
On Finding Query Rewritings
under Expressive Constraints

Alex Borgida1, Jos de Bruijn2, Enrico Franconi2, İnanç Seylan2,
Umberto Straccia3, David Toman4, and Grant Weddell4

1 Rutgers University, USA, borgida@cs.rutgers.edu
2 Free University of Bozen-Bolzano, Italy, lastname @inf.unibz.it

3 ISTI-CNR, Italy, umberto.straccia@isti.cnr.it
4 University of Waterloo, Canada, {david | gweddell}@cs.uwaterloo.ca

Abstract We study a general framework for query rewriting in the
presence of general FOL constraints, where standard theorem proving
techniques (e.g., tableau or resolution) can be used. The framework sup-
ports deciding the existence of an equivalent first-order reformulation
of a query in terms of a selected set of database predicates, and if so,
it provides an effective approach to constructing such a reformulation
based on interpolation. The reformulation is effectively executable as a
SQL query, i.e., it is a range-restricted reformulation.

1 Introduction

Query reformulation under constraints is central in several areas, including:
query optimisation in database systems; establishing connections between con-
ceptual data models and their logical realisations; and data integration.

The paper starts by explicating a framework that supports deciding the ex-
istence of an equivalent reformulation of a query in terms of a selected set of
predicates—called the database predicates, and if so, provides an effective ap-
proach to constructing such a reformulation. It is particularly concerned with
applying this framework to finding effectively executable first-order reformula-
tions a la SQL. The contributions of this paper are as follows:

– We propose a general framework for finding equivalent query rewritings un-
der expressive constraints in the context of combined knowledge and data
bases. We then apply this framework to three contexts.

– We provide general properties for the FOL constraints and view definitions
that guarantee the resulting rewritten query will be domain independent,
and hence can be executed using standard relational engines.

– Concerning conjunctive queries, we partially resolve an open problem posed
by Nash et. al. [13]: Is it decidable whether there is a rewriting of a con-
junctive query over connected conjunctive views?

– We prove in [6] that such rewritings can then be effectively obtained using
standard proof techniques for first-order logic which terminate in this case,
generalising the procedure proposed in [13].

– We show an application of the framework for constraints expressed in the
guarded fragment of first-order logic (which is a generalisation of standard
ontology languages), and queries over databases for it.

In addition, we show that this technique generalises to an arbitrary class
of first-order constraints, albeit termination is sacrificed, and develop general
conditions under which a decision procedure exists (based on the decidability of
the underlying constraints).

The rest of the paper is organised as follows: Section 2 provides the neces-
sary background and definitions, Section 3 introduces the framework for query
reformulation in the context of both data and knowledge bases, and Sections 4.1
and 4.2 instantiate the general framework to the class of connected conjunctive
queries and views, and to standard ontology languages to illustrate the features
of the framework. We conclude with future directions of research and open prob-
lems. In the Appendix we outline how standard proof techniques can be utilised
for generating query reformulations, and we show a fully worked out example.

2 Database querying: definitions

Given a signature of (possibly infinitely many) constants C and of database
predicates PDB, a database (instance) DB is a set of database predicate-labelled
tuples of the form P : 〈a1, . . . , an〉, where P ∈ PDB is an n-ary database predicate
and the ai ∈ C are constants. We denote the set of database constants actually
appearing in a database DB (i.e., the so-called active domain of DB) as CDB.

Let FOL be a function-free first-order language over a signature extending the
above: with the same constants C and with predicates P ⊇ PDB; think of these
predicates as possibly helping to define views or constraints. A (possibly empty)
finite set KB of closed formulas in FOL will be called constraints (or a knowledge
base). An interpretation I is a pair 〈∆I , ·I〉, where ∆I (the domain) is a non-
empty set, and ·I is a function that maps constants to elements of ∆I and n-ary
predicates (n ≥ 1) to subsets of (∆I)n. We follow the usual inductive definition
of I |= ϕ to denote the model I of a closed formula ϕ, and we denote the set
of all models of a formula as M(ϕ). In case we want to emphasise the domain

of an interpretation I in its symbol, we will use I(∆I). With σ(ϕ1, . . . , ϕn) we
denote the set of all predicates occurring in each formula ϕi, which we call the
signature of the set of formulas.

