Using Uncertain Knowledge

- Agents don't have complete knowledge about the world.
- Agents need to make decisions based on their uncertainty.
- It isn't enough to assume what the world is like. Example: wearing a seat belt.
- An agent needs to reason about its uncertainty.
- When an agent makes an action under uncertainty, it is gambling \Longrightarrow probability.

Probability

- Probability is an agent's measure of belief in some proposition - subjective probability.
- Example: Your probability of a bird flying is your measure of belief in the flying ability of an individual based only on the knowledge that the individual is a bird.
- Other agents may have different probabilities, as they may have had different experiences with birds or different knowledge about this particular bird.
- An agent's belief in a bird's flying ability is affected by what the agent knows about that bird.

Numerical Measures of Belief

- Belief in proposition, f, can be measured in terms of a number between 0 and 1 - this is the probability of f.
- The probability f is 0 means that f is believed to be definitely false.
- The probability f is 1 means that f is believed to be definitely true.
- Using 0 and 1 is purely a convention.
- f has a probability between 0 and 1 , doesn't mean f is true to some degree, but means you are ignorant of its truth value. Probability is a measure of your ignorance.

Random Variables

- A random variable is a term in a language that can take one of a number of different values.
- The domain of a variable X, written $\operatorname{dom}(X)$, is the set of values X can take.
- A tuple of random variables $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is a complex random variable with domain $\operatorname{dom}\left(X_{1}\right) \times \cdots \times \operatorname{dom}\left(X_{n}\right)$. Often the tuple is written as X_{1}, \ldots, X_{n}.
- Assignment $X=x$ means variable X has value x.
- A proposition is a Boolean formula made from assignments of values to variables.

Possible World Semantics

- A possible world specifies an assignment of one value to each random variable.
- $\omega \models X=x$ means variable X is assigned value x in world ω.
- Logical connectives have their standard meaning:
$\omega \models \alpha \wedge \beta$ if $\omega \models \alpha$ and $\omega \models \beta$
$\omega \models \alpha \vee \beta$ if $\omega \models \alpha$ or $\omega \models \beta$
$\omega \models \neg \alpha$ if $\omega \not \vDash \alpha$
- Let Ω be the set of all possible worlds.

Semantics of Probability: finite case

For a finite number of possible worlds:

- Define a nonnegative measure $\mu(\omega)$ to each world ω so that the measures of the possible worlds sum to 1 . The measure specifies how much you think the world ω is like the real world.
- The probability of proposition f is defined by:

$$
P(f)=\sum_{\omega \models f} \mu(\omega) .
$$

Axioms of Probability: finite case

Three axioms define what follows from a set of probabilities:
Axiom $10 \leq P(f)$ for any formula f. Axiom $2 P(\tau)=1$ if τ is a tautology.
Axiom $3 P(f \vee g)=P(f)+P(g)$ if $\neg(f \wedge g)$ is a tautology.

- These axioms are sound and complete with respect to the semantics.

Semantics of Probability: general case

In the general case, probability defines a measure on sets of possible worlds. We define $\mu(S)$ for some sets $S \subseteq \Omega$ satisfying:

- $\mu(S) \geq 0$
- $\mu(\Omega)=1$
- $\mu\left(S_{1} \cup S_{2}\right)=\mu\left(S_{1}\right)+\mu\left(S_{2}\right)$ if $S_{1} \cap S_{2}=\{ \}$. Or sometimes σ-additivity:

$$
\mu\left(\bigcup_{i} S_{i}\right)=\sum_{i} \mu\left(S_{i}\right) \text { if } S_{i} \cap S_{j}=\{ \} \text { for } i \neq j
$$

Then $P(\alpha)=\mu(\{\omega \mid \omega \models \alpha\})$.

Probability Distributions

- A probability distribution on a random variable X is a function $\operatorname{dom}(X) \rightarrow[0,1]$ such that

$$
x \mapsto P(X=x)
$$

This is written as $P(X)$.

- This also includes the case where we have tuples of variables. E.g., $P(X, Y, Z)$ means $P(\langle X, Y, Z\rangle)$.
- When $\operatorname{dom}(X)$ is infinite sometimes we need a probability density function...

Conditioning

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is the all of the information obtained subsequently, the conditional probability $P(h \mid e)$ of h given e is the posterior probability of h.

Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.
Evidence e induces a new measure, μ_{e}, over possible worlds

$$
\mu_{e}(S)= \begin{cases}c \times \mu(S) & \text { if } \omega \models e \text { for all } \omega \in S \\ 0 & \text { if } \omega \not \models e \text { for all } \omega \in S\end{cases}
$$

We can show $c=\frac{1}{P(e)}$.
The conditional probability of formula h given evidence e is

$$
\begin{aligned}
P(h \mid e) & =\mu_{e}(\{\omega: \omega \models h\}) \\
& =\frac{P(h \wedge e)}{P(e)}
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
& P\left(f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times \\
& P\left(f_{1} \wedge \cdots \wedge f_{n-1}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times \\
& P\left(f_{n-1} \mid f_{1} \wedge \cdots \wedge f_{n-2}\right) \times \\
&= P\left(f_{1} \wedge \cdots \wedge f_{n-2}\right) \\
&= P\left(f_{n} f_{1} \wedge \cdots \wedge f_{n-1}\right) \times \\
& \times \cdots \times P\left(f_{n-1} \mid f_{1} \wedge \cdots \wedge f_{n-2}\right) \\
&= \prod_{i=1}^{n} P\left(f_{1} \wedge f_{2}\right) \times P\left(f_{1} \mid f_{1} \wedge \cdots \wedge f_{i-1}\right) \times P\left(f_{1}\right)
\end{aligned}
$$

Bayes' theorem

The chain rule and commutativity of conjunction ($h \wedge e$ is equivalent to $e \wedge h$) gives us:

$$
\begin{aligned}
P(h \wedge e) & =P(h \mid e) \times P(e) \\
& =P(e \mid h) \times P(h) .
\end{aligned}
$$

If $P(e) \neq 0$, you can divide the right hand sides by $P(e)$:

$$
P(h \mid e)=\frac{P(e \mid h) \times P(h)}{P(e)} .
$$

This is Bayes' theorem.

Why is Bayes' theorem interesting?

- Often you have causal knowledge:
P (symptom | disease)
P (light is off \mid status of switches and switch positions)
P (alarm | fire)
P (image looks like | a tree is in front of a car)
- and want to do evidential reasoning:
P (disease | symptom)
P (status of switches \mid light is off and switch positions)
$P($ fire | alarm $)$.
$P($ a tree is in front of a car \| image looks like $\boldsymbol{+})$

