
CS636 - Data Warehouse

Aggregations in SQL

Enrico Franconi

franconi@inf.unibz.it

http://www.inf.unibz.it/˜franconi

Faculty of Computer Science, Free University of Bozen-Bolzano

(1/19)



Aggregate Functions in SQL

Aggregation is an operation that computes a single value from all the values of an

attribute.

SQL provides five functions that apply to an attribute of a relation and produce

some aggregation of that column.

• SUM: Computes the sum of values in a attribute.

• AVG: Computes the average of values in a attribute.

• MIN: Computes the least value in a attribute.

• MAX: Computes the greatest value in a attribute.

• COUNT: Computes the number of values in a attribute (including duplicates

unless they are explicitly eliminated with DISTINCT).

(2/19)



Example Database

DEPARTMENT(DNUMBER, DNAME)

EMPLOYEE(ENUMBER, NAME, SALARY, DNO)

DNO foreign key references DEPARTMENT

PROJECT(PNO, PNAME)

WORKS−ON(ENUMBER, PNUMBER)

ENUMBER foreign key references EMPLOYEE

PNUMBER foreign key references PROJECT

EMPLOYEE

ENUMBER NAME SALARY DNO

id1 “John” 45,000 5

id2 “Mary” 50,000 4

id3 “Nick” 42,000 4

id4 “Paul” 43,000 5

id5 “Laura” 55,000 1

id6 “Andrea” 31,000 5

id7 “Brian” 25,000 4

id8 “Alon” 26,000 5

(3/19)



Aggregate Functions in SQL (cont.)

Query: Find the sum of the salaries of all employees, the maximum salary, the

minimum salary and the average salary.

This query can be expressed in SQL as follows:

SELECT SUM(SALARY), MAX(SALARY),

MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE;

This query will return the following relation:

SUM(SALARY) MAX(SALARY) MIN(SALARY) AVG(SALARY)

317,000 55,000 25,000 39,625

(4/19)



Aggregate Functions in SQL (cont.)

Query: Find the sum as well as the maximum, minimum, and average salary of

all employees working in the “Research” department.

This query can be expressed in SQL as follows:

SELECT SUM(SALARY), MAX(SALARY),

MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME=’Research’;

(5/19)



Aggregate Functions in SQL (cont.)

Query: Retrieve the total number of employees in the “Research” department.

This query can be expressed in SQL as follows:

SELECT COUNT(*)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME=’Research’;

Warning: Only the aggregate function COUNT is allowed to apply to whole

tuples. It does not make sense to apply any other aggregate functions to more

than a single attribute.

(6/19)



Aggregate Functions in SQL (cont.)

Query: Count the number of distinct salary values in the database.

This query can be expressed in SQL as follows:

SELECT COUNT(DISTINCT SALARY)

FROM EMPLOYEE;

What would the effect of COUNT(SALARY) in the above query be?

(7/19)



The GROUP BY Clause

If we want to apply an aggregate function to subgroups of tuples then we can use

the GROUP BY clause.

Each group corresponds to the value of one or more attributes.

The syntax of the GROUP BY clause is

GROUP BY < grouping attributes >

where <grouping attributes> specifies a list of attribute names.

Note: The SELECT clause must contain exactly the grouping attributes in

addition with a possible aggregation function.

(8/19)



The GROUP BY Clause (cont.)

Query: For each department, retrieve the department number, the number of

employees in the department and their average salary.

This query can be expressed in SQL as follows:

SELECT DNO, COUNT(*), AVG(SALARY)

FROM EMPLOYEE

GROUP BY DNO;

The result of this query will be:

DNO COUNT(*) AVG(SALARY)

5 4 36,250

4 3 39,000

1 1 55,000

(9/19)



The GROUP BY Clause (cont.)

The following query shows how to use a GROUP BY in conjunction with JOIN.

Query: For each project, retrieve the project number, the project name and the

number of employees who work on the project.

This query can be expressed in SQL as follows:

SELECT PNUMBER, PNAME, COUNT(*)

FROM PROJECT, WORKS ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

The grouping and aggregation are applied after joining the relations.

(10/19)



The GROUP BY Clause (cont.)