We define a substitutionΘS
X to be a total function X 7→ S assigning an element

of the set S to each variable symbol in X, including the empty substitution ε when
X = ∅. As usual, given an interpretation I, a subset of the domain ∆ ⊆ ∆I ,
a (possibly closed) formula ϕ, the (possibly empty) set X of all free variables
of ϕ, a substitution Θ∆X , we say that I, Θ∆X |= ϕ iff ϕ is true in I with its free
variables interpreted as assigned by Θ∆X . On the other hand, given a substitution
ΘC

X, we say that I |= ϕ[X/ΘC
X]

iff ϕ is true in I after its free variables have been

substituted with constants as specified by ΘC
X.

We now connect the notion of a database with the notion of an interpretation.
An interpretation I embeds a database DB, written I(DB), iff for every database

constant ai ∈ CDB it holds that aIi = ai, and for every n-ary database predicate

P ∈ PDB it holds that 〈a1, . . . , an〉 ∈ P I iff P : 〈a1, . . . , an〉 ∈ DB. In other
words, in every interpretation embedding a DB, the interpretation of a database
predicate is given exactly by its contents in the database; on the other hand,
this is not true for the interpretation of the non-database predicates in P \PDB,
which may vary across the interpretations embedding the database. Note that
the domain ∆I of an interpretation I(DB) embedding a database DB is not fixed,
but it necessarily includes the active domain CDB. We say that a database DB
satisfies the constraints KB (or a database DB is consistent with respect to the
constraints KB) iff there exists I(DB) : I(DB) ∈ M(KB); in the following we will
consider only consistent databases.

Let a query Q be a (possibly closed) formula in FOL (possibly with predicate
symbols other than ones in PDB) and X be the (possibly empty) set of all free
variables of Q; we write this as Q[X]. Intuitively, we can think of a substitution
as one possible answer to a query, as specified formally in the following.

Definition 1 (Query answering). The (certain) answer of a query Q[X] to a

database DB under constraints KB is a set of substitutions ΘC
X such that:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]
}.

We focus in this paper on situations where such answers can be computed.
This definition generalises to full FOL constraints a framework which has been
called also locally closed world in AI (see, e.g., [9]), exact views in databases (see,
e.g., [1,8,13]), or DBox in KR (see [14]).

Example 1. Given the unary database predicates MEETING and ACTIVITY, the
constraints ∀x.Project(x) → ACTIVITY(x), ∀x.MEETING(x) → ACTIVITY(x),
∀x.ACTIVITY(x) → Project(x) ∨ MEETING(x), and finally ∀x.Project(x) →
¬MEETING(x), together with the consistent database ACTIVITY:〈m〉, ACTIVITY:〈p〉,
and MEETING:〈m〉, the query Project(x) has the answer {x 7→ p}. ut

Important special well-behaved queries are the domain independent queries;
here we adopt a generalisation of the definition in [3].

Definition 2 (Domain independence). A query Q[X] is domain independent
iff for every pair of interpretations I, J which agree on the interpretation of the

predicates and constants (i.e., ·I = ·J), and for every substitution Θ∆
I∪∆J

X :

act-range(Θ∆
I∪∆J

X) ⊆ ∆I and I, Θ∆I∪∆J

X |= Q[X] iff
act-range(Θ∆

I∪∆J

X) ⊆ ∆J and J , Θ∆I∪∆J

X |= Q[X].

Definition 3 (Ground domain independence). A query Q[X] is ground do-

main independent iff Q[X/ΘC
X]

is domain independent for every substitution ΘC
X.

Ground domain independence is a weaker property than domain independence
for a query; we will show that it still makes queries behaving well.

