
Constraint Satisfaction Problems

Given a set of variables, each with a set of possible values (a
domain), assign a value to each variable that either

I satisfies some set of constraints: satisfiability problems —
“hard constraints”

I minimizes some cost function, where each assignment of
values to variables has some cost: optimization problems —
“soft constraints”

Many problems are a mix of hard and soft constraints.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 1



Relationship to Search

The path to a goal isn’t important, only the solution is.

Many algorithms exploit the multi-dimensional nature of the
problems.

There are no predefined starting nodes.

Often these problems are huge, with thousands of variables, so
systematically searching the space is infeasible.

For optimization problems, there are no well-defined goal
nodes.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 2



Posing a Constraint Satisfaction Problem

A CSP is characterized by

A set of variables V1, V2, . . . ,Vn.

Each variable Vi has an associated domain DVi
of possible

values.

For satisfiability problems, there are constraints on various
subsets of the variables which specify legal combinations of
values for these variables.

A solution to the CSP is an n-tuple of values for the variables
that satisfies all the constraints.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 3



Example: scheduling activities

Variables: A, B, C , D, E that represent the starting times of
various activities.

Domains: DA = {1, 2, 3, 4}, DB = {1, 2, 3, 4},
DC = {1, 2, 3, 4}, DD = {1, 2, 3, 4}, DE = {1, 2, 3, 4}
Constraints:

(B 6= 3) ∧ (C 6= 2) ∧ (A 6= B) ∧ (B 6= C ) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C ) ∧ (E < D) ∧ (B 6= D).

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 4



Generate-and-Test Algorithm

Generate the assignment space D = DV1 ×DV2 × . . .×DVn .
Test each assignment with the constraints.

Example:

D = DA ×DB ×DC ×DD ×DE

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
×{1, 2, 3, 4} × {1, 2, 3, 4}

= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.

Generate-and-test is always exponential in the number of
variables.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 5



Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Assignment A = 1 ∧ B = 1 is inconsistent with
constraint A 6= B regardless of the value of the other variables.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 6



CSP as Graph Searching

A CSP can be represented as a graph-searching algorithm:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y ) there is a neighbour
X1 = v1, . . . ,Xk = vk , Y = yi if this assignment is consistent
with the constraints on these variables.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 7



Consistency Algorithms

Idea: prune the domains as much as possible before selecting
values from them.

A variable is domain consistent if no value of the domain of
the node is ruled impossible by any of the constraints.

Example: DB = {1, 2, 3, 4} isn’t domain consistent as B = 3
violates the constraint B 6= 3.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 8



Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 9



Example Constraint Network

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 10



Arc Consistency

An arc
〈
X , r(X , Y )

〉
is arc consistent if, for each value

x ∈ dom(X ), there is some value y ∈ dom(Y ) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

If an arc
〈
X , r(X , Y )

〉
is not arc consistent, all values of X in

dom(X ) for which there is no corresponding value in dom(Y )
may be deleted from dom(X ) to make the arc

〈
X , r(X , Y )

〉
consistent.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 11



Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

An arc
〈
X , r(X , Y )

〉
needs to be revisited if the domain of

one of the Y ’s is reduced.

Three possible outcomes (when all arcs are arc consistent):
I One domain is empty =⇒ no solution
I Each domain has a single value =⇒ unique solution
I Some domains have more than one value =⇒ there may or

may not be a solution

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 12



Finding solutions when AC finishes

If some domains have more than one element =⇒ search

Split a domain, then recursively solve each half.

We only need to revisit arcs affected by the split.

It is often best to split a domain in half.

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 13



Example: Crossword Puzzle

1 2

3

4

Words:

ant, big, bus, car, has
book, buys, hold,
lane, year
beast, ginger, search,
symbol, syntax

c©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.1, Page 14


