
Summary of Search Strategies

Strategy Frontier Selection Halts? Space

Depth-first Last node added No Linear
Breadth-first First node added Yes Exp
Heuristic depth-first Local min h(n) No Linear
Best-first Global min h(n) No Exp
Lowest-cost-first Minimal cost(n) Yes Exp
A∗ Minimal f (n) Yes Exp
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Cycle Checking

s

A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

Using depth-first methods, with the graph explicitly stored,
this can be done in constant time.

For other methods, the cost is linear in path length.
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Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

Multiple-path pruning subsumes a cycle check.

This entails storing all nodes it has found paths to.

Want to guarantee that an optimal solution can still be found.
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

remove all paths from the frontier that use the longer path.

change the initial segment of the paths on the frontier to use
the shorter path.

ensure this doesn’t happen. Make sure that the shortest path
to a node is found first.
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Multiple-Path Pruning & A∗

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

cost(p) + h(n) ≤ cost(p′) + h(n′) because p was selected
before p′.

cost(p′) + cost(n′, n) < cost(p) because the path to n via p′

is shorter.

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

You can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.4, Page 5



Monotone Restriction

Heuristic function h satisfies the monotone restriction if
|h(m)− h(n)| ≤ cost(m, n) for every arc 〈m, n〉.
If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds the shortest path to a goal.

This is a strengthening of the admissibility criterion.
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Iterative Deepening

So far all search strategies that are guaranteed to halt use
exponential space.

Idea: let’s recompute elements of the frontier rather than
saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.

You need a depth-bounded depth-first searcher.

If a path cannot be found at depth B, look for a path at
depth B + 1. Increase the depth-bound when the search fails
unnaturally (depth-bound was reached).
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Iterative-deepening search

Boolean natural failure;
Procedure dbsearch(〈n0, . . . , nk〉 : path, bound : int):

if goal(nk) and bound = 0 report path 〈n0, . . . , nk〉;
if bound > 0

for each neighbor n of nk
dbsearch(〈n0, . . . , nk , n〉 , bound − 1);

else if nk has a neighbor then natural failure := false;
end procedure dbsearch;
Procedure idsearch(S : node):

Integer bound := 0;
repeat
natural failure := true;
dbsearch(〈s〉 , bound);
bound := bound + 1;

until natural failure;
end procedure idsearch
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Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

level breadth-first iterative deepening # nodes

1 1 k b
2 1 k − 1 b2

k − 1 1 2 bk−1

k 1 1 bk

≥ bk ≤ bk
(

b
b−1

)2
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Depth-first Branch-and-Bound

Way to combine depth-first search with heuristic information.

Finds optimal solution.

Most useful when there are multiple solutions, and we want
an optimal one.

Uses the space of depth-first search.
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Depth-first Branch-and-Bound

Idea: maintain the cost of the lowest-cost path found to a
goal so far, call this bound .

If the search encounters a path p such that
cost(p) + h(p) ≥ bound , path p can be pruned.

If a non-pruned path to a goal is found, it must be better than
the previous best path. This new solution is remembered and
bound is set to its cost.

The search can be a depth-first search to save space.

How should the bound be initialized?
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Depth-first Branch-and-Bound: Initializing Bound

The bound can be initialized to ∞.

The bound can be set to an estimate of the optimal path
cost. After depth-first search terminates either:

I A solution was found.
I No solution was found, and no path was pruned
I No solution was found, and a path was pruned.
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Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: sometimes when graph is dynamically constructed, you
may not be able to construct the backwards graph.
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Bidirectional Search

You can search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk . This can result in an exponential
saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with one breadth-first method that builds a
set of locations that can lead to the goal. In the other
direction another method can be used to find a path to these
interesting locations.
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Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

You can solve the subproblems using islands =⇒
hierarchy of abstractions.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.4, Page 16



Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the
actual distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

This can be used locally to determine what to do.
There are two main problems:

You need enough space to store the graph.

The dist function needs to be recomputed for each goal.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.4, Page 17