Example 2. The query Project(x) is domain independent (and therefore also
ground domain independent), the query ¬Project(x) is not domain independent
but it is ground domain independent, and the query ¬Project(x)∧∀y.ACTIVITY(y)
is neither domain independent nor ground domain independent. ut

Let’s see how the definitions above work in the special case of classical rela-
tional databases, where the signature is restricted to database predicates only
(P = PDB), the constraints and the query are only over this restricted signa-
ture, the database is consistent with respect to the constraints, and the queries
are domain independent. We can prove (via the Lemma 2) that when all these
conditions are met then the original query answering problem in Definition 1 is
reduced to:

{ΘCDB∪CQ
X | I(CDB∪CQ)

(DB) |= Q
[X/ΘCDB

X]
}

where CQ is the set including the interpretation of each constant ai appearing
in the query Q but not in CDB, such that aIi = ai. Namely, query answering is

reduced to a model checking problem over the unique interpretation I(CDB∪CI
Q)

(DB) ,

for each n-tuple of constants in the active domain together with the constants
mentioned in the query, and the constraints do not play any role. Therefore it
is enough to evaluate the domain independent query Q[X] over the database DB
using standard SQL query evaluation technologies, which is exactly what we
expected. That is the reason why its data complexity is as fast as in AC0 – which
is the complexity of model checking first order logic formulas with respect to the
size of the interpretation.

Example 3. Given the unary database predicates MEETING and ACTIVITY, the
constraint ∀x.MEETING(x)→ ACTIVITY(x), and the consistent database ACTIVITY:〈m〉,
ACTIVITY:〈p〉, MEETING:〈m〉, the domain independent query ACTIVITY(x)∧¬MEETING(x)
has the answer {x 7→ p}. ut

3 A general framework for query rewriting

We introduce in this Section implicit and explicit definability for queries, and
discuss how explicit definitions can be used for query rewriting, similar in spirit
to the recent work in [12,13].

In the following, given a set of constraints KB, a database DB, and a queryQ,

for every non-database predicate P in σ(KB,Q)\PDB, let P̃ be a renaming of P –
a distinct non-database predicate symbol not appearing anywhere in σ(KB,Q)∪
PDB; and let extend the renaming transformation (̃·) in the obvious way to
formulas and sets of constraints and databases, by renaming the predicates in
them. Given an interpretation I, let I|PDB be an interpretation with the same
domain ∆I and with the same interpretation function ·I but defined only for
the database predicates PDB.

Definition 4 (Implicit definability). Let I and J be two models of the con-
straints KB. A query Q[X] is implicitly definable from the database predicates

PDB under the constraints KB iff I|PDB = J |PDB and ∆I = ∆J implies that

for every Θ∆
I

X : I, Θ∆I

X |= Q[X] iff J , Θ∆I

X |= Q[X].

Q is implicitly definable from PDB in KB if any two models of KB that have the
same domain and agree in what they assign to the database predicates in PDB
also agree in what they assign to Q. In other words, given a set of constraints,

a query Q is implicitly definable if its extension depends only on the extension
of the database predicates; remember that both the constraints and the query
may include more predicates than just the database predicates. So, if a query is
implicitly definable, then its evaluation depends only on the database predicates,
and vice-versa; therefore implicitly definable queries characterise exactly views.
The class of implicitly definable queries (first introduced by Tarski [15]) is exactly
the class of queries for which we will find exact rewritings (i.e., their explicit
definitions).

Example 4 (continues Example 1). Given the database predicates MEETING and
ACTIVITY, and the constraints introduced in Example 1, the query Project(x)
is implicitly definable from the database predicates MEETING and ACTIVITY. ut

An alternative equivalent reformulation of the semantic definition of implicit
definability is the following syntactic definition [15].

Definition 5 (Implicit definability: syntactic). A query Q[X] is implicitly
definable from the database predicates PDB under the constraints KB iff KB ∪
K̃B |= ∀X.Q[X] ↔ Q̃[X].

