
Supervised Learning

Given:

a set of inputs features X1, . . . ,Xn

a set of target features Y1, . . . ,Yk

a set of training examples where the values for the input
features and the target features are given for each
example

a new example, where only the values for the input
features are given

predict the values for the target features for the new example.

classification when the Yi are discrete

regression when the Yi are continuous
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Example Data Representations

A travel agent wants to predict the preferred length of a trip,
which can be from 1 to 6 days. (No input features).
Two representations of the same data:
— Y is the length of trip chosen.
— Each Yi is an indicator variable that has value 1 if the
chosen length is i , and is 0 otherwise.

Example Y
e1 1
e2 6
e3 6
e4 2
e5 1

Example Y1 Y2 Y3 Y4 Y5 Y6

e1 1 0 0 0 0 0
e2 0 0 0 0 0 1
e3 0 0 0 0 0 1
e4 0 1 0 0 0 0
e5 1 0 0 0 0 0

What is a prediction?
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Evaluating Predictions

Suppose F is a feature and e is an example:

val(e,F) is the value of feature F on example e.

pval(e,F) is the predicted value of feature F on example
e.

The error of the prediction is a measure of how close
pval(e,Y ) is to val(e,Y ).

There are many possible errors that could be measured.
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Measures of error

E is the set of examples. T is the set of target features.

absolute error∑
e∈E

∑
Y∈T

|val(e,Y )− pval(e,Y )|

sum of squares error∑
e∈E

∑
Y∈T

(val(e,Y )− pval(e,Y ))2

worst-case error :

max
e∈E

max
Y∈T
|val(e,Y )− pval(e,Y )| .

A cost-based error takes into account costs of various
errors.
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Measures of error (cont.)

When target features are {0, 1}:
likelihood of the data∏

e∈E

∏
Y∈T

pval(e,Y )val(e,Y )(1− pval(e,Y ))(1−val(e,Y ))

entropy (number of bits to encode the data given a code
based on pval)

−
∑
e∈E

∑
Y∈T

[val(e,Y ) log pval(e,Y )+

(1− val(e,Y )) log(1− pval(e,Y ))]

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 9



Measures of error (cont.)

When target features are {0, 1}:
likelihood of the data∏

e∈E

∏
Y∈T

pval(e,Y )val(e,Y )(1− pval(e,Y ))(1−val(e,Y ))

entropy (number of bits to encode the data given a code
based on pval)

−
∑
e∈E

∑
Y∈T

[val(e,Y ) log pval(e,Y )+

(1− val(e,Y )) log(1− pval(e,Y ))]

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 10



Information theory overview

A bit is a binary digit.

1 bit can distinguish 2 items

k bits can distinguish 2k items

n items can be distinguished using log2 n bits

Can you do better?
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Information and Probability

Let’s design a code to distinguish elements of {a, b, c , d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

This code sometimes uses 1 bit and sometimes uses 3 bits. On
average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.

The string aacabbda has code 00110010101110.
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Information Content

To identify x , you need − log2 P(x) bits.

If you have a distribution over a set and want to a
identify a member, you need the expected number of bits:∑

x

−P(x)× log2 P(x).

This is the information content or entropy of the
distribution.

The expected number of bits it takes to describe a
distribution given evidence e:

I (e) =
∑
x

−P(x |e)× log2 P(x |e).
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Information Gain

If you have a test that can distinguish the cases where α is
true from the cases where α is false, the information gain
from this test is:

I (true)− (P(α)× I (α) + P(¬α)× I (¬α)).

I (true) is the expected number of bits needed before the
test

P(α)× I (α) + P(¬α)× I (¬α) is the expected number of
bits after the test.
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Linear Predictions

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8

P1

P2

P3
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Point Estimates

Suppose there is a single numerical feature, Y . Let E be the
training examples. There is a single prediction for all examples.

The prediction that minimizes the sum of squares error on
E is

the mean (average) value of Y .

The prediction that minimizes the absolute error on E is
the median value of Y .

The prediction that minimizes the worst-case error on E is

(maximum + minimum)/2

When Y has domain {0, 1}, the prediction that
maximizes the likelihood on E is the empirical probability.

When Y has domain {0, 1}, the prediction that minimizes
the entropy on E is the empirical probability.

But that doesn’t mean that these predictions minimize the
error for future predictions.
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Training and Test Sets

To evaluate how well a learner will work on future predictions,
we divide the examples into:

training examples that are used to train the learner

test examples that are used to evaluate the learner

...these must be kept separate.
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Learning Probabilities

Empirical probabilities do not make good predictors when
evaluated by likelihood or entropy.

Why?

A probability of zero means “impossible” and has
infinite cost if there is one true case in test set.

Solution: add (non-negative) pseudo-counts to the data.
Suppose ni is the number of examples with X = vi , and
ci is the pseudo-count:

P(X = vi) =
ci + ni∑
i ′ ci ′ + ni ′

Pseudo-counts convey prior knowledge. Consider: “how
much more would I believe vi if I had seen one example
with vi true than if I has seen no examples with vi true?”
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