- These representations are inspired by neurons and their connections in the brain.
- Artificial neurons, or units, have inputs, and an output. The output can be connected to the inputs of other units.
- The output of a unit is a parameterized non-linear function of its inputs.
- Learning occurs by adjusting parameters to fit data.
- Neural networks can represent an approximation to any function.

- As part of neuroscience, in order to understand real neural systems, researchers are simulating the neural systems of simple animals such as worms.
- It seems reasonable to try to build the functionality of the brain via the mechanism of the brain (suitably abstracted).
- The brain inspires new ways to think about computation.
- Neural networks provide a different measure of simplicity as a learning bias.

Feed-forward neural networks

- Feed-forward neural networks are the most common models.
- These are directed acyclic graphs:

Each hidden unit outputs a squashed linear function of its inputs.

Neural Network for the news example

< 🗆 🕨

$$\begin{aligned} pval(e, Reads) \\ &= f(w_0 + w_1 \times val(e, H1) + w_2 \times val(e, H2)) \\ val(e, H1) \\ &= f(w_3 + w_4 \times val(e, Home) + w_5 \times val(e, Short) \\ &+ w_6 \times val(e, New) + w_7 \times val(e, Known). \\ val(e, H2) \\ &= f(w_8 + w_9 \times val(e, Home) + w_{10} \times val(e, Short) \\ &+ w_{11} \times val(e, New) + w_{12} \times val(e, Known)). \end{aligned}$$

Representing the Network

- The values of the attributes are real numbers.
- Thirteen parameters w_0, \ldots, w_{12} are real numbers.
- The attributes h_1 and h_2 correspond to the values of hidden units.
- There are 13 real numbers to be learned. The hypothesis space is thus a 13-dimensional real space.
- Each point in this 13-dimensional space corresponds to a particular model that predicts a value for *reads* given *known*, *new*, *short*, and *home*.

Prediction Error

• For particular values for the parameters $\overline{w} = w_0, \dots, w_m$ and a set *E* of examples, the sum-of-squares error is

$$Error_{E}(\overline{w}) = \sum_{e \in E} (p_{e}^{\overline{w}} - o_{e})^{2},$$

- $p_e^{\overline{W}}$ is the predicted output by a neural network with parameter values given by \overline{W} for example *e*
- o_e is the observed output for example e.
- The aim of neural network learning is, given a set of examples, to find parameter settings that minimize the error.

Simple Example

Ex	new	short	home	reads		error
				Predicted	Obs	
e1	0	0	0	f(0.4) = 0.6	0	0.36
e2	1	1	0	f(-1.2) = 0.23	0	0.053
e3	1	0	1	f(0.9) = 0.71	1	0.084

- Aim of neural network learning: given a set of examples, find parameter settings that minimize the error.
- Back-propagation learning is gradient descent search through the parameter space to minimize the sum-of-squares error.

Backpropagation Learning

• Inputs:

- A network, including all units and their connections
- Stopping Criterion
- Learning Rate (constant of proportionality of gradient descent search)
- Initial values for the parameters
- A set of classified training data
- Output: Updated values for the parameters

Backpropagation Learning Algorithm

- Repeat
 - evaluate the network on each example given the current parameter settings
 - determine the derivative of the error for each parameter
 - change each parameter in proportion to its derivative
- until the stopping criterion is met

Gradient Descent for Neural Net Learning

• At each iteration, update parameter w_i

$$w_i \leftarrow \left(w_i - \eta \frac{\partial error(w_i)}{\partial w_i}\right)$$

 η is the learning rate

- You can compute partial derivative:
 - numerically: for small Δ

$$\frac{error(w_i + \Delta) - error(w_i)}{\Delta}$$

• analytically: f'(x) = f(x)(1 - f(x)) + chain rule

< 🗆)

Para-	iterat	ion 0	iteration 1	iteration 80	
meter	Value	Deriv	Value	Value	
w ₀	0.2	0.768	-0.18	-2.98	
W_1	0.12	0.373	-0.07	6.88	
<i>W</i> ₂	0.112	0.425	-0.10	-2.10	
W ₃	0.22	0.0262	0.21	-5.25	
W4	0.23	0.0179	0.22	1.98	
Error:	4.6121		4.6128	0.178	

What Can a Neural Network Represent?

Output is $f(w_0 + w_1 \times l_1 + w_2 \times l_2)$. A single unit can't represent *xor*.

< □ →

Bias in neural networks and decision trees

• It's easy for a neural network to represent "at least two of I_1, \ldots, I_k are true":

This concept forms a large decision tree.

- Consider representing a conditional: "If c then a else b":
 - Simple in a decision tree.
 - Needs a complicated neural network to represent (c ∧ a) ∨ (¬c ∧ b).

- Meaning is attached to the input and output units.
- There is no a priori meaning associated with the hidden units.
- What the hidden units actually represent is something that's learned.