According to this definition, checking whether a query is implicit definable can
be reduced to checking a standard entailment in FOL. Note that the above
definition holds for unrestricted (i.e., either finite or infinite) models. It is pos-
sible that a query is not implicitly definable by considering unrestricted models,
while it would be by considering the interpretation of the database predicates
to be necessarily finite (i.e., when the database is a finite set of tuples). That’s
why we did not explicitly require the database DB to be finite. If we require
the database DB to be finite, then the framework proposed in this paper may
be incomplete, namely it may miss some rewritings. Note that, for example,
the framework would be complete again in the case of the fragment of FOL con-
sidered in Section 4.2, since in the guarded fragment of FOL unrestricted models
entailment and finite models entailment coincide [10]. Moreover, in some cases
finite model entailment is undecidable while unrestricted models entailment is
decidable (e.g., FD + UID + coverage + disjointness) and then the tradeoff is
whether to enforce all the constraints in the family sacrificing finite consequences
or whether to restrict the allowed constraints.

If a query is implicitly definable from the database predicates, we could hope
to find an equivalent formula using only database predicates, namely its explicit
definition. This can be seen as the explicit view definition over the database
predicates associated to the query. Beth [5] and Craig [7] showed that if a formula
Q is implicitly definable from predicates PDB under constraints KB, then there

exists its explicit definition, i.e., a formula Q̂ in FOL with σ(Q̂) ⊆ PDB logically
equivalent to Q given KB.

Note that the notion of explicit definability is based on logical equivalence
– that is, over all possible substitutions with elements of the domain – and
it is therefore stronger than what is needed to preserve equivalence of query
answering as defined in Definition 1 – which is based on substitutions with
constants. It would be possible to change the definition of query answering as a

set of substitutions over domain elements as opposed to a set of substitutions over
constants. With this change, whenever an equivalent query rewriting exists then
an explicit definition would exist. However, such a changed definition of query
answering would require all the constants in FOL to satisfy the standard name
assumption like active domain elements, i.e., for every constant a ∈ C it holds
that aI = a. We are again faced with a tradeoff between the expressivity of the
constraints (allowing for constants with standard FOL semantics as opposed to
constants with standard name assumption) and the completeness of the rewriting
process. Of course, if the constraints do not mention constants at all, then the
framework would be complete. Note that the framework is complete in the case
of the fragment of FOL considered in Section 4.1, since in this fragment of FOL
constants do not appear in the constraints.

Definition 6 (Explicit definability). A query Q[X] is explicitly definable
from the database predicates PDB under the constraints KB iff there is some

formula Q̂[X] in FOL such that KB |= ∀X.Q[X] ↔ Q̂[X] and σ(Q̂) ⊆ PDB.

Theorem 1 (Projective Beth definability). If a query Q is implicitly defin-
able from the database predicates PDB under constraints KB, then it is explicitly

definable as a formula Q̂ in FOL with σ(Q̂) ⊆ PDB under the constraints KB.

Craig [7] gave to this theorem a constructive proof, based on interpolation.

Lemma 1 (Craig’s interpolation). If ϕ→ ψ is a valid formula in FOL and
neither ϕ nor ψ are valid, then there is a formula χ in FOL, called interpolant,
whose predicate and constant symbols are among the predicate and constant sym-
bols of both ϕ and ψ, and both ϕ→ χ and χ→ ψ are valid formulas.

Note that the Beth definability and Craig interpolation theorems do not hold
for all fragments of FOL: there may not always be an explicit definition or an
interpolant in the fragment itself, but of course there will be one in FOL.

An interpolant is used to find the explicit definition of a given implicitly
definable predicate as follows.

Theorem 2 (Interpolant as definition). Let Q be a query with n ≥ 0 free
variables implicitly defined from the database predicates PDB under the con-
straints KB. Then, the closed formula with c1, . . . , cn new distinct constant sym-
bols in C not appearing in KB or Q

((
∧
KB) ∧Q[X/c1,...,cn])→ ((

∧
K̃B)→ Q̃[X/c1,...,cn])

is valid, and its interpolant Q̂[c1,...,cn/X] defines the query Q explicitly from the
database predicates PDB under the constraints KB.

We combine these results to reduce answering of a definable query to a data-
base under constraints to answering of a rewritten query to the database only.

