Belief network inference

Four main approaches to determine posterior distributions in belief networks:

- Variable Elimination: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Search-based approaches: enumerate some of the possible worlds, and estimate posterior probabilities from the worlds generated.
- Stochastic simulation: random cases are generated according to the probability distributions.
- Variational methods: find the closest tractable distribution to the (posterior) distribution we are interested in.

Factors

A factor is a representation of a function from a tuple of random variables into a number.

We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$. We can assign some or all of the variables of a factor:

- $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
- $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, \dots, X_j)_{X_1 = v_1}$, etc.

Example factors

	X	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t, Y, Z)$$
: $\begin{vmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{vmatrix}$

$$r(X=t, Y, Z=f): \begin{bmatrix} Y & \text{val} \\ t & 0.9 \\ f & 0.8 \end{bmatrix}$$
$$r(X=t, Y=f, Z=f) = 0.8$$

Multiplying factors

The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

Multiplying factors example

	Α	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	8.0

В	C	val
t	t	0.3
t	f	0.7
f	t	0.6
f	f	0.4
	t	t f

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 \times f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32
	`			

Summing out variables

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$
= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Summing out a variable example

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	Α	С	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
_	f	t	0.54
	f	f	0.46

Evidence

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_j = v_j$:

$$P(Z|Y_1 = v_1, ..., Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{P(Y_1 = v_1, ..., Y_j = v_j)}$$

$$= \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1, ..., Y_j = v_j)}.$$

So the computation reduces to the probability of $P(Z, Y_1 = v_1, ..., Y_j = v_j)$. We normalize at the end.

Probability of a conjunction

Suppose the variables of the belief network are X_1, \ldots, X_n . To compute $P(Z, Y_1 = v_1, \ldots, Y_j = v_j)$, we sum out the other variables, $Z_1, \ldots, Z_k = \{X_1, \ldots, X_n\} - \{Z\} - \{Y_1, \ldots, Y_j\}$. We order the Z_i into an elimination ordering.

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} ... \sum_{Z_1} P(X_1, ..., X_n)_{Y_1 = v_1, ..., Y_j = v_j}.$$

$$= \sum_{Z_k} ... \sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))_{Y_1 = v_1, ..., Y_j = v_j}.$$

Computation in belief networks reduces to computing the sums of products.

• How can we compute ab + ac efficiently?

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out the a giving a(b+c)

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out the a giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))$ efficiently?

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out the a giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))$ efficiently?
- Distribute out those factors that don't involve Z_1 .

Variable elimination algorithm

To compute
$$P(Z|Y_1 = v_1 \land \ldots \land Y_j = v_j)$$
:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the other variables (the $\{Z_1, \ldots, Z_k\}$) according to some elimination ordering.
- Multiply the remaining factors. Normalize by dividing the resulting factor f(Z) by $\sum_{Z} f(Z)$.

Summing out a variable

To sum out a variable Z_j from a product f_1, \ldots, f_k of factors:

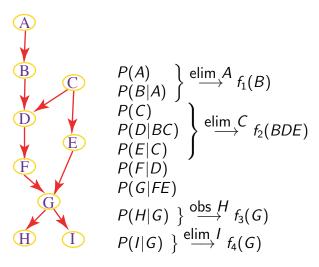
- Partition the factors into
 - ▶ those that don't contain Z_j , say f_1, \ldots, f_i ,
 - ▶ those that contain Z_j , say f_{i+1}, \ldots, f_k

We know:

$$\sum_{Z_j} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times \left(\sum_{Z_j} f_{i+1} \times \cdots \times f_k \right).$$

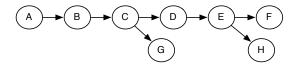
• Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_k by the new factor.

Variable elimination example



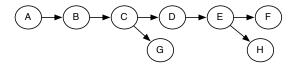
$$P(D,h) = ...(\sum_{A} P(A)P(B|A))(\sum_{I} P(I|G))$$

Variable Elimination example



Query: P(G|f); elimination ordering: A, H, E, D, B, C $P(G|f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B|A)P(C|B)(D|C)$ P(E|D)P(f|E)P(G|C)P(H|E)

Variable Elimination example



Query: P(G|f); elimination ordering: A, H, E, D, B, C $P(G|f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B|A)P(C|B)(D|C)$ P(E|D)P(f|E)P(G|C)P(H|E)

$$= \sum_{C} \left(\sum_{B} \left(\sum_{A} P(A)P(B|A) \right) P(C|B) \right) P(G|C)$$
$$\left(\sum_{D} P(D|C) \left(\sum_{E} P(E|D)P(f|E) \sum_{H} P(H|E) \right) \right)$$