
Neural Networks

These representations are inspired by neurons and their
connections in the brain.

Artificial neurons, or units, have inputs, and an output.
The output can be connected to the inputs of other units.

The output of a unit is a parameterized non-linear
function of its inputs.

Learning occurs by adjusting parameters to fit data.

Neural networks can represent an approximation to any
function.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.4, Page 1



Why Neural Networks?

As part of neuroscience, in order to understand real
neural systems, researchers are simulating the neural
systems of simple animals such as worms.

It seems reasonable to try to build the functionality of the
brain via the mechanism of the brain (suitably
abstracted).

The brain inspires new ways to think about computation.

Neural networks provide a different measure of simplicity
as a learning bias.
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Feed-forward neural networks

Feed-forward neural networks are the most common
models.

These are directed acyclic graphs:

inputs
hidden�
units

output�
units

Each hidden unit outputs a squashed linear function of its
inputs.
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Neural Network for the news example

inputs hidden
units

output
units

known

new

short

reads

home
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Meaning of the network

pval(e,Reads)

= f (w0 + w1 × val(e,H1) + w2 × val(e,H2))

val(e,H1)

= f (w3 + w4 × val(e,Home) + w5 × val(e, Short)

+w6 × val(e,New) + w7 × val(e,Known).

val(e,H2)

= f (w8 + w9 × val(e,Home) + w10 × val(e, Short)

+w11 × val(e,New) + w12 × val(e,Known)).
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Representing the Network

The values of the attributes are real numbers.

Thirteen parameters w0, . . . ,w12 are real numbers.

The attributes h1 and h2 correspond to the values of
hidden units.

There are 13 real numbers to be learned. The hypothesis
space is thus a 13-dimensional real space.

Each point in this 13-dimensional space corresponds to a
particular model that predicts a value for reads given
known, new , short, and home.
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Prediction Error

For particular values for the parameters w = w0, . . .wm

and a set E of examples, the sum-of-squares error is

ErrorE (w) =
∑
e∈E

(pwe − oe)2,

I pwe is the predicted output by a neural network with
parameter values given by w for example e

I oe is the observed output for example e.

The aim of neural network learning is, given a set of
examples, to find parameter settings that minimize the
error.
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Simple Example

new short home

reads

-0.7 -0.9 1.2

0.4

Ex new short home reads error
Predicted Obs

e1 0 0 0 f (0.4) = 0.6 0 0.36
e2 1 1 0 f (−1.2) = 0.23 0 0.053
e3 1 0 1 f (0.9) = 0.71 1 0.084
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Neural Network Learning

Aim of neural network learning: given a set of examples,
find parameter settings that minimize the error.

Back-propagation learning is gradient descent search
through the parameter space to minimize the
sum-of-squares error.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.4, Page 9



Backpropagation Learning

Inputs:
I A network, including all units and their connections
I Stopping Criterion
I Learning Rate (constant of proportionality of gradient

descent search)
I Initial values for the parameters
I A set of classified training data

Output: Updated values for the parameters
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Backpropagation Learning Algorithm

Repeat
I evaluate the network on each example given the current

parameter settings
I determine the derivative of the error for each parameter
I change each parameter in proportion to its derivative

until the stopping criterion is met
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Gradient Descent for Neural Net Learning

At each iteration, update parameter wi

wi ←
(
wi − η

∂error(wi)

∂wi

)
η is the learning rate

You can compute partial derivative:
I numerically: for small ∆

error(wi + ∆)− error(wi )

∆

I analytically: f ′(x) = f (x)(1− f (x)) + chain rule
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Simulation of Neural Net Learning

Para- iteration 0 iteration 1 iteration 80
meter Value Deriv Value Value
w0 0.2 0.768 −0.18 −2.98
w1 0.12 0.373 −0.07 6.88
w2 0.112 0.425 −0.10 −2.10
w3 0.22 0.0262 0.21 −5.25
w4 0.23 0.0179 0.22 1.98
Error: 4.6121 4.6128 0.178
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What Can a Neural Network Represent?

I1

I2 w2

w0

w1 w0 w1 w2 Logic
-15 10 10 and
-5 10 10 or
5 -10 -10 nor

Output is f (w0 + w1 × I1 + w2 × I2).
A single unit can’t represent xor .
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Bias in neural networks and decision trees

It’s easy for a neural network to represent “at least two of
I1, . . . , Ik are true”:

w0 w1 · · · wk

-15 10 · · · 10

This concept forms a large decision tree.

Consider representing a conditional: “If c then a else b”:
I Simple in a decision tree.
I Needs a complicated neural network to represent

(c ∧ a) ∨ (¬c ∧ b).
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Neural Networks and Logic

Meaning is attached to the input and output units.

There is no a priori meaning associated with the hidden
units.

What the hidden units actually represent is something
that’s learned.
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