
Reinforcement Learning

What should an agent do given:

Prior knowledge possible states of the world
possible actions

Observations current state of world
immediate reward / punishment

Goal act to maximize accumulated reward

Like decision-theoretic planning, except model of dynamics
and model of reward not given.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 1

Reinforcement Learning Examples

Game - reward winning, punish losing

Dog - reward obedience, punish destructive behavior

Robot - reward task completion, punish dangerous
behavior

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 2

Experiences

We assume there is a sequence of experiences:

state, action, reward , state, action, reward ,

At any time it must decide whether to
I explore to gain more knowledge

I exploit the knowledge it has already discovered

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 3

Why is reinforcement learning hard?

What actions are responsible for the reward may have
occurred a long time before the reward was received.

The long-term effect of an action of the robot depends on
what it will do in the future.

The explore-exploit dilemma: at each time should the
robot be greedy or inquisitive?

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 4

Reinforcement learning: main approaches

search through a space of policies (controllers)

learn a model consisting of state transition function
P(s ′|a, s) and reward function R(s, a, s ′); solve this an an
MDP.

learn Q∗(s, a), use this to guide action.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 5

Temporal Differences

Suppose we have a sequence of values:

v1, v2, v3, . . .

And want a running estimate of the average of the first k
values:

Ak =
v1 + · · ·+ vk

k

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 6

Temporal Differences (cont)

When a new value vk arrives:

Ak =
v1 + · · ·+ vk−1 + vk

k

=
k − 1

k
Ak−1 +

1

k
vk

Let αk = 1
k

, then

Ak = (1− αk)Ak−1 + αkvk

= Ak−1 + αk(vk − Ak−1)

“TD formula”

Often we use this update with α fixed.

We can guarantee convergence if

∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 7

Q-learning

Idea: store Q[State,Action]; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

The experience 〈s, a, r , s ′〉 provides the data point:

r + γ max
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a]← Q[s, a] + α
(
r + γ max

a′
Q[s ′, a′]− Q[s, a]

)

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 8

Q-learning

Idea: store Q[State,Action]; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

The experience 〈s, a, r , s ′〉 provides the data point:

r + γ max
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a]← Q[s, a] + α
(
r + γ max

a′
Q[s ′, a′]− Q[s, a]

)

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 9

Q-learning

initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a]← Q[s, a] + α (r + γ maxa′ Q[s ′, a′]− Q[s, a])
s ← s ′

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 10

Properties of Q-learning

Q-learning converges to the optimal policy, no matter
what the agent does, as long as it tries the each action in
each state enough.

But what should the agent do?
I exploit: when in state s,

select the action that
maximizes Q[s, a]

I explore:

select another action

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 11

Properties of Q-learning

Q-learning converges to the optimal policy, no matter
what the agent does, as long as it tries the each action in
each state enough.

But what should the agent do?
I exploit: when in state s, select the action that

maximizes Q[s, a]
I explore: select another action

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 12

Exploration Strategies

The ε-greedy strategy: choose a random action with
probability ε and choose a best action with probability
1− ε.
Softmax action selection: in state s, choose action a with
probability

eQ[s,a]/τ∑
a e

Q[s,a]/τ

where τ > 0 is the temperature.
Good actions are chosen more often than bad actions.
τ defines how much a difference in Q-values maps to a
difference in probability.

“optimism in the face of uncertainty”: initialize Q to
values that encourage exploration.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 13

Problems with Q-learning

It only does one backup between each experience.
I In many domains, an agent can do lots of computation

between experiences (e.g., if the robot has to move to
get experiences).

I An agent can make better use of the data by
— doing multi-step backups
— building a model, and using MDP methods to
determine optimal policy.

It learns separately for each state.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 14

Evaluating Reinforcement Learning Algorithms

0 50 100 150 200
Number of steps (thousands)

-10000

0

10000

20000

30000

40000

50000

Ac
cu

m
ul

at
ed

 re
wa

rd

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 15

On-policy Learning

Q-learning does off-policy learning: it learns the value of
the optimal policy, no matter what it does.

