Constraint Satisfaction Problems

@ Given a set of variables, each with a set of possible values (a
domain), assign a value to each variable that either

> satisfies some set of constraints: satisfiability problems —
“hard constraints”

> minimizes some cost function, where each assignment of
values to variables has some cost: optimization problems —
“soft constraints”

@ Many problems are a mix of hard and soft constraints.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 1



Relationship to Search

@ The path to a goal isn’t important, only the solution is.

@ Many algorithms exploit the multi-dimensional nature of the
problems.

@ There are no predefined starting nodes.

@ Often these problems are huge, with thousands of variables, so
systematically searching the space is infeasible.

@ For optimization problems, there are no well-defined goal
nodes.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 2



Posing a Constraint Satisfaction Problem

A CSP is characterized by
@ A set of variables V4, Vo, ..., V,.

@ Each variable V; has an associated domain Dy, of possible
values.

e For satisfiability problems, there are constraints on various
subsets of the variables which specify legal combinations of
values for these variables.

@ A solution to the CSP is an n-tuple of values for the variables
that satisfies all the constraints.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 3



Example: scheduling activities

e Variables: A, B, C, D, E that represent the starting times of
various activities.

e Domains: Da={1,2,3,4}, Dg ={1,2,3,4},
D¢ = {1,2,3,4}, Dp = {1,2,3,4}, D¢ = {1,2,3,4}

o Constraints:
(B#E3)AN(CHE2)N(A#B)AN(B#C)A

(C<D)A(A=D)A(E <A A(E < B) A
(E < C)A(E < D) A (B # D).

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 4



Generate-and-Test Algorithm

@ Generate the assignment space D =Dy, x Dy, x ... x Dy,.
Test each assignment with the constraints.

o Example:

D = DiypxDgxD¢ecxDpxDg
= {1,2,3,4} x {1,2,3,4} x {1,2,3,4}
x{1,2,3,4} x{1,2,3,4}
= {(1,1,1,1,1),(1,1,1,1,2),...,(4,4,4 4, 4)}.

@ Generate-and-test is always exponential in the number of
variables.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 5



Backtracking Algorithms

@ Systematically explore D by instantiating the variables one at
a time

@ evaluate each constraint predicate as soon as all its variables
are bound

@ any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Assignment A= 1A B =1 is inconsistent with
constraint A # B regardless of the value of the other variables.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 6



CSP as Graph Searching

A CSP can be represented as a graph-searching algorithm:
@ A node is an assignment values to some of the variables.

@ Suppose node N is the assignment X1 = vq,..., Xk = k.
Select a variable Y that isn't assigned in .
For each value y; € dom(Y') there is a neighbour
X1 =vi,..., Xk = v, Y = y; if this assignment is consistent
with the constraints on these variables.

@ The start node is the empty assignment.

@ A goal node is a total assignment that satisfies the constraints.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 7



Consistency Algorithms

@ Idea: prune the domains as much as possible before selecting
values from them.

@ A variable is domain consistent if no value of the domain of
the node is ruled impossible by any of the constraints.

e Example: Dg ={1,2,3,4} isn't domain consistent as B = 3
violates the constraint B # 3.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 8



Constraint Network

@ There is a oval-shaped node for each variable.
@ There is a rectangular node for each constraint.

@ There is a domain of values associated with each variable
node.

@ There is an arc from variable X to each constraint that
involves X.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 9



Example Constraint Network

A#B

. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 10



Arc Consistency

e Anarc (X,r(X,Y)) is arc consistent if, for each value
x € dom(X), there is some value y € dom(Y’) such that
r(x,y) is satisfied.

@ A network is arc consistent if all its arcs are arc consistent.

e If an arc (X, r(X,Y)) is not arc consistent, all values of X in

dom(X) for which there is no corresponding value in dom(Y)
may be deleted from dom(X) to make the arc (X, r(X,Y))
consistent.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 11



Arc Consistency Algorithm

@ The arcs can be considered in turn making each arc consistent.

e An arc (X, r(X,Y)) needs to be revisited if the domain of
one of the Y's is reduced.

@ Three possible outcomes (when all arcs are arc consistent):

>

>

>

One domain is empty = no solution

Each domain has a single value = unique solution

Some domains have more than one value = there may or
may not be a solution

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 12



Finding solutions when AC finishes

o If some domains have more than one element = search
@ Split a domain, then recursively solve each half.
@ We only need to revisit arcs affected by the split.

@ It is often best to split a domain in half.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 13



Example: Crossword Puzzle

Words:

ant, big, bus, car, has
book, buys, hold,
lane, year

4 beast, ginger, search,
symbol, syntax

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 14



