Learning a Belief Network

- If you
- know the structure
- have observed all of the variables
- have no missing data
- you can learn each conditional probability separately.

Learning belief network example

\rightarrow Probabilities

$$
\begin{aligned}
& P(A) \\
& P(B) \\
& P(E \mid A, B) \\
& P(C \mid E) \\
& P(D \mid E)
\end{aligned}
$$

Learning conditional probabilities

- Each conditional probability distribution can be learned separately:
- For example:

$$
\begin{aligned}
& P(E=t \mid A=t \wedge B=f) \\
& \quad=\frac{(\# \text { examples: } E=t \wedge A=t \wedge B=f)+c_{1}}{(\# \text { examples: } A=t \wedge B=f)+c}
\end{aligned}
$$

where c_{1} and c reflect prior (expert) knowledge $\left(c_{1} \leq c\right)$.

- When there are many parents to a node, there can little or no data for each probability estimate:

Learning conditional probabilities

- Each conditional probability distribution can be learned separately:
- For example:

$$
\begin{aligned}
& P(E=t \mid A=t \wedge B=f) \\
& \quad=\frac{(\# \text { examples: } E=t \wedge A=t \wedge B=f)+c_{1}}{(\# \text { examples: } A=t \wedge B=f)+c}
\end{aligned}
$$

where c_{1} and c reflect prior (expert) knowledge ($c_{1} \leq c$).

- When there are many parents to a node, there can little or no data for each probability estimate: use supervised learning to learn a decision tree, linear classifier, a neural network or other representation of the conditional probability.
- A conditional probability doesn't need to be represented as a table!

Unobserved Variables

- What if we had only observed values for A, B, C ?

A	B	C
t	f	t
f	t	t
t	t	f
	\cdots	

EM Algorithm

Augmented Data

A	B	C	H	Count
t	f	t	t	0.7
t	f	t	f	0.3
f	t	t	f	0.9
f	t	t	t	0.1
		\cdots		\cdots

Probabilities

$P(A)$
$P(H \mid A)$
$P(B \mid H)$
$P(C \mid H)$

EM Algorithm

- Repeat the following two steps:
- E-step give the expected number of data points for the unobserved variables based on the given probability distribution. Requires probabilistic inference.
- M-step infer the (maximum likelihood) probabilities from the data. This is the same as the full observable case.
- Start either with made-up data or made-up probabilities.
- EM will converge to a local maxima.

Belief network structure learning (I)

$$
P(\text { mode } \mid \text { data })=\frac{P(\text { data } \mid \text { mode } l) \times P(\text { mode } l)}{P(\text { data }) .}
$$

- A model here is a belief network.
- A bigger network can always fit the data better.
- P (model) lets us encode a preference for smaller networks (e.g., using the description length).
- You can search over network structure looking for the most likely model.

A belief network structure learning algorithm

- Search over total orderings of variables.
- For each total ordering X_{1}, \ldots, X_{n} use supervised learning to learn $P\left(X_{i} \mid X_{1} \ldots X_{i-1}\right)$.
- Return the network model found with minimum:
$-\log P($ data \mid model $)-\log P($ model $)$
- $P($ data \mid model $)$ can be obtained by inference.
- How to determine $-\log P($ model $)$?

Bayesian Information Criterion (BIC) Score

$$
\begin{aligned}
& P(M \mid D)=\frac{P(D \mid M) \times P(M)}{P(D)} \\
& -\log P(M \mid D) \propto-\log P(D \mid M)-\log P(M)
\end{aligned}
$$

- $-\log P(D \mid M)$ is the negative \log likelihood of the model: number of bits to describe the data in terms of the model.
- If $|D|$ is the number of data instances,
there are
Each one can be described in different probabilities to distinguish.
- If there are $\|M\|$ independent parameters
($\|M\|$ is the dimensionality of the model):
$-\log P(M \mid D) \propto$

Bayesian Information Criterion (BIC) Score

$$
\begin{aligned}
& P(M \mid D)=\frac{P(D \mid M) \times P(M)}{P(D)} \\
& -\log P(M \mid D) \propto-\log P(D \mid M)-\log P(M)
\end{aligned}
$$

- $-\log P(D \mid M)$ is the negative log likelihood of the model: number of bits to describe the data in terms of the model.
- If $|D|$ is the number of data instances, there are $|D|+1$ different probabilities to distinguish.
Each one can be described in $\log (|D|+1)$ bits.
- If there are $\|M\|$ independent parameters $(\|M\|$ is the dimensionality of the model):

$$
-\log P(M \mid D) \propto-\log P(D \mid M)+\|M\| \log (|D|+1)
$$

(This is approximately the (negated) BIC score.)

Belief network structure learning (II)

- Given a total ordering, to determine parents $\left(X_{i}\right)$ do independence tests to determine which features should be the parents
- XOR problem: just because features do not give information individually, does not mean they will not give information in combination
- Search over total orderings of variables

Missing Data

- You cannot just ignore missing data unless you know it is missing at random.
- Is the reason data is missing correlated with something of interest?
- For example: data in a clinical trial to test a drug may be missing because:

Missing Data

- You cannot just ignore missing data unless you know it is missing at random.
- Is the reason data is missing correlated with something of interest?
- For example: data in a clinical trial to test a drug may be missing because:
- the patient dies
- the patient had severe side effects
- the patient was cured
- the patient had to visit a sick relative.
- ignoring some of these may make the drug look better or worse than it is.
- In general you need to model why data is missing.

Causality

- A causal model lets us predict the effect of an intervention.
- We would expect a causal model to obey the independencies of a belief network.
- Not all belief networks are causal.
- Conjecture: causal belief networks are more natural and more concise than non-causal networks.
- We can't learn causal models from observational data unless we are prepared to make modeling assumptions.
- We can learn causal models from randomized experimentation.

General Learning of Belief Networks

- We have a mixture of observational data and data from randomized studies.
- We are not given the structure.
- We don't know whether there are hidden variables or not. We don't know the domain size of hidden variables.
- There is missing data.
... this is too difficult for current techniques!