This could be bad if the exploration policy is dangerous.

On-policy learning learns the value of the policy being
followed.
e.g., act greedily 80% of the time and act randomly 20%
of the time

If the agent is actually going to explore, it may be better
to optimize the actual policy it is going to do.

SARSA uses the experience 〈s, a, r , s ′, a′〉 to update
Q[s, a].

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 16

SARSA

initialize Q[S ,A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s ′

select action a′ using a policy based on Q
Q[s, a]← Q[s, a] + α (r + γQ[s ′, a′]− Q[s, a])
s ← s ′

a← a′

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 17

Multi-step backups

Considering updating Q[st , ar] based on “future” experiences:

st , at , rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, st+3, at+3, . . .

How can an agent use more than one-step lookahead?

Is an off-policy or on-policy method better?

How can we update Q[st , at] by looking “backwards” at
time t + 1, then at t + 2, then at t + 3, etc.?

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 18

Multi-step lookaheads

lookahead Weight Return
1 step 1− λ rt+1 + γV (st+1)
2 step (1− λ)λ rt+1 + γrt+2 + γ2V (st+2)
3 step (1− λ)λ2 rt+1 + γrt+2 + γ2rt+3 + γ3V (st+3)
4 step (1− λ)λ3 rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + γ4V (st+3)
· · · · · · · · ·
n step (1− λ)λn−1 rt+1 + γrt+2 + γ2rt+3 + · · ·+ γnV (st+n)
· · · · · · · · ·
total 1

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 19

Reinforcement Learning with Features

Usually we don’t want to reason in terms of states, but in
terms of features.

In the state-based methods, information about one state
cannot be used by similar states.

If there are too many parameters to learn, it takes too
long.

Idea: Express the value function as a function of the
features. Most typical is a linear function of the features.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 20

Gradient descent

To find a (local) minimum of a real-valued function f (x):

assign an arbitrary value to x

repeat

x ← x − ηdf
dx

where η is the step size

To find a local minimum of real-valued function f (x1, . . . , xn):

assign arbitrary values to x1, . . . , xn

repeat:
for each xi

xi ← xi − η
∂f

∂xi

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 21

Gradient descent

To find a (local) minimum of a real-valued function f (x):

assign an arbitrary value to x

repeat

x ← x − ηdf
dx

where η is the step size

To find a local minimum of real-valued function f (x1, . . . , xn):

assign arbitrary values to x1, . . . , xn

repeat:
for each xi

xi ← xi − η
∂f

∂xi

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 22

Linear Regression

A linear function of variables X1, . . . ,Xn is of the form

f w (X1, . . . ,Xn) = w0 + w1 × X1 + · · ·+ wn × Xn

w = 〈w0,w1, . . . ,wn〉 are weights. (Let X0 = 1).

Given a set E of examples, where example e has input
value Xi = ei for each i and an observed value, oe let

ErrorE (w) =
∑
e∈E

(oe − f w (e1, . . . , en))2

Minimizing the error using gradient descent, each
example should update wi using:

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 23

SARSA with linear function approximation

One step backup provides the examples that can be used
in a linear regression.

Suppose F1, . . . ,Fn are the features of the state and the
action.

So Qw (s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

An experience 〈s, a, r , s ′, a′〉 where s, a has feature values
F1 = e1, . . . ,Fn = en, provides the “example”:

I old predicted value:

Qw (s, a)

I new “observed” value:

r + γQw (s
′, a′)

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 24

SARSA with linear function approximation

One step backup provides the examples that can be used
in a linear regression.

Suppose F1, . . . ,Fn are the features of the state and the
action.

So Qw (s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

An experience 〈s, a, r , s ′, a′〉 where s, a has feature values
F1 = e1, . . . ,Fn = en, provides the “example”:

I old predicted value: Qw (s, a)
I new “observed” value:

r + γQw (s
′, a′)

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 25

SARSA with linear function approximation

One step backup provides the examples that can be used
in a linear regression.

