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Decision Procedures in Logic

A decision proceduresolves a problem withYES or NO answers:

KB �i α

• Sentenceα can be derived from the set of sentencesKB by procedurei.

• Soundness: procedurei is sound if
whenever procedurei proves that a sentenceα can be derived from a set of sentences
KB (KB �i α), then it is also true thatKB entailsα (KB |= α).

– “no wrong inferences are drawn”

– A sound procedure may fail to find the solution in some cases, when there is
actually one.

• Completeness: procedurei is complete if
whenever a set of sentencesKB entails a sentenceα (KB |= α), then procedurei
proves thatα can be derived fromKB (KB �i α).

– “all the correct inferences are drawn”

– A complete procedure may claim to have found a solution in some cases, when
there is actually no solution.
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Sound and Incomplete Algorithms

• Sound and incomplete algorithms are very popular: they are consideredgood

approximations of problem solving procedures.

• Sound and incomplete algorithms may reduce the algorithm complexity.

• Sound and incomplete algorithms are often used due to the inability of programmers

to find sound and complete algorithms.
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Good Decision procedures

• If an incomplete reasoning mechanism is provided, we can conclude either that the

semantics of the representation language does not really capture the meaning of the

“world” and of “what should follow”, or that the algorithms can not infer all the

things we would expect.

• Havingsound and completereasoning procedures is important!

• Sound and complete decision procedures are good candidates for implementing

reasoning modules within larger applications.

(4/27)



An extreme example

Let’s consider two decision procedures:

• F , which always returns the resultNO independently from its input

• T , which always returns the resultYES independently from its input

Let’s consider the problem of computing entailment between formulas;

• F is a sound algorithm for computing entailment.

• T is a complete algorithm for computing entailment.
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Dual problems

Can we use a sound but incomplete decision procedure for a problem to solve thedual
problem by inverting the answers?

T is an unsound procedure for computing non-entailment between formulas.(Why?)

W
o

rld

input sentences

conclusions

User

?

Incompleteness of the reasoning procedures of the reasoning agent leads tounsound

reasoning of the whole agent, if the main system relies onnegative conclusions of the

reasoning agent module.
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Propositional Decision Procedures

• Truth tables provide a sound and complete decision procedure for testing satisfiabil-

ity, validity, and entailment in propositional logic.

– The proof is based on the observation that truth tables enumerate all possible

models.

• Satisfiability, validity, and entailment in propositional logic are thusdecidable

problems.

• For problems involving a large number of atomic propositions the amount of

calculation required by using truth tables may be prohibitive (always2n, wheren is

the number of atomic proposition involved in the formulas).
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Reduction to satisfiability

• A formula φ is satisfiable iff there is some interpretationI (i.e., a truth value

assignment) that satisfiesφ (i.e.,φ is true underI: I |= φ).

• Validity, equivalence, and entailment can be reduced to satisfiability:

– φ is a valid (i.e., a tautology) iff¬φ is not satisfiable.

– φ entailsψ (φ |= ψ) iff φ → ψ is valid (deduction theorem).

∗ φ |= ψ iff φ ∧ ¬ψ is not satisfiable.

– φ is equivalent toψ (φ ≡ ψ) iff φ ↔ ψ is valid.

∗ φ ≡ ψ iff φ |= ψ andψ |= φ

• A sound and complete procedure deciding satisfiability is all we need, and the

tableaux method is a decision procedure which checks the existence of a model.
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Tableaux Calculus

• The Tableaux Calculus is a decision procedure solving the problem of satisfiability.

• If a formula is satisfiable, the procedure will constructively exhibit a model of the

formula.

• The basic idea is to incrementally build the model by looking at the formula, by

decomposing it in a top/down fashion. The procedure exhaustively looks at all

the possibilities, so that it can eventually prove that no model could be found for

unsatisfiable formulas.
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Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn KB = Chelsea ∧ ManCity,¬ManUn

(10/27)



Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

¬ManUn

ManUn

ManCity

clash!

KB = Chelsea ∧ ManCity,¬ManUn
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Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

♣ ¬ManUn

♣ ManUn

♣ ManCity

clash!

KB = Chelsea ∧ ManCity,¬ManUn
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Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

♣ ¬ManUn

♣ ManUn

♣ ManCity

clash!

KB = Chelsea ∧ ManCity,¬ManUn

Chelsea ∧ ManCity

¬ManUn

Chelsea

ManCity

completed
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Simple examples (I)

KB = ManUn ∧ ManCity,¬ManUn

ManUn ∧ ManCity

♣ ¬ManUn

♣ ManUn

♣ ManCity

clash!