Theorem 3 (Query rewriting). Let DB be a database satisfying a set of con-
straints KB, and Q[X] be implicitly definable from PDB under KB. Then there is

a rewritten query Q̂[X] (from Theorem 2) in FOL with σ(Q̂) ⊆ PDB such that:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]
} =

{ΘC
X | for every ∆I : I(∆

I)
(DB) |PDB |= Q̂[X/ΘC

X]
}.

Proof (Proof (sketch)). We can replace Q with Q̂ since they are logically equi-

valent in all the models of KB. Since Q̂ mentions only database predicates, we
can restrict the interpretation I(DB) only to the database predicates, and across

these interpretations I(DB) is always the same but for the domain ∆I– which
necessarily includes the active domain CDB – and for the interpretation of con-
stants in C not in the active domain CDB.

Even if this theorem shows how to get rid of the constraints KB by rewriting

the original query Q into a rewritten query Q̂ over only the database predicates,
the original query answering problem in Definition 1 is still not yet reduced to
model checking, since we have to consider all possible varying domains extending
the active domain. In order to enable the use of standard SQL query evaluation
technologies it is necessary to show the domain independence of the rewriting

Q̂. Indeed, once we show its domain independence, then we can prove that the
original query answering problem in Definition 1 is reducible to the following
model checking problem in FOL, for each n-tuple of constants in the active

domain, and therefore it is enough to evaluate the query Q̂[X] over the database
DB using standard SQL query evaluation technologies.

Lemma 2 (Active domain interpretation). Given a database DB and a do-

main independent query Q̂ over PDB, then:

{ΘC
X | for every ∆I : I(∆

I)
(DB) |PDB |= Q̂[X/ΘC

X]
} = {ΘCDB

X | I(CDB)
(DB) |PDB |= Q̂[X/ΘCDB

X]
},

where the interpretation of the constants in the query Q̂ not in CDB can be an
arbitrary element of CDB.

Proof (Proof (sketch)). Since the query Q̂ is domain independent, its answer
does not change by varying the domain, so we pick the smallest of such domains,
which is unique and coincides with CDB. The additional constants in the query
not in CDB can be interpreted in an arbitrary way, since the answer would not
depend on the interpretation of these additional constants.

Theorem 4 (Domain independent rewriting). If the rewritten query Q̂[X]
(from Theorem 3) is domain independent, then:
{ΘC

X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC
X]
} =

{ΘCDB
X | I(CDB)

(DB) |PDB |= Q̂[X/ΘCDB
X]
}.

Proof (Proof (sketch)). From Theorem 3 and Lemma 2.

Example 5 (continues Example 4). Given the database predicates MEETING and
ACTIVITY, the constraints, and the database introduced in Example 1, the query
Project(x) is implicitly definable from the database predicates MEETING and
ACTIVITY, it has the explicit definition ∀x.Project(x)↔ ACTIVITY(x)∧¬MEETING(x),
and therefore it can be rewritten as the domain independent query ACTIVITY(x)∧
¬MEETING(x). Indeed, the rewritten query has the same answer {x 7→ p} found
in Example 1. ut

We describe now two relevant cases that help in deciding whether a rewritten
query is domain independent under constraints.

Theorem 5 (Domain independence from KB). Given a domain independ-
ent query Q and a set of domain independent constraints KB, the rewritten query

Q̂ (from Theorem 3) is domain independent.

Proof (Proof (sketch)). Notation: we extend the meaning of ·I to arbitrary (open
or closed) formulas as usual.
– Since Q̂ is the explicit definition of Q: for every I ∈ M(KB) : QI = Q̂I .
– Since KB is domain independent:

for every I,J with ·I = ·J : I ∈ M(KB) iff J ∈ M(KB).

– Since Q is domain independent: for every I,J with ·I = ·J : QI = Q̂J .
– From the previous steps: for every I,J ∈ M(KB) with ·I = ·J : Q̂I = Q̂J .

– Since Q̂ mentions only database predicates:
for every I,J ∈ M(KB) with ·I = ·J : Q̂I|PDB = Q̂J |PDB .