The result of this query is:

PNUMBER PNAME COUNT(*)

1 ProductX 2

2 ProductY 3

3 ProductZ 2

10 Computerization 3

20 Reorganization 3

30 Newbenefits 3

(11/19)



The GROUP BY Clause (cont.)

It is possible to use a GROUP BY clause in conjunction with a SELECT clause

that does not use any aggregation function:

SELECT SALARY

FROM EMPLOYEE

GROUP BY SALARY

Has the same effect as:

SELECT DISTINCT SALARY

FROM EMPLOYEE

(12/19)



The HAVING Clause

Sometimes we want to choose groups of tuples based on some aggregate

property of the group itself. In this case we have to use the HAVING clause

together with the GROUP BY clause.

The syntax of the HAVING clause is:

HAVING < condition >

where < condition > is a Boolean expression formed by comparison conditions

as in the WHERE clause.

(13/19)



The HAVING Clause (cont.)

Query: For each project on which more than two employees work, retrieve the

project number, the project name and the number of employees who work on the

project.

This query can be expressed in SQL as follows:

SELECT PNUMBER, PNAME, COUNT(*)

FROM PROJECT, WORKS ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT(*) > 2;

(14/19)



The HAVING Clause (cont.)

The result of this query is:

PNUMBER PNAME COUNT(*)

2 ProductY 3

10 Computerization 3

20 Reorganization 3

30 Newbenefits 3

(15/19)



Interpreting SQL Queries

The result of an SQL query involving aggregate functions, GROUP BY and

HAVING can be computed as follows:

1. Evaluate the relation R implied by the FROM and WHERE clauses. R is the

Cartesian product of the relations specified in the FROM clause, to which the

selection of the WHERE clause is applied.

2. Group the tuples of R according to the attributes in the GROUP BY clause.

3. Filter out the tuples of R not satisfying the condition of the HAVING clause to

compute a new relation R′.

4. Apply to R′ the projections and aggregations specified in the SELECT clause

to compute the final result.

(16/19)



The HAVING Clause (cont’d)

Be careful combining the conditions in a WHERE clause with the ones in the

HAVING clause.

Query: For each department having more than 2 employees, retrieve the

department name and the number of employees whose salary exceed 40, 000£.

An incorrect formulation of the query is:

SELECT DNAME, COUNT(*)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO AND

SALARY > 40000

GROUP BY DNAME

HAVING COUNT(*) > 2;

(17/19)



The HAVING Clause (cont’d)

The correct formulation of the query can be expressed in SQL as follows:

SELECT DNAME, COUNT(*)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO AND

SALARY > 40000 AND

DNO IN (SELECT DNO

FROM EMPLOYEE

GROUP BY DNO

HAVING COUNT(*) > 2)

GROUP BY DNAME;

(18/19)



Query examples

RESTAURANT(NAME, PLACE, SEATS)

PARTY(CODE, COST, RESTNAME, OCCASION), RESTNAME foreign key references RESTAURANT

GUEST(NAME, PARTYCODE), PARTYCODE foreign key references PARTY

PRESENT(GUESTNAME, PARTYCODE, TYPE), GUESTNAME, PARTYCODE foreign key references GUEST

1. Select the names of the restaurants hosting a party with a number of guests greater than the

number of seats of the restaurant.

2. Select the names of the most generous guest(s), i.e., the guest bringing the highest number

of presents for a single party.

3. Select, for each party, the name of the most generous guest(s), i.e., the guest(s) bringing the

highest number of presents for the party.

(19/19)


	@semtitle 
	Aggregate Functions in SQL
	Example Database
	Aggregate Functions in SQL (cont.)
	Aggregate Functions in SQL (cont.)
	Aggregate Functions in SQL (cont.)
	Aggregate Functions in SQL (cont.)
	The GROUP BY Clause
	The GROUP BY Clause (cont.)
	The GROUP BY Clause (cont.)
	The GROUP BY Clause (cont.)
	The GROUP BY Clause (cont.)
	The HAVING Clause
	The HAVING Clause (cont.)
	The HAVING Clause (cont.)
	Interpreting SQL Queries
	The HAVING Clause (cont'd)
	The HAVING Clause (cont'd)
	Query examples

