
Agents as Processes

Agents carry out actions:

forever infinite horizon

until some stopping criteria is met indefinite horizon

finite and fixed number of steps finite horizon
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Decision-theoretic Planning

What should an agent do when

it gets rewards (and punishments) and tries to maximize
its rewards received

actions can be stochastic; the outcome of an action can’t
be fully predicted

there is a model that specifies the (probabilistic) outcome
of actions and the rewards

the world is fully observable
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World State

The world state is the information such that if you knew
the world state, no information about the past is relevant
to the future. Markovian assumption .

Let Si be the state at time i

P(St+1|S0,A0, . . . , St ,At) = P(St+1|St ,At)

P(s ′|s, a) is the probability that the agent will be in state
s ′ immediately after doing action a in state s.

The dynamics is stationary if the distribution is the same
for each time point.
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Decision Processes

A Markov decision process augments a Markov chain
with actions and values:

S0 S1 S3S2

A0 A1 A2

R1 R2 R3
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Markov Decision Processes

For an MDP you specify:

set S of states.

set A of actions.

P(St+1|St ,At) specifies the dynamics.

R(St ,At , St+1) specifies the reward. The agent gets a
reward at each time step (rather than just a final reward).
R(s, a, s ′) is the expected reward received when the agent
is in state s, does action a and ends up in state s ′.
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Example: Simple Grid World
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Grid World Model

Actions: up, down, left, right.

100 states corresponding to the positions of the robot.

Robot goes in the commanded direction with probability
0.7, and one of the other directions with probability 0.1.

If it crashes into an outside wall, it remains in its current
position and has a reward of −1.

Four special rewarding states; the agent gets the reward
when leaving.
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Planning Horizons

The planning horizon is how far ahead the planner looks to
make a decision.

The robot gets flung to one of the corners at random
after leaving a positive (+10 or +3) reward state.

I the process never halts
I infinite horizon

The robot gets +10 or +3 entering the state, then it stays
there getting no reward. These are absorbing states.

I The robot will eventually reach the absorbing state.
I indefinite horizon
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Information Availability

What information is available when the agent decides what to
do?

fully-observable MDP the agent gets to observe St when
deciding on action At .

partially-observable MDP (POMDP) the agent has some
noisy sensor of the state. It needs to remember its
sensing and acting history.

[This lecture only considers FOMDPs]
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Rewards and Values

Suppose the agent receives the sequence of rewards
r1, r2, r3, r4, . . .. What value should be assigned?

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n

discounted reward V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
γ is the discount factor 0 ≤ γ ≤ 1.
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Properties of the Discounted Reward

The discounted value of rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
= r1 + γ(r2 + γ(r3 + γ(r4 + . . . )))

If V (t) is the value obtained from time step t

V (t) = rt + γV (t + 1)

1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ V (t) ≤ maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkV (k + 1)
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Policies

A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who
is following π will do.

An optimal policy is one with maximum expected
discounted reward.

For a fully-observable MDP with stationary dynamics and
rewards with infinite or indefinite horizon, there is always
an optimal stationary policy.
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Value of a Policy

Qπ(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following policy
π.

V π(s), where s is a state, is the expected value of
following policy π in state s.

Qπ and V π can be defined mutually recursively:

Qπ(s, a) =

V π(s) =
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Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the
expected value of doing a in state s, then following the
optimal policy.

V ∗(s), where s is a state, is the expected value of
following the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =

V ∗(s) =

π∗(s) =
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Value Iteration

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value
function.

Set V0 arbitrarily.

Compute Qi+1, Vi+1 from Vi .

This converges exponentially fast (in k) to the optimal
value function.

The error reduces proportionally to
γk

1− γ
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Asynchronous Value Iteration

You don’t need to sweep through all the states, but can
update the value functions for each state individually.

This converges to the optimal value functions, if each
state and action is visited infinitely often in the limit.

You can either store V [s] or Q[s, a].
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Asynchronous VI: storing V [s]

Repeat forever:
I Select state s;
I V [s]← max

a

∑
s′

P(s ′|s, a)
(
R(s, a, s ′) + γV [s ′]

)
;
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Asynchronous VI: storing Q[s, a]

Repeat forever:
I Select state s, action a;

I Q[s, a]←
∑
s′

P(s ′|s, a)

(
R(s, a, s ′) + γmax

a′
Q[s ′, a′]

)
;
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Policy Iteration

Set π0 arbitrarily, let i = 0

Repeat:
I evaluate Qπi (s, a)
I let πi+1(s) = argmaxaQ

πi (s, a)
I set i = i + 1

until πi(s) = πi−1(s)

Evaluating Qπi (s, a) means finding a solution to a set of
|S | × |A| linear equations with |S | × |A| unknowns.

It can also be approximated iteratively.
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Modified Policy Iteration

Set π[s] arbitrarily;
Set Q[s, a] arbitrarily;
Repeat forever:

Repeat for a while:
I Select state s, action a;
I Q[s, a]←

∑
s′

P(s ′|s, a)
(
R(s, a, s ′) + γQ[s ′, π[s ′]]

)
;

π[s]← argmaxaQ[s, a]
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