Basic Models for Supervised Learning

Many learning algorithms can be seen as deriving from:

- decision trees
- linear (and non-linear) classifiers
- Bayesian classifiers

Learning Decision Trees

- Representation is a decision tree.
- Bias is towards simple decision trees.
- Search through the space of decision trees, from simple decision trees to more complex ones.

Decision trees

A decision tree (for a particular output feature) is a tree where:

- Each nonleaf node is labeled with an input feature.
- The arcs out of a node labeled with feature A are labeled with each possible value of the feature A.
- The leaves of the tree are labeled with point prediction of the output feature.

Example Decision Trees

Equivalent Logic Program

skips \leftarrow long.
reads \leftarrow short \wedge new.
reads \leftarrow short \wedge follow_up \wedge known.
skips \leftarrow short \wedge follow_up \wedge unknown.
or with negation as failure:
reads \leftarrow short \wedge new.
reads \leftarrow short $\wedge \sim$ new \wedge known.

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree. Least depth? Fewest nodes? Which trees are the best predictors of unseen data?
- How should you go about building a decision tree? The space of decision trees is too big for systematic search for the smallest decision tree.

Searching for a Good Decision Tree

- The input is a set of input features, a target feature and, a set of training examples.
- Either:
- Stop and return the a value for the target feature or a distribution over target feature values
- Choose an input feature to split on. For each value of this feature, build a subtree for those examples with this value for the input feature.

Choices in implementing the algorithm

- When to stop:

Choices in implementing the algorithm

- When to stop:
- no more input features
- all examples are classified the same
- too few examples to make an informative split

Choices in implementing the algorithm

- When to stop:
- no more input features
- all examples are classified the same
- too few examples to make an informative split
- Which feature to select to split on isn't defined. Often we use myopic split: which single split gives smallest error.
- With multi-valued features, we can split on all values or split values into half.

Example: possible splits

Handling Overfitting

- This algorithm can overfit the data.

This occurs when noise and correlations in the training set that are not reflected in the data as a whole.

- To handle overfitting:
- restrict the splitting, and split only when the split is useful.
- allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
- learn multiple trees and average them.

Linear Function

A linear function of features X_{1}, \ldots, X_{n} is a function of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}
$$

We invent a new feature X_{0} which has value 1 , to make it not a special case.

Linear Regression

Linear regression is where the output is a linear function of the input features.

$$
\operatorname{pval}^{\bar{w}}(e, Y)=w_{0}+w_{1} \operatorname{val}\left(e, X_{1}\right)+\cdots+w_{n} \operatorname{val}\left(e, X_{n}\right)
$$

Linear Regression

Linear regression is where the output is a linear function of the input features.

$$
p \operatorname{val} I^{\bar{w}}(e, Y)=w_{0}+w_{1} \operatorname{val}\left(e, X_{1}\right)+\cdots+w_{n} \operatorname{val}\left(e, X_{n}\right)
$$

The sum of squares error on examples E for output Y is:

$$
\begin{aligned}
& \operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(\operatorname{val}(e, Y)-p \operatorname{val}^{\bar{w}}(e, Y)\right)^{2} \\
& =\sum_{e \in E}\left(\operatorname{val}(e, Y)-\left(w_{0}+w_{1} \operatorname{val}\left(e, X_{1}\right)+\cdots+w_{n} v a l\left(e, X_{n}\right)\right)\right)^{2}
\end{aligned}
$$

Goal: find weights that minimize $\operatorname{Error}_{E}(\bar{w})$.

Finding weights that minimize $\operatorname{Error}_{E}(\bar{w})$

- Find the minimum analytically.

Effective when it can be done (e.g., for linear regression).

Finding weights that minimize $\operatorname{Error}_{E}(\bar{w})$

- Find the minimum analytically.

Effective when it can be done (e.g., for linear regression).

- Find the minimum iteratively.

Works for larger classes of problems.
Gradient descent:

$$
w_{i} \leftarrow w_{i}-\eta \frac{\partial \operatorname{Error}_{E}(\bar{w})}{\partial w_{i}}
$$

η is the gradient descent step size, the learning rate.

Gradient Descent for Linear Regression

```
1: procedure LinearLearner( }X,Y,E,\eta
```

2 :
3:
4:
5:
6 :
7: \quad initialize w_{0}, \ldots, w_{n} randomly
8:
9:
10 :
11:
12:
13:
14:
Inputs
Y : output feature η : learning rate

repeat

for each example e in E do for each $i \in[0, n]$ do
until some stopping criterion is true return w_{0}, \ldots, w_{n}

```
\(X\) : set of input features, \(X=\left\{X_{1}, \ldots, X_{n}\right\}\)
\(E\) : set of examples from which to learn
\[
\delta \leftarrow \operatorname{val}(e, Y)-p \operatorname{val}^{\bar{w}}(e, Y)
\]
\[
w_{i} \leftarrow w_{i}+\eta \delta \operatorname{val}\left(e, X_{i}\right)
\]
```


Linear Classifier

- Assume we are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=f\left(w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}\right)
$$

where f is an activation function.

