Using Uncertain Knowledge

@ Agents don't have complete knowledge about the world.
@ Agents need to make decisions based on their uncertainty.

@ It isn't enough to assume what the world is like.
Example: wearing a seat belt.

@ An agent needs to reason about its uncertainty.

@ When an agent makes an action under uncertainty, it is
gambling = probability.
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Probability

@ Probability is an agent’s measure of belief in some
proposition — subjective probability.

@ Example: Your probability of a bird flying is your
measure of belief in the flying ability of an individual
based only on the knowledge that the individual is a bird.

» Other agents may have different probabilities, as they
may have had different experiences with birds or
different knowledge about this particular bird.

» An agent's belief in a bird’s flying ability is affected by
what the agent knows about that bird.
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Numerical Measures of Belief

@ Belief in proposition, f, can be measured in terms of a
number between 0 and 1 — this is the probability of f.
» The probability f is 0 means that f is believed to be

definitely false.
» The probability f is 1 means that f is believed to be

definitely true.
@ Using 0 and 1 is purely a convention.
@ f has a probability between 0 and 1, doesn't mean f is
true to some degree, but means you are ignorant of its
truth value. Probability is a measure of your ignorance.
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Random Variables

@ A random variable is a term in a language that can take
one of a number of different values.

@ The domain of a variable X, written dom(X), is the set
of values X can take.

@ A tuple of random variables (Xi, ..., X,) is a complex
random variable with domain dom(X;) x --- x dom(X,).
Often the tuple is written as Xi, ..., X,,.

@ Assignment X = x means variable X has value x.

@ A proposition is a Boolean formula made from
assignments of values to variables.
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Possible World Semantics

@ A possible world specifies an assignment of one value to
each random variable.

o wkEX=x
means variable X is assigned value x in world w.
@ Logical connectives have their standard meaning:
wkEaANfifwuEFEaandwEp
wEaVififuEFaorwEpf
wkEaifw o
@ Let € be the set of all possible worlds.
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Semantics of Probability: finite case

For a finite number of possible worlds:

@ Define a nonnegative measure p(w) to each world w so
that the measures of the possible worlds sum to 1.
The measure specifies how much you think the world w is
like the real world.

@ The probability of proposition f is defined by:

P =Y ().
wEf
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Axioms of Probability: finite case

Three axioms define what follows from a set of probabilities:
Axiom 1 0 < P(f) for any formula f.
Axiom 2 P(7) =1 if 7 is a tautology.
Axiom 3 P(fVv g)=P(f)+ P(g) if ~(fAg)is
a tautology.

@ These axioms are sound and complete with respect to the
semantics.
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Semantics of Probability: general case

In the general case, probability defines a measure on sets of
possible worlds. We define (S) for some sets S C Q

satisfying:
o u(S)>0
o u(2)=1

(*] [L(Sl U 52) = /1(51) + yJ(Sz) if 51 N 52 = {}
Or sometimes o-additivity:

plUS) =D n(S) F S0 = {} for i

Then P(a) = p({w|w = a}).
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Probability Distributions

@ A probability distribution on a random variable X is a
function dom(X) — [0, 1] such that

x — P(X = x).

This is written as P(X).

@ This also includes the case where we have tuples of
variables. E.g., P(X,Y,Z) means P((X,Y,Z)).

@ When dom(X) is infinite sometimes we need a probability
density function...
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@ Probabilistic conditioning specifies how to revise beliefs
based on new information.

@ You build a probabilistic model taking all background
information into account. This gives the
prior probability.

@ All other information must be conditioned on.

@ If evidence e is the all of the information obtained
subsequently, the conditional probability P(h|e) of h

given e is the posterior probability of h.
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.
Evidence e induces a new measure, ji., over possible worlds

S) cxu(S) fwlEeforalwes
He(S) = 0 fwleforallwes$

We can show ¢ = 1.
The conditional probability of formula h given evidence e is

P(hle) = pe({w:w = h})

P(hAe)
P(e)
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Chain Rule

P(AANBNA...AT)

= P(fIA A Afrg) X
P(fA A Afh1)
= P(flA A A1) X
(f:
(
(
(f:

P n— 1|f1/\ /\fn_Q)X
P(AA-- /\fn_z)
= P(RIA A Afog)x

P n— 1|fi/\ /\fn_2)
x - x P(Blf A B) x P(6|f) x P(f)

n

= J[PEIAA---Afid)
i=1
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Bayes' theorem

The chain rule and commutativity of conjunction (h A e is
equivalent to e A h) gives us:

P(hANe) = P(hle) x P(e)
= P(e|h) x P(h).

If P(e) # 0, you can divide the right hand sides by P(e):

P(elh) x P(h)

Plhle) = ==

This is Bayes' theorem.
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Why is Bayes' theorem interesting?

@ Often you have causal knowledge:
P(symptom | disease)
P(light is off | status of switches and switch positions)
P(alarm | fire)
P(image looks like < | a tree is in front of a car)

@ and want to do evidential reasoning:

P(disease | symptom)

P(status of switches | light is off and switch positions)
P(fire | alarm).
(

P(a tree is in front of a car | image looks like - )
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