– Since I|PDB and J |PDB do not depend on KB: for every I,J with ·I = ·J :

Q̂I = Q̂J .
– Therefore Q̂ is domain independent.

This theorem is important since it shows that if we have a set of domain inde-
pendent constraints and a domain independent query, then the rewritten query
is domain independent as well, and so we can reduce the query answering un-
der constraints into standard query answering of a database using standard SQL
query evaluation technologies. It is worth noting that the most important typical
constraints considered in the database literature are domain independent: tuple
generating dependencies (thus including foreign keys) and equality generating
dependencies (thus including primary keys) are domain independent.

Lemma 3 (Domain independence of database constraints). Let tuple
generating dependencies (TGDs) be closed formulas of the form (∀X.A1 ∧ . . . ∧
An→∃Y.B1∧ . . .∧Bm), and equality generating dependencies (EGDs) be closed
formulas of the form (∀X.A1∧. . .∧An→∃Y.E) – with Ai and Bj atomic formulas
(excluding equality atoms) and E an equality atom. TGDs and EGDs are domain
independent formulas.

Proof (Proof (sketch)). It is enough to show that whenever a TGD or a EGD is

true in the fixed interpretation I(CDB)
(DB) then it is true also in any interpretation

I(DB) with an arbitrary domain.

This implies that an implicitly definable domain independent query under tuple
and equality generating dependencies can be rewritten into a domain independ-
ent query over the database predicates only.

Theorem 6 (Ground domain independence). If C is a finite set, let’s ex-
tend the database DB with a new unary relation >C containing all the constants

in C. If the rewritten query Q̂[X] (from Theorem 3) is a ground domain in-
dependent query, then the original query answering problem in Definition 1 is
equivalent to the query answering problem with a range restricted domain inde-
pendent query:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]
} =

{ΘCDB
X | I(CDB)

(DB) |PDB |= (Q̂[X] ∧ >C(x1) ∧ · · · ∧ >C(xn))
[X/ΘCDB

X]
}.

Proof (Proof (sketch)). Since CDB = C, by Theorem 3 we get:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]
} =

{ΘCDB
X | for every ∆I ⊇ CDB : I(∆

I)
(DB) |PDB |= Q̂[X/ΘCDB

X]
}.

Since the substitutions of the variables in Q̂ range only over the active domain
CDB, we can add to the query the restriction on the free variables without
affecting its meaning. But now the range restricted query is domain independent,
and we can apply Lemma 2.

In Section 4.2 an application of this theorem to ontologies is shown.
To sum up, we have seen in this section that in order to compute the rewriting

of a query Q to a database DB under constraints KB, we need to:

1. verify the properties which guarantee a domain independent rewriting;
2. check the consistency of the database DB wrt the constraints KB;
3. check that the query is implicitly definable from the database predicates

PDB, by checking KB ∪ K̃B |= ∀X.Q[X] ↔ Q̃[X];

4. compute the interpolant Q̂ (Theorem 2) which will be the rewriting of Q;

5. execute the domain independent rewriting Q̂ over the database DB using
standard SQL.

Step 3 is the critical one, and ideally we would like to study interesting decidable
fragments of FOL which guarantee the termination of the step. On the other
hand, step 4 is always guaranteed to terminate. Step 5 tells us that the data
complexity of the query answering problem in this framework is in AC0.

4 Applying the framework

4.1 Conjunctive queries and views

In this section we instantiate the general framework presented so far to conjunct-
ive queries. We show how the essential definitions specialise to this case, so to
relate it to the known literature.

Definition 7 (Conjunctive View Rewriting Problem). Let Q be a con-
junctive query formulated over a fixed relational signature σ, Qi be conjunctive
queries also formulated over σ, and Vi fresh predicate symbols of arity equal to
the number of free variables of the queries Qi, 0 < i ≤ k. We say that Q has a
rewriting in terms of view definitions
V = {∀Xi.Vi(Xi)↔ Qi}

if there is a (first-order) query QV over the signature {V1, . . . , Vk} such that
{∀Xi.Vi(Xi)↔ Qi} |= ∀X.Q↔ QV ,

where Xi and X are free variables of Qi and Q, respectively.

