Searching

- Often we are not given an algorithm to solve a problem, but only a specification of what is a solution - we have to search for a solution.
- A typical problem is when the agent is in one state, it has a set of deterministic actions it can carry out, and wants to get to a goal state.
- Many AI problems can be abstracted into the problem of finding a path in a directed graph.
- Often there is more than one way to represent a problem as a graph.

Directed Graphs

- A graph consists of a set N of nodes and a set A of ordered pairs of nodes, called arcs.
- Node n_{2} is a neighbor of n_{1} if there is an arc from n_{1} to n_{2}. That is, if $\left\langle n_{1}, n_{2}\right\rangle \in A$.
- A path is a sequence of nodes $\left\langle n_{0}, n_{1}, \ldots, n_{k}\right\rangle$ such that $\left\langle n_{i-1}, n_{i}\right\rangle \in A$.
- Given a set of start nodes and goal nodes, a solution is a path from a start node to a goal node.
- Often there is a cost associated with arcs and the cost of a path is the sum of the costs of the arcs in the path.

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of room 123.

Graph for the Delivery Robot

Partial Search Space for a Video Game

Grid game: collect coins $C_{1}, C_{2}, C_{3}, C_{4}$, don't run out of fuel, and end up at location $(1,1)$:

Partial Search Space for a Video Game

Grid game: collect coins $C_{1}, C_{2}, C_{3}, C_{4}$, don't run out of fuel, and end up at location $(1,1)$:

State:
$\langle X$-pos, Y-pos,Fuel,C1,C2,C3,C4 \rangle

Graph Searching

- Generic search algorithm: given a graph, start nodes, and goal nodes, incrementally explore paths from the start nodes.
- Maintain a frontier of paths from the start node that have been explored.
- As search proceeds, the frontier expands into the unexplored nodes until a goal node is encountered.
- The way in which the frontier is expanded defines the search strategy.

Problem Solving by Graph Searching

Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal (n) that tests if n is a goal node.
frontier $:=\{\langle s\rangle: s$ is a start node $\}$;
while frontier is not empty:
select and remove path $\left\langle n_{0}, \ldots, n_{k}\right\rangle$ from frontier;
if goal $\left(n_{k}\right)$
return $\left\langle n_{0}, \ldots, n_{k}\right\rangle$;
for every neighbor n of n_{k} add $\left\langle n_{0}, \ldots, n_{k}, n\right\rangle$ to frontier;

end while

- We assume that after the search algorithm returns an answer, it can be asked for more answers and the procedure continues.
- Which value is selected from the frontier at each stage defines the search strategy.
- The neighbors define the graph.
- goal defines what is a solution.

