
Planning

- Planning is deciding what to do based on an agent's ability, its goals. and the state of the world.
- Planning is finding a sequence of actions to solve a goal.
- Initial assumptions:
 - The world is deterministic.
 - ► There are no exogenous events outside of the control of the robot that change the state of the world.
 - ▶ The agent knows what state it is in.
 - ▶ Time progresses discretely from one state to the next.
 - Goals are predicates of states that need to be achieved or maintained.

Actions

- A deterministic action is a partial function from states to states.
- The preconditions of an action specify when the action can be carried out.
- The effect of an action specifies the resulting state.

Delivery Robot Example

Features:

RLoc - Rob's location

RHC – Rob has coffee

SWC – Sam wants coffee

MW – Mail is waiting

RHM - Rob has mail

Actions:

mc - move clockwise

mcc – move counterclockwise

puc – pickup coffee

dc - deliver coffee

pum – pickup mail

dm – deliver mail

Explicit State-space Representation

State	Action	Resulting State
$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тс	$\langle mr, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тсс	$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	dm	$\langle off, \overline{rhc}, \overline{swc}, \overline{mw}, \overline{rhm} \rangle$
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тсс	$\langle cs, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тс	$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$

Feature-based representation of actions

For each action:

• precondition is a proposition that specifies when the action can be carried out.

For each feature:

- causal rules that specify when the feature gets a new value and
- frame rules that specify when the feature keeps its value.

Example feature-based representation

Precondition of pick-up coffee (puc):

$$RLoc = cs \wedge \overline{rhc}$$

Rules for location is cs:

$$RLoc' = cs \leftarrow RLoc = off \land Act = mcc$$

 $RLoc' = cs \leftarrow RLoc = mr \land Act = mc$
 $RLoc' = cs \leftarrow RLoc = cs \land Act \neq mcc \land Act \neq mc$

Rules for "robot has coffee"

$$rhc' \leftarrow rhc \land Act \neq dc$$

 $rhc' \leftarrow Act = puc$

STRIPS Representation

For each action:

- precondition that specifies when the action can be carried out.
- effect a set of assignments of values to features that are made true by this action.

Example STRIPS representation

```
Pick-up coffee (puc):
```

- precondition: $[cs, \overline{rhc}]$
- effect: [rhc]

Deliver coffee (dc):

- precondition: [off, rhc]
- effect: $[\overline{rhc}, \overline{swc}]$