Depth-first Search

@ Depth-first search treats the frontier as a stack

@ It always selects one of the last elements added to the frontier.
o If the list of paths on the frontier is [p1, p2, .. ]

» p; is selected. Paths that extend p; are added to the front of
the stack (in front of py).
> po is only selected when all paths from p; have been explored.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 1



lllustrative Graph — Depth-first Search

o
/ \
/@\ /O\

@@@é@.ib obb Oobb

ofo Jollefe
@@o@ ©§> o b@




Complexity of Depth-first Search

@ Depth-first search isn’'t guaranteed to halt on infinite graphs
or on graphs with cycles.

@ The space complexity is linear in the size of the path being
explored.

@ Search is unconstrained by the goal until it happens to
stumble on the goal.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 3



Breadth-first Search

o Breadth-first search treats the frontier as a queue.

@ It always selects one of the earliest elements added to the
frontier.
o If the list of paths on the frontier is [p1, p2, ..., prl:

» pi is selected. Its neighbors are added to the end of the queue,
after p,.
> po is selected next.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 4



lllustrative Graph — Breadth-first Search

©
/ \
/@\ /@\

@.6©o.b® oéb @oib

S O Jollefe
OOOO Qi) o b@




Complexity of Breadth-first Search

@ The branching factor of a node is the number of its
neighbors.

@ If the branching factor for all nodes is finite, breadth-first
search is guaranteed to find a solution if one exists.
It is guaranteed to find the path with fewest arcs.

@ Time complexity is exponential in the path length:
b", where b is branching factor, n is path length.

@ The space complexity is exponential in path length: b".
@ Search is unconstrained by the goal.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 6



Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of
a path is the sum of the costs of its arcs.

k

cost({(ng,...,nk)) = Z [(ni-1, ni)|

i=1

o At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

The frontier is a priority queue ordered by path cost.

It finds a least-cost path to a goal node.

When arc costs are equal = breadth-first search.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 7