The set {V1, . . . , Vk} serves the role of the database predicates. For simplicity we
use only binary relations in σ as it is easy to see that, in the case of conjunctive
queries and views, higher arity relations can be dealt with using reification.

Also, in the following, we allow only connected conjunctive views: views in
which every quantified variable is connected to an answer variable through a
sequence of relations.

Example 6 ([13]). Let Q(x, y)↔ ∃z, v, u.R(z, x), R(z, v), R(v, u), R(u, y), and
V1(x, y) ↔ ∃z, v.R(z, x), R(z, v), R(v, y),
V2(x, y) ↔ ∃z.R(x, z), R(z, y), and
V3(x, y) ↔ ∃z, v.R(x, z), R(z, v), R(v, y)

(As usual we omit the leading universal quantifiers in the view definitions.) It
has been shown that Q has a rewriting in terms of {V1, V2, V3} of the form
∃z.V1(x, z) ∧ ∀v.(V2(v, z)→ V3(v, y)).

Moreover, Nash et. al. [13] have shown that in the above case, a conjunctive
rewriting cannot exist and have constructed a first-order rewriting. We show
that such rewritings can be obtained effectively.

Definition 8. Let Q be a conjunctive query and V = {∀Xi.Vi(Xi) ↔ Qi} a set
of conjunctive views over {R1, . . . , Rn}. We define a theory

ΣV = {∀Xi.Qi → Q̃i,∀Xi.Qi ← Q̃i | 0 < i ≤ k}
where Q̃i is obtained from Qi by substituting a symbol R̃j for Rj for all 0 < i ≤ k
and 0 < j ≤ n. We call the formulas ∀Xi.Qi → Q̃i and ∀Xi.Qi ← Q̃i rules
(associated with a view Vi; note that there are two rules associated with each
view: one from left to right and one from right to left).

Explicit definability of Q in terms of V is defined as follows (see Theorem 1):

Proposition 1 (Explicit Definability for Conjunctive Views). Let Q be
a conjunctive query and V a set of conjunctive views over {R1, . . . , Rn}. Then
Q has a rewriting in terms of V if and only if

ΣV |= ∀X.Q↔ Q̃,

where Q̃ is obtained from Q by substituting a symbol R̃i for Ri.

There are several steps for this to be practical:

1. We need a decision procedure for ΣV |= ∀X.Q ↔ Q̃ to determine the exist-
ence of QV ,

2. We must be able to find QV effectively, and
3. We must make certain that QV is domain independent.

The last two issues have been addressed by the general framework, as conjunctive
queries and views are domain independent; in the technical report [6] we did focus
on the first issue:

Theorem 7. Let Q be a conjunctive query and V a set of conjunctive views over
{R1, . . . , Rn} such that a rewriting over V w.r.t. the views exists. Then there is
an algorithm that, given Q and V, computes QV .

4.2 Guarded fragment and ontology languages

In this section, we briefly introduce the specialisation of the framework presented
in Section 3 in the case of constraints expressed as Description logics (DLs) ax-
ioms [4]. The main motivation of this work is to address the scalability of query
answering over large data sets in DL knowledge bases. This is of particular in-
terest because the data complexity of the query answering problem in expressive

DLs is intractable whereas our framework allows one to use standard SQL query
evaluation techniques.

Data in a DL knowledge base is typically stored in the so-called ABox com-
ponent. An ABox differs from a database since it has an open-world semantics as
in sound views and it is incompatible with the database (exact views) semantics
as defined in Section 2. There are approaches to deal with ABoxes using standard
relational database technology: for example, in the DL-Lite DL the expressivity
of the description logic language is restricted in order to reduce query answering
to SQL querying (see, e.g., [2]). But differently from DL-Lite, in our work we
want to focus on knowledge bases with a database (exact views) semantics for
the data – called DBox.

