
Heuristic Search

Idea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to guide the
search: heuristics.

h(n) is an estimate of the cost of the shortest path from
node n to a goal node.

h(n) uses only readily obtainable information (that is easy to
compute) about a node.

h can be extended to paths: h(〈n0, . . . , nk〉) = h(nk).

h(n) is an underestimate if there is no path from n to a goal
that has path length less than h(n).

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 1



Example Heuristic Functions

If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

If the nodes are locations and cost is time, we can use the
distance to a goal divided by the maximum speed.

If the goal is to collect all of the coins and not run out of fuel,
the cost is an estimate of how many steps it will take to
collect the rest of the coins, refuel when necessary, and return
to goal position.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 2



Best-first Search

Idea: select the path whose end is closest to a goal according
to the heuristic function.

Best-first search selects a path on the frontier with minimal
h-value.

It treats the frontier as a priority queue ordered by h.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 3



Illustrative Graph — Best-first Search

g

s

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 4



Complexity of Best-first Search

It uses space exponential in path length.

It isn’t guaranteed to find a solution, even if one exists.

It doesn’t always find the shortest path.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 5



A∗ Search

A∗ search uses both path cost and heuristic values

cost(p) is the cost of path p.

h(p) estimates the cost from the end of p to a goal.

Let f (p) = cost(p) + h(p). f (p) estimates the total path cost
of going from a start node to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f (p)

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 6



A∗ Search Algorithm

A∗ is a mix of lowest-cost-first and best-first search.

It treats the frontier as a priority queue ordered by f (p).

It always selects the node on the frontier with the lowest
estimated distance from the start to a goal node constrained
to go via that node.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 7



Admissibility of A∗

If there is a solution, A∗ always finds an optimal solution —the
first path to a goal selected— if

the branching factor is finite

arc costs are bounded above zero (there is some ε > 0 such
that all of the arc costs are greater than ε), and

h(n) is an underestimate of the length of the shortest path
from n to a goal node.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 8



Why is A∗ admissible?

If a path p to a goal is selected from a frontier, can there be a
shorter path to a goal?

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 9



Why is A∗ admissible?

There is always an element of an optimal solution path on the
frontier before a goal has been selected. This is because, in
the abstract search algorithm, there is the initial part of every
path to a goal.

A∗ halts, as the costs of the paths on the frontier keeps
increasing, and will eventually exceed any finite number.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.3, Page 10


