
Depth-first Search

Depth-first search treats the frontier as a stack

It always selects one of the last elements added to the frontier.

If the list of paths on the frontier is [p1, p2, . . .]
I p1 is selected. Paths that extend p1 are added to the front of

the stack (in front of p2).
I p2 is only selected when all paths from p1 have been explored.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 1

Illustrative Graph — Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 2

Complexity of Depth-first Search

Depth-first search isn’t guaranteed to halt on infinite graphs
or on graphs with cycles.

The space complexity is linear in the size of the path being
explored.

Search is unconstrained by the goal until it happens to
stumble on the goal.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 3

Breadth-first Search

Breadth-first search treats the frontier as a queue.

It always selects one of the earliest elements added to the
frontier.

If the list of paths on the frontier is [p1, p2, . . . , pr]:
I p1 is selected. Its neighbors are added to the end of the queue,

after pr .
I p2 is selected next.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 4

Illustrative Graph — Breadth-first Search

1

2 3

4 5 6 7

8 9 10 11 12 13 14

15 16

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 5

Complexity of Breadth-first Search

The branching factor of a node is the number of its
neighbors.

If the branching factor for all nodes is finite, breadth-first
search is guaranteed to find a solution if one exists.
It is guaranteed to find the path with fewest arcs.

Time complexity is exponential in the path length:
bn, where b is branching factor, n is path length.

The space complexity is exponential in path length: bn.

Search is unconstrained by the goal.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 6

Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of
a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni 〉|

At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

The frontier is a priority queue ordered by path cost.

It finds a least-cost path to a goal node.

When arc costs are equal =⇒ breadth-first search.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.2, Page 7