In [14], the problem of query answering under ALC DL constraints is stud-
ied using the DBox semantics as defined in Section 2. Here we generalise the
approach by expressing the constraints in the decidable guarded fragment GF of
FOL (already considered by [12]), which includes ALC and most DL languages
without counting quantifiers. We prove now a general theorem which guarantees
that the rewriting under GF constraints of an implicitly definable query is always
a ground domain independent query in GF (due the Beth definability property
for GF [11]), and so we can always use SQL to evaluate the rewritten query. In
the technical report [6], we have proved the following:

Theorem 8 (Ground domain independence of GF). Queries in the guarded
fragment GF of FOL are ground domain independent.

5 Conclusions and future work

The paper presented a general framework for finding equivalent query rewritings
in the context of combined knowledge and data bases, which used standard
theorem proving techniques to find them. The question of when the rewritings
can be efficiently evaluated was addressed, and two applications of the framework
were shown: one dealing with an ontology language, and the other with a useful
subclass of conjunctive views (which was generally an open problem). More
details can be found in the technical report [6].

In addition to defining the general framework and to the theoretical contribu-
tions of the paper, we have also started experimental evaluation of the proposed
techniques with the help of a state of the art first-order theorem prover. In-
deed, the resolution proof for the running example (Example 6) is generated
automatically in a fraction of a second.

We have begun work on several topics:

– Practical approaches to query evaluation face additional complications, such
as dealing with binding patterns, duplicate semantics, ordering of data, size
of the rewritings, and costs of executing relational operators, all of which
impact on performance of query engines. Of particular interest is extracting
alternative query reformulations from proofs of explicit definability.

– Many classes of constraints for which reasoning is decidable have been pro-
posed both for databases and in the area of knowledge representation. How-
ever, constraints have to be balanced against the kinds of queries that can

be expressed. We are investigating various combinations (such as description
logics combined with positive first-order queries) in our framework.

Further, we plan to extend our decidability result to the class of all (i.e., includ-
ing disconnected) conjunctive views based on a decision procedure for testing
whether an explicit definition exists.

References

1. Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using
materialized views. In Proc. PODS, pages 254–263, 1998.

2. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-lite family and relations. J. Artif. Int. Res., 36(1):1–69,
2009.

3. Arnon Avron. Constructibility and decidability versus domain independence and
absoluteness. Theor. Comput. Sci., 394(3):144–158, 2008.

4. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook. Cambridge
University Press, 2003.

5. E. W. Beth. On Padoa’s methods in the theory of definitions. Koninklijke Neder-
landse Akademie van Wetenschappen, Proceedings, 56:330–339, 1953. also Indaga-
tiones mathematicae, vol. 15.

6. Alex Borgida, Jos de Bruijn, Enrico Franconi, Inanç Seylan, Umberto Strac-
cia, David Toman, and Grant Weddell. On finding query rewritings under ex-
pressive constraints. Technical report, Free University of Bozen-Bolzano, 2010.
http://www.inf.unibz.it/~franconi/papers/.

7. William Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.

8. Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation with constraints.
SIGMOD Record, 35(1):65–73, 2006.

9. Oren Etzioni, Keith Golden, and Daniel S. Weld. Sound and efficient closed-world
reasoning for planning. Artificial Intelligence, 89(1–2):113–148, 1997.

10. Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742,
1999.

11. Eva Hoogland, Marten Marx, and Martin Otto. Beth definability for the guarded
fragment. In Proceedings of LPAR’99, volume 1705 of LNAI, pages 273–285.
Springer-Verlag, 1999.

12. Maarten Marx. Queries determined by views: pack your views. In Proc. PODS,
pages 23–30, 2007.

13. Alan Nash, Luc Segoufin, and Victor Vianu. Determinacy and rewriting of con-
junctive queries using views: A progress report. In Proc. ICDT, pages 59–73, 2007.

14. İnanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with
ontologies over DBoxes. In Craig Boutilier, editor, IJCAI, pages 923–925, 2009.

15. Alfred Tarski. Some methodological investigations on the definability of concepts.
In Logic, Semantics and Metamathematics, pages 296–319. Clarendon Press, Ox-
ford, UK, 1956.

