p
Adjust for each user and item: r;; = u+ b;j + ¢,
One hidden feature: f; for each item and g, for each user

rZi:M+bi+Cu+f}gu

k hidden features:

Foi =t bi+ cut Y B
K

Regularize

minimize Z w+ bi+c,+ Z fik8ku — fu:)2
(u,i)eK

A(b + 2 +Z 2+ g2,)
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Parameter Learning using Gradient Descent

[ <— average rating
assign f[i, k|, g[k, u] randomly
assign bJ[i], c[u] arbitrarily
repeat:
for each (u,i,r) € D:
e p+ bli|+clul + >, fli, k] = glk, u] — r
b[i] « b[i] —n*x e —nx Xx b[i]
clu] + clu] —n*e—mn*Xx*c[u]
for each feature k:
fli, k] < fli, k] —n*exglk,u]l —n* X f[i, k]
glk, u] < glk,ul —nxexfli,k] —n* = glk, u]
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