Belief network inference

Four main approaches to determine posterior distributions in belief networks:

- Variable Elimination: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Search-based approaches: enumerate some of the possible worlds, and estimate posterior probabilities from the worlds generated.
- Stochastic simulation: random cases are generated according to the probability distributions.
- Variational methods: find the closest tractable distribution to the (posterior) distribution we are interested in.

Factors

A factor is a representation of a function from a tuple of random variables into a number.
We will write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{j}\right)$.
We can assign some or all of the variables of a factor:

- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$, where $v_{1} \in \operatorname{dom}\left(X_{1}\right)$, is a factor on X_{2}, \ldots, X_{j}.
- $f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number that is the value of f when each X_{i} has value v_{i}.
The former is also written as $f\left(X_{1}, X_{2}, \ldots, X_{j}\right)_{X_{1}=v_{1}}$, etc.

Example factors

$$
\begin{gathered}
\quad r(X, Y, Z): \begin{array}{|ccc|c|}
\hline X & Y & Z & \mathrm{val} \\
\hline \mathrm{t} & \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{t} & \mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{t} & \mathrm{f} & \mathrm{f} & 0.8 \\
\mathrm{f} & \mathrm{t} & \mathrm{t} & 0.4 \\
\mathrm{f} & \mathrm{t} & \mathrm{f} & 0.6 \\
\mathrm{f} & \mathrm{f} & \mathrm{t} & 0.3 \\
\mathrm{f} & \mathrm{f} & \mathrm{f} & 0.7 \\
\hline
\end{array} \quad r(X=t, Y, Z): \begin{array}{|cc|c|}
\hline Y & Z & \mathrm{val} \\
\hline \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{f} & \mathrm{f} & 0.8 \\
\hline
\end{array} \\
\\
\\
\end{gathered}
$$

Multiplying factors

The product of factor $f_{1}(\bar{X}, \bar{Y})$ and $f_{2}(\bar{Y}, \bar{Z})$, where \bar{Y} are the variables in common, is the factor $\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})$ defined by:

$$
\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})=f_{1}(\bar{X}, \bar{Y}) f_{2}(\bar{Y}, \bar{Z}) .
$$

Multiplying factors example

Summing out variables

We can sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

$$
\begin{aligned}
& \left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right) \\
& =f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
\end{aligned}
$$

Summing out a variable example

$f_{3}:$| A | B | C | val |
| :--- | :--- | :--- | ---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

$\sum_{B} f_{3}:$| A | C | val |
| :---: | :---: | :---: |
| t | t | 0.57 |
| t | f | 0.43 |
| f | t | 0.54 |
| f | f | 0.46 |

Evidence

If we want to compute the posterior probability of Z given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}$:

$$
\begin{aligned}
& P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{P\left(Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)} \\
& \quad=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{\sum_{z} P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}
\end{aligned}
$$

So the computation reduces to the probability of $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$.
We normalize at the end.

Probability of a conjunction

Suppose the variables of the belief network are X_{1}, \ldots, X_{n}. To compute $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$, we sum out the other variables, $Z_{1}, \ldots, Z_{k}=\left\{X_{1}, \ldots, X_{n}\right\}-\{Z\}-\left\{Y_{1}, \ldots, Y_{j}\right\}$. We order the Z_{i} into an elimination ordering.

$$
\begin{aligned}
P & \left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& =\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} \\
& =\sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \text { parents }\left(X_{i}\right)\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} .
\end{aligned}
$$

Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute $a b+a c$ efficiently?

Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute $a b+a c$ efficiently?
- Distribute out the a giving $a(b+c)$

Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute $a b+a c$ efficiently?
- Distribute out the a giving $a(b+c)$
- How can we compute $\sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ efficiently?

Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute $a b+a c$ efficiently?
- Distribute out the a giving $a(b+c)$
- How can we compute $\sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ efficiently?
- Distribute out those factors that don't involve Z_{1}.

Variable elimination algorithm

To compute $P\left(Z \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the other variables (the $\left\{Z_{1}, \ldots, Z_{k}\right\}$) according to some elimination ordering.
- Multiply the remaining factors. Normalize by dividing the resulting factor $f(Z)$ by $\sum_{Z} f(Z)$.

Summing out a variable

To sum out a variable Z_{j} from a product f_{1}, \ldots, f_{k} of factors:

- Partition the factors into
- those that don't contain Z_{j}, say f_{1}, \ldots, f_{i},
- those that contain Z_{j}, say f_{i+1}, \ldots, f_{k}

We know:

$$
\sum_{z_{j}} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times\left(\sum_{z_{j}} f_{i+1} \times \cdots \times f_{k}\right) .
$$

- Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_{k} by the new factor.

Variable elimination example

Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C

$$
\begin{gathered}
P(G \mid f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A) P(B \mid A) P(C \mid B)(D \mid C) \\
P(E \mid D) P(f \mid E) P(G \mid C) P(H \mid E)
\end{gathered}
$$

Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C

$$
\begin{aligned}
& P(G \mid f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A) P(B \mid A) P(C \mid B)(D \mid C) \\
& =\sum_{C}\left(\sum _ { B } \left(\sum_{A} P(A) P(f \mid E) P(G \mid C) P(H \mid E)\right.\right. \\
& \quad\left(\sum_{D} P(D \mid C)\left(\sum_{E} P(E \mid D) P(f \mid E) \sum_{H} P(H \mid E)\right)\right)
\end{aligned}
$$

