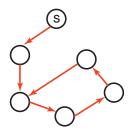
Summary of Search Strategies

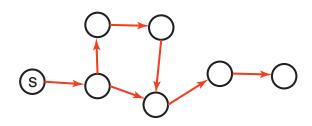
Strategy	Frontier Selection	Halts?	Space
Depth-first	Last node added	No	Linear
Breadth-first	First node added	Yes	Exp
Heuristic depth-first	Local min $h(n)$	No	Linear
Best-first	Global min $h(n)$	No	Exp
Lowest-cost-first	Minimal cost(n)	Yes	Exp
A*	Minimal $f(n)$	Yes	Exp

Cycle Checking



- A searcher can prune a path that ends in a node already on the path, without removing an optimal solution.
- Using depth-first methods, with the graph explicitly stored, this can be done in constant time.
- For other methods, the cost is linear in path length.

Multiple-Path Pruning



- Multiple path pruning: prune a path to node n that the searcher has already found a path to.
- Multiple-path pruning subsumes a cycle check.
- This entails storing all nodes it has found paths to.
- Want to guarantee that an optimal solution can still be found.

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first path to n?

- remove all paths from the frontier that use the longer path.
- change the initial segment of the paths on the frontier to use the shorter path.
- ensure this doesn't happen. Make sure that the shortest path to a node is found first.

Multiple-Path Pruning & A*

- Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p' on the frontier.
- Suppose path p' ends at node n'.
- $cost(p) + h(n) \le cost(p') + h(n')$ because p was selected before p'.
- cost(p') + cost(n', n) < cost(p) because the path to n via p' is shorter.

$$cost(n', n) < cost(p) - cost(p') \le h(n') - h(n).$$

You can ensure this doesn't occur if $|h(n') - h(n)| \le cost(n', n)$.

Monotone Restriction

- Heuristic function h satisfies the monotone restriction if $|h(m) h(n)| \le cost(m, n)$ for every arc $\langle m, n \rangle$.
- If h satisfies the monotone restriction, A* with multiple path pruning always finds the shortest path to a goal.
- This is a strengthening of the admissibility criterion.

Iterative Deepening

- So far all search strategies that are guaranteed to halt use exponential space.
- Idea: let's recompute elements of the frontier rather than saving them.
- Look for paths of depth 0, then 1, then 2, then 3, etc.
- You need a depth-bounded depth-first searcher.
- If a path cannot be found at depth B, look for a path at depth B+1. Increase the depth-bound when the search fails unnaturally (depth-bound was reached).

Iterative-deepening search

```
Boolean natural_failure:
Procedure dbsearch(\langle n_0, \ldots, n_k \rangle : path, bound : int):
     if goal(n_k) and bound = 0 report path \langle n_0, \ldots, n_k \rangle;
     if bound > 0
        for each neighbor n of n_k
                  dbsearch(\langle n_0,\ldots,n_k,n\rangle,bound-1);
     else if n_k has a neighbor then natural_failure := false;
end procedure dbsearch;
Procedure idsearch(S : node):
     Integer bound := 0:
     repeat
        natural_failure := true:
        dbsearch(\langle s \rangle, bound);
        bound := bound + 1:
     until natural_failure;
end procedure idsearch
```

Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

level	breadth-first	iterative deepening	# nodes
1	1	k	Ь
2	1	k-1	b^2
k-1	1	2	b^{k-1} b^k
k	1	1	b^k
	$\geq b^k$	$\leq b^k \left(\frac{b}{b-1}\right)^2$	

Depth-first Branch-and-Bound

- Way to combine depth-first search with heuristic information.
- Finds optimal solution.
- Most useful when there are multiple solutions, and we want an optimal one.
- Uses the space of depth-first search.

Depth-first Branch-and-Bound

- Idea: maintain the cost of the lowest-cost path found to a goal so far, call this bound.
- If the search encounters a path p such that $cost(p) + h(p) \ge bound$, path p can be pruned.
- If a non-pruned path to a goal is found, it must be better than the previous best path. This new solution is remembered and bound is set to its cost.
- The search can be a depth-first search to save space.

Depth-first Branch-and-Bound

- Idea: maintain the cost of the lowest-cost path found to a goal so far, call this bound.
- If the search encounters a path p such that $cost(p) + h(p) \ge bound$, path p can be pruned.
- If a non-pruned path to a goal is found, it must be better than the previous best path. This new solution is remembered and bound is set to its cost.
- The search can be a depth-first search to save space.
- How should the bound be initialized?

Depth-first Branch-and-Bound: Initializing Bound

- The bound can be initialized to ∞ .
- The bound can be set to an estimate of the optimal path cost. After depth-first search terminates either:
 - A solution was found.
 - No solution was found, and no path was pruned
 - No solution was found, and a path was pruned.

Direction of Search

- The definition of searching is symmetric: find path from start nodes to goal node or from goal node to start nodes.
- Forward branching factor: number of arcs out of a node.
- Backward branching factor: number of arcs into a node.
- Search complexity is b^n . Should use forward search if forward branching factor is less than backward branching factor, and vice versa.
- Note: sometimes when graph is dynamically constructed, you
 may not be able to construct the backwards graph.

Bidirectional Search

- You can search backward from the goal and forward from the start simultaneously.
- This wins as $2b^{k/2} \ll b^k$. This can result in an exponential saving in time and space.
- The main problem is making sure the frontiers meet.
- This is often used with one breadth-first method that builds a set of locations that can lead to the goal. In the other direction another method can be used to find a path to these interesting locations.

Island Driven Search

Idea: find a set of islands between s and g.

$$s \longrightarrow i_1 \longrightarrow i_2 \longrightarrow \ldots \longrightarrow i_{m-1} \longrightarrow g$$

There are *m* smaller problems rather than 1 big problem.

- This can win as $mb^{k/m} \ll b^k$.
- The problem is to identify the islands that the path must pass through. It is difficult to guarantee optimality.
- You can solve the subproblems using islands hierarchy of abstractions.

Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the actual distance of the shortest path from node n to a goal. This can be built backwards from the goal:

$$dist(n) = \begin{cases} 0 & \text{if } is_goal(n), \\ \min_{\langle n,m\rangle \in A}(|\langle n,m\rangle| + dist(m)) & \text{otherwise.} \end{cases}$$

This can be used locally to determine what to do.

There are two main problems:

- You need enough space to store the graph.
- The dist function needs to be recomputed for each goal.