Suppose F1, . . . ,Fn are the features of the state and the
action.

So Qw (s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

An experience 〈s, a, r , s ′, a′〉 where s, a has feature values
F1 = e1, . . . ,Fn = en, provides the “example”:

I old predicted value: Qw (s, a)
I new “observed” value: r + γQw (s

′, a′)

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 26

SARSA with linear function approximation

Given γ:discount factor; η:step size
Assign weights w = 〈w0, . . . ,wn〉 arbitrarily
observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ (using a policy based on Qw)
let δ = r + γQw (s ′, a′)− Qw (s, a)
For i = 0 to n

wi ← wi + ηδFi(s, a)
s ← s ′

a← a′

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 27

Example Features

F1(s, a) = 1 if a goes from state s into a monster
location and is 0 otherwise.

F2(s, a) = 1 if a goes into a wall, is 0 otherwise.

F3(s, a) = 1 if a goes toward a prize.

F4(s, a) = 1 if the agent is damaged in state s and action
a takes it toward the repair station.

F5(s, a) = 1 if the agent is damaged and action a goes
into a monster location.

F6(s, a) = 1 if the agent is damaged.

F7(s, a) = 1 if the agent is not damaged.

F8(s, a) = 1 if the agent is damaged and there is a prize
in direction a.

F9(s, a) = 1 if the agent is not damaged and there is a
prize in direction a.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 28

Example Features

F10(s, a) is the distance from the left wall if there is a
prize at location P0, and is 0 otherwise.

F11(s, a) has the value 4− x , where x is the horizontal
position of state s if there is a prize at location P0;
otherwise is 0.

F12(s, a) to F29(s, a) are like F10 and F11 for different
combinations of the prize location and the distance from
each of the four walls.
For the case where the prize is at location P0, the
y -distance could take into account the wall.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 29

Model-based Reinforcement Learning

Model-based reinforcement learning uses the experiences
in a more effective manner.

It is used when collecting experiences is expensive (e.g., in
a robot or an online game); an agent can do lots of
computation between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the
reward, then do some steps of asynchronous value
iteration.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 30

Model-based learner

Data Structures: Q[S ,A], T [S ,A, S], C [S ,A], R[S ,A]
Assign Q, R arbitrarily, C = 0, T = 0
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′]← T [s, a, s ′] + 1
C [s, a]← C [s, a] + 1
R[s, a]← R[s, a] + (r − R[s, a])/C [s, a]
repeat for a while:

select state s1, action a1

Q[s1, a1]← R[s1, a1] +
∑
s2

T [s1, a1, s2]

C [s1, a1]

(
γ max

a2
Q[s2, a2]

)
s ← s ′

What goes wrong with this?

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 31

Model-based learner

Data Structures: Q[S ,A], T [S ,A, S], C [S ,A], R[S ,A]
Assign Q, R arbitrarily, C = 0, T = 0
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′]← T [s, a, s ′] + 1
C [s, a]← C [s, a] + 1
R[s, a]← R[s, a] + (r − R[s, a])/C [s, a]
repeat for a while:

select state s1, action a1

Q[s1, a1]← R[s1, a1] +
∑
s2

T [s1, a1, s2]

C [s1, a1]

(
γ max

a2
Q[s2, a2]

)
s ← s ′ What goes wrong with this?

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 32

Evolutionary Algorithms

Idea:
I maintain a population of controllers
I evaluate each controller by running it in the environment
I at each generation, the best controllers are combined to

form a new population

If there are n states and m actions, there are mn policies.

Experiences are used wastefully: only used to judge the
whole controller. They don’t learn after every step.

Performance is very sensitive to representation of
controller.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 33

Evolutionary Algorithms

Idea:
I maintain a population of controllers
I evaluate each controller by running it in the environment
I at each generation, the best controllers are combined to

form a new population

If there are n states and m actions, there are mn policies.

Experiences are used wastefully: only used to judge the
whole controller. They don’t learn after every step.

Performance is very sensitive to representation of
controller.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.3, Page 34

