Model Averaging (Bayesian Learning)

We want to predict the output Y of a new case that has input $X=x$ given the training examples \mathbf{e} :

$$
\begin{aligned}
p(Y \mid x \wedge \mathbf{e}) & =\sum_{m \in M} P(Y \wedge m \mid x \wedge \mathbf{e}) \\
& =\sum_{m \in M} P(Y \mid m \wedge x \wedge \mathbf{e}) P(m \mid x \wedge \mathbf{e}) \\
& =\sum_{m \in M} P(Y \mid m \wedge x) P(m \mid \mathbf{e})
\end{aligned}
$$

M is a set of mutually exclusive and covering hypotheses.

- What assumptions are made here?

Learning Under Uncertainty

- The posterior probability of a model given examples \mathbf{e} :

$$
P(m \mid \mathbf{e})=\frac{P(\mathbf{e} \mid m) \times P(m)}{P(\mathbf{e})}
$$

- The likelihood, $P(\mathbf{e} \mid m)$, is the probability that model m would have produced examples \mathbf{e}.
- The prior, $P(m)$, encodes the learning bias
- $P(\mathbf{e})$ is a normalizing constant so the probabilities of the models sum to 1 .
- Examples $\mathbf{e}=\left\{e_{1}, \ldots, e_{k}\right\}$ are independent and identically distributed (i.i.d.) given m if

$$
P(\mathbf{e} \mid m)=\prod_{i=1}^{k} P\left(e_{i} \mid m\right)
$$

Plate Notation

Bayesian Leaning of Probabilities

- Y has two outcomes y and $\neg y$.

We want the probability of y given training examples \mathbf{e}.

- We can treat the probability of y as a real-valued random variable on the interval $[0,1]$, called ϕ. Bayes' rule gives:

$$
P(\phi=p \mid \mathbf{e})=
$$

Bayesian Leaning of Probabilities

- Y has two outcomes y and $\neg y$.

We want the probability of y given training examples \mathbf{e}.

- We can treat the probability of y as a real-valued random variable on the interval $[0,1]$, called ϕ. Bayes' rule gives:

$$
P(\phi=p \mid \mathbf{e})=\frac{P(\mathbf{e} \mid \phi=p) \times P(\phi=p)}{P(\mathbf{e})}
$$

- Suppose \mathbf{e} is a sequence of n_{1} instances of y and n_{0} instances of $\neg y$:

$$
P(\mathbf{e} \mid \phi=p)=
$$

Bayesian Leaning of Probabilities

- Y has two outcomes y and $\neg y$.

We want the probability of y given training examples \mathbf{e}.

- We can treat the probability of y as a real-valued random variable on the interval $[0,1]$, called ϕ. Bayes' rule gives:

$$
P(\phi=p \mid \mathbf{e})=\frac{P(\mathbf{e} \mid \phi=p) \times P(\phi=p)}{P(\mathbf{e})}
$$

- Suppose \mathbf{e} is a sequence of n_{1} instances of y and n_{0} instances of $\neg y$:

$$
P(\mathbf{e} \mid \phi=p)=p^{n_{1}} \times(1-p)^{n_{0}}
$$

- Uniform prior: $P(\phi=p)=1$ for all $p \in[0,1]$.

Posterior Probabilities for Different Training Examples (beta distribution)

MAP model

- The maximum a posteriori probability (MAP) model is the model m that maximizes $P(m \mid \mathbf{e})$. That is, it maximizes:

$$
P(\mathbf{e} \mid m) \times P(m)
$$

- Thus it minimizes:

$$
(-\log P(\mathbf{e} \mid m))+(-\log P(m))
$$

which is the number of bits to send the examples, \mathbf{e}, given the model m plus the number of bits to send the model m.

Averaging Over Models

- Idea: Rather than choosing the most likely model, average over all models, weighted by their posterior probabilities given the examples.
- If you have observed a sequence of n_{1} instances of y and n_{0} instances of $\neg y$, with uniform prior:
- the most likely value (MAP) is $\frac{n_{1}}{n_{0}+n_{1}}$
- the expected value is $\frac{n_{1}+1}{n_{0}+n_{1}+2}$

Beta Distribution

$$
\operatorname{Beta}^{\alpha_{0}, \alpha_{1}}(p)=\frac{1}{K} p^{\alpha_{1}-1} \times(1-p)^{\alpha_{0}-1}
$$

where K is a normalizing constant. $\alpha_{i}>0$.

- The uniform distribution on $[0,1]$ is Beta ${ }^{1,1}$.
- The expected value is $\alpha_{1} /\left(\alpha_{0}+\alpha_{1}\right)$.

If the prior probability of a Boolean variable is Beta ${ }^{\alpha_{0}, \alpha_{1}}$, the posterior distribution after observing n_{1} true cases and n_{0} false cases is:

Beta Distribution

$$
\operatorname{Beta}^{\alpha_{0}, \alpha_{1}}(p)=\frac{1}{K} p^{\alpha_{1}-1} \times(1-p)^{\alpha_{0}-1}
$$

where K is a normalizing constant. $\alpha_{i}>0$.

- The uniform distribution on $[0,1]$ is Beta ${ }^{1,1}$.
- The expected value is $\alpha_{1} /\left(\alpha_{0}+\alpha_{1}\right)$.

If the prior probability of a Boolean variable is Beta ${ }^{\alpha_{0}, \alpha_{1}}$, the posterior distribution after observing n_{1} true cases and n_{0} false cases is:

$$
\operatorname{Beta}^{\alpha_{0}+n_{0}, \alpha_{1}+n_{1}}
$$

Dirichlet distribution

- Suppose Y has k values.
- The Dirichlet distribution has two sorts of parameters,
- positive counts $\alpha_{1}, \ldots, \alpha_{k}$
α_{i} is one more than the count of the i th outcome.
- probability parameters p_{1}, \ldots, p_{k}
p_{i} is the probability of the ith outcome

$$
\text { Dirichlet }^{\alpha_{1}, \ldots, \alpha_{k}}\left(p_{1}, \ldots, p_{k}\right)=\frac{1}{K} \prod_{j=1}^{k} p_{j}^{\alpha_{j}-1}
$$

where K is a normalizing constant

- The expected value of i th outcome is

$$
\frac{\alpha_{i}}{\sum_{j} \alpha_{j}}
$$

Hierarchical Bayesian Model

Where do the priors come from?
Example: $S_{X H}$ is true when patient X is sick in hospital H. We want to learn the probability of Sick for each hospital. Where do the prior probabilities for the hospitals come from?

(a)

(b)

