Summary of Search Strategies

Strategy Frontier Selection | Halts? | Space
Depth-first Last node added | No Linear
Breadth-first First node added | Yes Exp
Heuristic depth-first | Local min h(n) No Linear
Best-first Global min h(n) | No Exp
Lowest-cost-first Minimal cost(n) | Yes Exp
A* Minimal f(n) Yes Exp
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Cycle Checking

S

@ A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

@ Using depth-first methods, with the graph explicitly stored,
this can be done in constant time.

o For other methods, the cost is linear in path length.
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Multiple-Path Pruning

@ Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

@ Multiple-path pruning subsumes a cycle check.
@ This entails storing all nodes it has found paths to.
@ Want to guarantee that an optimal solution can still be found.
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?
@ remove all paths from the frontier that use the longer path.
@ change the initial segment of the paths on the frontier to use
the shorter path.

@ ensure this doesn’t happen. Make sure that the shortest path
to a node is found first.
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Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p’ on the frontier.

@ Suppose path p’ ends at node n’.

e cost(p) + h(n) < cost(p’) + h(n’) because p was selected
before p’.

e cost(p’) + cost(n’, n) < cost(p) because the path to n via p/
is shorter.

cost(n', n) < cost(p) — cost(p’) < h(n") — h(n).

You can ensure this doesn’t occur if
|h(n") — h(n)| < cost(n’, n).
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ne Restriction

@ Heuristic function h satisfies the monotone restriction if
|h(m) — h(n)| < cost(m, n) for every arc (m, n).

@ If h satisfies the monotone restriction, A* with multiple path
pruning always finds the shortest path to a goal.

@ This is a strengthening of the admissibility criterion.
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Iterative Deepening

@ So far all search strategies that are guaranteed to halt use
exponential space.

@ l|dea: let's recompute elements of the frontier rather than
saving them.

@ Look for paths of depth 0, then 1, then 2, then 3, etc.
@ You need a depth-bounded depth-first searcher.

@ If a path cannot be found at depth B, look for a path at
depth B + 1. Increase the depth-bound when the search fails
unnaturally (depth-bound was reached).
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lterative-deepening search

Boolean natural_failure;
Procedure dbsearch({(no, ..., ng) : path, bound : int):
if goal(ny) and bound = 0 report path (no, ..., ng);
if bound >0
for each neighbor n of ny
dbsearch({ng, ..., ng, ny, bound — 1);
else if nx has a neighbor then natural_failure := false;
end procedure dbsearch;
Procedure idsearch(S : node):
Integer bound := 0;
repeat
natural_failure := true;
dbsearch((s) , bound);
bound := bound + 1;
until natural _failure;
end procedure idsearch
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Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

level | breadth-first | iterative deepening | # nodes
1 1 k b
2 1 k—1 b?
k—1]1 2 bk—1
k 1 1 b*
)
v | ()
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Depth-first Branch-and-Bound

@ Way to combine depth-first search with heuristic information.
e Finds optimal solution.

@ Most useful when there are multiple solutions, and we want
an optimal one.

@ Uses the space of depth-first search.
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Depth-first Branch-and-Bound

@ ldea: maintain the cost of the lowest-cost path found to a
goal so far, call this bound.

@ If the search encounters a path p such that
cost(p) + h(p) > bound, path p can be pruned.

@ If a non-pruned path to a goal is found, it must be better than
the previous best path. This new solution is remembered and
bound is set to its cost.

@ The search can be a depth-first search to save space.
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Depth-first Branch-and-Bound

@ ldea: maintain the cost of the lowest-cost path found to a
goal so far, call this bound.

@ If the search encounters a path p such that
cost(p) + h(p) > bound, path p can be pruned.

@ If a non-pruned path to a goal is found, it must be better than
the previous best path. This new solution is remembered and
bound is set to its cost.

@ The search can be a depth-first search to save space.

@ How should the bound be initialized?
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Depth-first Branch-and-Bound: Initializing Bound

@ The bound can be initialized to oc.
@ The bound can be set to an estimate of the optimal path
cost. After depth-first search terminates either:
» A solution was found.
» No solution was found, and no path was pruned
» No solution was found, and a path was pruned.
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Direction of Search

@ The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

@ Forward branching factor: number of arcs out of a node.

@ Backward branching factor: number of arcs into a node.

@ Search complexity is b". Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

@ Note: sometimes when graph is dynamically constructed, you
may not be able to construct the backwards graph.
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Bidirectional Search

@ You can search backward from the goal and forward from the
start simultaneously.

e This wins as 2b/2 <« b¥. This can result in an exponential
saving in time and space.

@ The main problem is making sure the frontiers meet.

@ This is often used with one breadth-first method that builds a
set of locations that can lead to the goal. In the other
direction another method can be used to find a path to these
interesting locations.
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Island Driven Search

@ Idea: find a set of islands between s and g.
S—ip—h—...—ipn1—&

There are m smaller problems rather than 1 big problem.

@ This can win as mb*/™ < bk,

@ The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

@ You can solve the subproblems using islands —>
hierarchy of abstractions.
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Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the
actual distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

0 if is_goal(n),
ming, myea(|{n, m)| + dist(m)) otherwise.

dist(n) = {

This can be used locally to determine what to do.
There are two main problems:

@ You need enough space to store the graph.

@ The dist function needs to be recomputed for each goal.
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