Probabilistic Relational Models

Often we want a random variable for each individual in a
population
build a probabilistic model before knowing the individuals

@ learn the model for one set of individuals
@ apply the model to new individuals
°

allow complex relationships between individuals
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Predicting students errors

X2 X1
+ 2y
z3 22 A
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Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A
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Predicting students errors

Knows_Add

X2 X1
+ 2 n
z3 Z2 7

What if there were multiple digits
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Predicting students errors

Knows_Add

X2 X1
+ 2 n
z3 Z2 7

What if there were multiple digits, problems

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 14.3, Page 5



Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A

What if there were multiple digits, problems, students
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Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A

What if there were multiple digits, problems, students, times?
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Predicting students errors

Knows_Add

X2 X1
+ 2y
z3 22 A

What if there were multiple digits, problems, students, times? How
can we build a model before we know the individuals?
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Multi-digit addition with parametrized BNs / plates

ST
knows_add(S.T)

Xj, X2 X1 /
+ Y, o Yen
Z oz a | QD———RGers

Parametrized Random Variables: x(D, P), y(D, P),
knows_carry(S, T), knows_add(S, T), ¢(D,P,S, T),
z(D,P,S, T) for digit D, problem P, student S, time T.
There is a random variable for each assignment of a value to D
and a value to P in x(D, P)....
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Representing Conditional Probabilities

o P(knows_adn(X)|bright(X), taught_adn(X)) —
parameter sharing — individuals share probability
parameters.

o P(happy(X)|friend(X,Y), mean(Y)) — needs aggregation
— happy(a) depends on an unbounded number of parents.

@ the carry of one digit depends on carry of the previous digit

@ probability that two authors collaborate depends on whether
they have a paper authored together
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Independent Choice Logic

@ A language for first-order probabilistic models.

@ lIdea : combine logic and probability, where all uncertainty in
handled in terms of Bayesian decision theory, and a logic
program specifies consequences of choices.

@ Parametrized random variables are represented as logical
atoms, and the plates correspond to logical variables.
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Independent Choice Logic

@ An alternative is a set of ground atomic formulas.
C, the choice space is a set of disjoint alternatives.

e F, the facts is a logic program that gives consequences of
choices.

@ Py a probability distribution over alternatives:

VAEC > Po(a)=1.

acA
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Meaningless Example

C = {{c1, e, c3},{b1, b2}}

.F:{f(—cl/\bl, f < c3 A by,
d <+ c, d <+ ~c A by,
e+ f, e+ ~d}

Po(Cl) =05 PO(C2) =0.3 Po(C3) =0.2
Po(b1) = 0.9 Py(by) = 0.1
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Semantics of ICL

@ There is a possible world for each selection of one element
from each alternative.

@ The logic program together with the selected atoms specifies
what is true in each possible world.

@ The elements of different alternatives are independent.
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Meaningless Example: Semantics

.FZ{f(—Cl/\bl, f(—C3/\b2,
d <+ c, d <+ ~cy A by,
e+ f, e+ ~d}

Po(Cl) =0.5 PO(C2) =0.3 Po(C3) =0.2
Po(b1) = 0.9 Py(by) = 0.1

selection logic program
— —_—

w1 |: C1 b1 f d € P(Wl) =0.45
wo E ¢ b ~f ~d e P(w,) = 0.27
w3 |: C3 b1 ~f d ~e P(W3) =0.18
Wy ’: C1 b2 ~f d ~e P(W4) = 0.05
Whs ': ()] b2 ~f ~d e P(W5) =0.03
We ): C3 b2 f ~d e P(W6) =0.02

P(e) = 0.45 + 0.27 +0.03 4 0.02 = 0.77

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 14.3, Page 15



Belief Networks, Decision trees and ICL rules

@ There is a local mapping from belief networks into ICL.

@ Rules can represent decision tree representation of conditional

probabilities:
A
7\
C B
\ I\ e« aAbAh. Po(h1) = 0.7
0.3 /D\0-2 0.7 e an~bAh. Po(hp) = 0.2
05 0.9 e« ~aANcAdA h3. Po(h3) =09
e+ ~aANcA~dAhy. Py(hs) =05
P(elA,B,C,D) e <+ ~aA~cA hs. Po(hs) = 0.3
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Example: Multi-digit addition

S,T

DP X
Xj, X2 X1 /—’
t Y. o y2en

z
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ICL rules for multi-digit addition

Z(D7P757T):V% Z(D,P,S,T):V%
x(D,P) = Vx A knows_add(S, T) A
y(D,P) = VyA mistake(D, P, S, T) A
c¢(D,P,5, T)=VcA selectDig(D,P,S, T) = V.
knows_add(S, T) A z(D,P,S, T)=V «
—mistake(D,P,S, T) A —knows_add(S, T) A
Vis (Vx + Vy + Vc) div 10. selectDig(D,P,S, T) = V.

Alternatives:

VDPST{noMistake(D, P, S, T), mistake(D, P,S, T)}
VDPST {selectDig(D,P,S, T) =V | V € {0..9}}
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