- A simple activation function is the step function:

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Gradient Descent for Linear Classifiers

If the activation is differentiable, we can use gradient descent to update the weights. The sum of squares error is:

$$
\operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(\operatorname{val}(e, Y)-f\left(\sum_{i} w_{i} \times \operatorname{val}\left(e, X_{i}\right)\right)\right)^{2}
$$

The partial derivative with respect to weight w_{i} is:

$$
\frac{\partial \operatorname{Error}_{E}(\bar{w})}{\partial w_{i}}=-2 \times \delta \times f^{\prime}\left(\sum_{i} w_{i} \times \operatorname{val}\left(e, X_{i}\right)\right) \times \operatorname{val}\left(e, X_{i}\right)
$$

where $\delta=\operatorname{val}(e, Y)-p v a I^{\bar{w}}(e, Y)$.
Thus, each example e updates each weight w_{i} by

$$
w_{i} \leftarrow w_{i}+\eta \times \delta \times f^{\prime}\left(\sum_{i} w_{i} \times \operatorname{val}\left(e, X_{i}\right)\right) \times \operatorname{val}\left(e, X_{i}\right)
$$

The sigmoid or logistic activation function

The sigmoid or logistic activation function

$$
f^{\prime}(x)=f(x)(1-f(x))
$$

Gradient Descent for Logistic Regression

1: procedure LinearLearner (X, Y, E, η)

2:
3:
4:
5:
6:
7: \quad initialize w_{0}, \ldots, w_{n} randomly
8: repeat
9:
10 :
11:
12:
13:
14:
15:
Inputs
Y : output feature η : learning rate
for each example e in E do

$$
\text { for each } i \in[0, n] \text { do }
$$

until some stopping criterion is true
X : set of input features, $X=\left\{X_{1}, \ldots, X_{n}\right\}$
E : set of examples from which to learn

$$
\begin{aligned}
& p \leftarrow f\left(\sum_{i} w_{i} \times \operatorname{val}\left(e, X_{i}\right)\right) \\
& \delta \leftarrow \operatorname{val}(e, Y)-p
\end{aligned}
$$

$$
w_{i} \leftarrow w_{i}+\eta \delta p(1-p) \operatorname{val}\left(e, X_{i}\right)
$$

Simple Example

Ex	new	short	home	reads		error
				Predicted	Obs	
e1	0	0	0	$f(0.4)=0.6$	0	
e2	1	1	0	$f(-1.2)=0.23$	0	
e3	1	0	1	$f(0.9)=0.71$	1	

Simple Example

| Ex | new | short | home | reads
 Predicted | | Obs |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | error \quad| | | | | $f(0.4)=0.6$ | 0 | 0.36 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| e1 | 0 | 0 | 0 | $f(-1.2)=0.23$ | 0 | 0.053 |
| e2 | 1 | 1 | 0 | $f(0.9)=0.71$ | 1 | 0.084 |

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- For the sigmoid function, the hyperplane is when: $w_{0}+w_{1} \times \operatorname{val}\left(e, X_{1}\right)+\cdots+w_{n} \times \operatorname{val}\left(e, X_{n}\right)=0$.
- If the data are linearly separable, the error can be made arbitrarily small.

Bayesian classifiers

- Idea: if you knew the classification you could predict the values of features.

$$
P\left(\text { Class } \mid X_{1} \ldots X_{n}\right) \propto P\left(X_{1}, \ldots, X_{n} \mid \text { Class }\right) P(\text { Class })
$$

- Naive Bayesian classifier: X_{i} are independent of each other given the class.
Requires: $P($ Class $)$ and $P\left(X_{i} \mid\right.$ Class $)$ for each X_{i}.

$$
P\left(\text { Class } \mid X_{1} \ldots X_{n}\right) \propto \prod_{i} P\left(X_{i} \mid \text { Class }\right) P(\text { Class })
$$

Learning Probabilities

Learning Probabilities

$$
\begin{array}{|ccccc|c|}
\hline X_{1} & X_{2} & X_{3} & X_{4} & C & \text { Count } \\
\hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
t & f & t & t & 1 & 40 \\
t & f & t & t & 2 & 10 \\
t & f & t & t & 3 & 50 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P\left(C=v_{i}\right)=\frac{\sum_{t=C=v_{i}} \operatorname{Count}(t)}{\sum_{t} \operatorname{Count}(t)}
\end{array}
$$

$$
P\left(X_{k}=v_{j} \mid C=v_{i}\right)=\frac{\sum_{t \mid=C=v_{i} \wedge X_{k}=v_{j}} \operatorname{Count}(t)}{\sum_{t \mid=C=v_{i}} \operatorname{Count}(t)}
$$

...perhaps including pseudo-counts

Help System

- The domain of H is the set of all help pages.

The observations are the words in the query.

- What probabilities are needed?

What pseudo-counts and counts are used?
What data can be used to learn from?