KB = Chelsea ∧ ManCity,¬ManUn

Chelsea ∧ ManCity

♠ ¬ManUn

♠ Chelsea

♠ ManCity

completed
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Simple examples (II)

KB = Chelsea ∨ ManUn,¬Chelsea,¬ManUn KB = Chelsea ∨ ManUn,¬ManUn
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Simple examples (II)

KB = Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

¬Chelsea

¬ManUn

Chelsea ManUn

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn
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Simple examples (II)

KB = Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣ ¬Chelsea

♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn
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Simple examples (II)

KB = Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣ ¬Chelsea

♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn

Chelsea ∨ ManUn

¬ManUn

Chelsea ManUn

completed clash!
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Simple examples (II)

KB = Chelsea ∨ ManUn,¬Chelsea,¬ManUn

Chelsea ∨ ManUn

♣ ¬Chelsea

♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB = Chelsea ∨ ManUn,¬ManUn

Chelsea ∨ ManUn

♠ ¬ManUn ♣

♠ Chelsea ManUn ♣

completed clash!
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Tableaux Calculus

Finds a model for a given collection of sentencesKB in negation normal form.

1. Consider the knowledge baseKB as the root node of arefutation tree. A node in a

refutation tree is calledtableaux.

2. Starting from the root, add new formulas to the tableaux, applying thecompletion

rules.

3. Completion rules are either deterministic – they yield a uniquely determined

successor node – or nondeterministic – yielding several possible alternative successor

nodes (branches).

4. Apply the completion rules until either

(a) an explicit contradiction due to the presence of two opposite literals in a node (a

clash) is generated in each branch, or

(b) there is acompleted branch where no more rule is applicable.
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Models

• The completed branch of the refutation tree gives a model ofKB: the KB is

satisfiable. Since all formulas have been reduced to literals (i.e., either positive or

negative atomic propositions), it is possible to find an assignment of truth and falsity

to atomic sentences which make all the sentences in the branch true.

• If there is no completed branch (i.e., every branch has a clash), then it is not possible

to find an assignment making the originalKB true: theKB is unsatisfiable. In fact, the

original formulas from which the tree is constructed can not be true simultaneously.
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The Calculus

φ ∧ ψ

φ

ψ

If a model satisfies a conjunction, then

it also satisfieseach of the conjuncts

φ ∨ ψ

φ ψ

If a model satisfies a disjunction, then

it also satisfiesone of the disjuncts. It

is a non-deterministic rule, and it gen-

erates twoalternative branches of the

tableaux.
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Negation Normal Form

The given tableaux calculus works only if the formula has been translated into Negation

Normal Form, i.e., all the negations have been pushed down.

Example::

¬(A ∨ (B ∧ ¬C))

becomes

(¬A ∧ (¬B ∨ C))
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Entailment and Refutation

φ |= ψ iff φ ∧ ¬ψ is not satisfiable. The tableaux may exhibit a counter-example (why?).

Chelsea ∨ ManUn,¬ManUn |= Chelsea

(true)
Chelsea ∨ ManUn |= ManUn

(false)
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Entailment and Refutation

φ |= ψ iff φ ∧ ¬ψ is not satisfiable. The tableaux may exhibit a counter-example (why?).

Chelsea ∨ ManUn,¬ManUn |= Chelsea

(true)

Chelsea ∨ ManUn

¬Chelsea

¬ManUn

Chelsea ManUn
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Chelsea ∨ ManUn |= ManUn

(false)
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Entailment and Refutation

φ |= ψ iff φ ∧ ¬ψ is not satisfiable. The tableaux may exhibit a counter-example (why?).

Chelsea ∨ ManUn,¬ManUn |= Chelsea

(true)

Chelsea ∨ ManUn

¬Chelsea

¬ManUn

Chelsea ManUn

clash! clash!

Chelsea ∨ ManUn |= ManUn

(false)

Chelsea ∨ ManUn

¬ManUn

Chelsea ManUn

completed clash!
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The efficiency of Tableaux:
order of rule application

KB = p ∧ q,¬p, a ∧ b ∧ c
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The efficiency of Tableaux:
order of rule application

KB = p ∧ q,¬p, a ∧ b ∧ c

p ∧ q

¬p
a ∧ b ∧ c

p

q

clash!
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The efficiency of Tableaux:
order of rule application

KB = p ∧ q,¬p, a ∧ b ∧ c

p ∧ q

¬p
a ∧ b ∧ c

p

q

clash!

p ∧ q

¬p
a ∧ b ∧ c

a

b

c

p

q

clash!
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The efficiency of Tableaux:
comparison with truth tables

• The complexity of truth tables depends on the number of atomic formulas appearing

in theKB,

• the complexity of tableaux depends on the syntactic structure of the formulas inKB.

Try:

KB = ((p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r))
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Tableaux as a Decision Procedure

Tableaux is a decision procedure for computing satisfiability, validity, and entailment in

propositional logics:

• it is a sound algorithm

• it is a complete algorithm

• it is a terminating algorithm
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Testing the hardness of satisfiability

• Find a reasonable way of generatingrandom formulas to be used in the test.

• Random formulas to be characterized in terms of anorder parameter with respect to

satisfiability, and showing neat difficult cases in correspondence to aphase transition

in the satisfiability probability space.

• The phase transition separates the over-constrained from the under-constrained

regions of the problem space.
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Propositional 3-SAT

The easy-hard-easy pattern for satisfiability, within a sat/unsat transition in propositional

3-SAT problems:

(P1,1 ∨ P2,1 ∨ P3,1) ∧ . . . ∧ (P1,L ∨ P2,L ∨ P3,L)

Pi,j ∈ ℘ ‖℘‖ = N

Prob(sat)
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Propositional Logic at work:
the Graph Colouring Problem

The Graph Colouring problem is a well-known combinatorial problem from graph theory:

• A graph is defined asG = (V,E), whereV = {v1, v2, . . . , vn} is the set ofvertices

andE = {(vi, vj), . . . , (vk, vl)} the set ofedges connecting pairs of vertices.

• Find a colouring functionC : V → N , such that connected vertices always have

different colours.

• There is adecision variant of this problem: the question is to decide whether for a

particular number of colours, a couloring of the given graph exists.
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Encoding as satisfiability problem

A straightforward strategy for encoding the Graph Colouring Decision Problem into a

satisfiability problem in propositional logic:

• Each assignment of a colour to a single vertex is represented by a propositional

variable;

• each colouring constraint (edge of the graph) is represented by a set of clauses

ensuring that the corresponding vertices have different colours,

• and two additional sets of clauses ensure that valid assignments assign exactly one

colour to each vertex.
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Example

Italy Austria

Hungary

2 colors (Black and White):Satisfiable

Edge axioms (the dual are redundant):

(BI ↔ ¬BH) ∧ (WI ↔ ¬WH)
(BH ↔ ¬BA) ∧ (WH ↔ ¬WA)

Node axioms (the dual are redundant):

(BI → ¬WI)
(BH → ¬WH)
(BA → ¬WA)

France Italy

Switzerland

2 colors (Black and White):Unsatisfiable

Edge axioms (the dual are redundant):

(BF ↔ ¬BS) ∧ (WF ↔ ¬WS)
(BS ↔ ¬BI) ∧ (WS ↔ ¬WI)
(BF ↔ ¬BI) ∧ (WF ↔ ¬WI)

Node axioms (the dual are redundant):

(BF → ¬WF )
(BS → ¬WS)
(BI → ¬WI)
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Complexity of the problem

vertices edges colours vars clauses

30 60 3 90 300

50 115 3 150 545

75 180 3 225 840

100 239 3 300 1117

125 301 3 375 1403

150 360 3 450 1680

175 417 3 525 1951

200 479 3 600 2237
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Other hot problems for propositional logic

• The general scenario inBlocks World planning comprises a number of blocks and

a table. The blocks can be piled onto each other, where the downmost block of a

pile is always on the table. Given an initial and a goal configuration of blocks, the

problem is to find a sequence of single block move operations which, when applied

to the initial configuration, leads to the goal situation.

• In the Logistics planning domain, packages have to be moved between different

locations in different cities. Within cities, packages are carried by trucks while

between cities they are flown in planes. Both, trucks and airplanes are of limited

capacity.

• Circuit fault analysis,Scheduling, · · ·
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Exercise

Check the graph colouring problems, using the enriched tableaux calculus:

φ ∧ ψ

φ

ψ

φ ∨ ψ

φ ψ

φ → ψ

¬φ ψ

φ ↔ ψ

φ ¬φ
ψ ¬ψ

Italy Austria

Hungary

Edge axioms:

(BI ↔ ¬BH) ∧ (WI ↔ ¬WH)
(BH ↔ ¬BA) ∧ (WH ↔ ¬WA)

Node axioms:

(BI → ¬WI)
(BH → ¬WH)
(BA → ¬WA)

France Italy

Switzerland

Edge axioms:

(BF ↔ ¬BS) ∧ (WF ↔ ¬WS)
(BS ↔ ¬BI) ∧ (WS ↔ ¬WI)
(BF ↔ ¬BI) ∧ (WF ↔ ¬WI)

Node axioms:

(BF → ¬WF )
(BS → ¬WS)
(BI → ¬WI) (27/27)


