
On Finding Query Rewritings under Expressive Constraints

Alex Borgida1 Jos de Bruijn2 Enrico Franconi2 İnanç Seylan2

Umberto Straccia3 David Toman4 Grant Weddell4

16th December 2009 15:31:31 +0100, by efranconi, SVN 862

Abstract

We study a general framework for query rewriting in the presence of general FOL constraints, where
standard theorem proving techniques (e.g., tableau or resolution) can be used. The novel results of
applying this framework include: 1) if the original constraints are domain independent, then so will be
the query rewritten in terms of database predicates; 2) for infinite databases, the rewriting of conjunctive
queries over connected views is decidable; 3) one can apply this technique to the guarded fragment of
FOL, obtaining results about ontology languages.

1 Introduction

Query reformulation under constraints is central in several areas, including: query optimisation in database
systems; establishing connections between conceptual data models and their logical realisations; and data
integration.

The paper starts by explicating a framework that supports deciding the existence of an equivalent refor-
mulation of a query in terms of a selected set of predicates—called the database predicates, and if so, provides
an effective approach to constructing such a reformulation. It is particularly concerned with applying this
framework to finding effectively executable first-order reformulations a la SQL.

The contributions of this paper are as follows:

• We propose a general framework for finding equivalent query rewritings under expressive constraints in
the context of combined knowledge and data bases. We then apply this framework to three contexts.

• We provide general properties for the FOL constraints and view definitions that guarantee the resulting
rewritten query will be domain independent, and hence can be executed using standard relational
engines.

• Concerning conjunctive queries, we partially resolve an open problem posed by Nash et. al. [16]: Is it
decidable whether there is a rewriting of a conjunctive query over connected conjunctive views?

• We show that such rewritings can then be effectively obtained using standard proof techniques for
first-order logic which terminate in this case, generalising the procedure proposed in [16].

• We also show an instantiation of the framework for constraints expressed in the guarded fragment of
first-order logic (which can be seen as a generalisation of standard ontology languages), and queries
over databases for it.

In addition, we show that this technique generalises to an arbitrary class of first-order constraints, albeit
termination is sacrificed, and develop general conditions under which a decision procedure exists (based on
the decidability of the underlying constraints).

The rest of the paper is organised as follows: Section 2 provides the necessary background and definitions,
Section 3 introduces the framework for query reformulation in the context of both data and knowledge bases,
and Sections 4 and 5 instantiate the general framework to the class of connected conjunctive queries and
views, and to standard ontology languages to illustrate the features of the framework. We conclude with
future directions of research and open problems. In the Appendix we outline how standard proof techniques
can be utilised for generating query reformulations, and we show a fully worked out example.

1Rutgers University, USA, borgida@cs.rutgers.edu; 2Free University of Bozen-Bolzano, Italy, lastname @inf.unibz.it;
3ISTI-CNR, Italy, umberto.straccia@isti.cnr.it; 4University of Waterloo, Canada, {david | gweddell}@cs.uwaterloo.ca

1



2 Database querying: definitions

Given a signature of (possibly infinitely many) constants C and of database predicates PDB, a database
(instance) DB is a set of database predicate-labelled tuples of the form P : 〈a1, . . . , an〉, where P ∈ PDB is
an n-ary database predicate and the ai ∈ C are constants. We denote the set of database constants actually
appearing in a database DB (i.e., the so-called active domain of DB) as CDB.

Let FOL be a function-free first-order language over a signature extending the above: with the same
constants C and with predicates P ⊇ PDB; think of these predicates as possibly helping to define views or
constraints. A (possibly empty) finite set KB of closed formulas in FOL will be called constraints (or a
knowledge base). An interpretation I is a pair 〈∆I , ·I〉, where ∆I (the domain) is a non-empty set, and ·I
is a function that maps constants to elements of ∆I and n-ary predicates (n ≥ 1) to subsets of (∆I)n. We
follow the usual inductive definition of I |= ϕ to denote the model I of a closed formula ϕ, and we denote
the set of all models of a formula as M(ϕ). In case we want to emphasise the domain of an interpretation

I in its symbol, we will use I(∆I). With σ(ϕ1, . . . , ϕn) we denote the set of all predicates occurring in each
formula ϕi, which we call the signature of the set of formulas.

We define a substitution ΘS
X to be a total function X 7→ S assigning an element of the set S to each

variable symbol in X, including the empty substitution ε when X = ∅. As usual, given an interpretation I, a
subset of the domain ∆ ⊆ ∆I , a (possibly closed) formula ϕ, the (possibly empty) set X of all free variables
of ϕ, a substitution Θ∆

X , we say that I,Θ∆
X |= ϕ iff ϕ is true in I with its free variables interpreted as assigned

by Θ∆
X . On the other hand, given a substitution ΘC

X, we say that I |= ϕ[X/ΘC
X] iff ϕ is true in I after its free

variables have been substituted with constants as specified by ΘC
X.

We now connect the notion of a database with the notion of an interpretation. An interpretation I
embeds a database DB, written I(DB), iff for every database constant ai ∈ CDB it holds that aIi = ai, and for
every n-ary database predicate P ∈ PDB it holds that 〈a1, . . . , an〉 ∈ P I iff P : 〈a1, . . . , an〉 ∈ DB. In other
words, in every interpretation embedding a DB, the interpretation of a database predicate is given exactly
by its contents in the database; on the other hand, this is not true for the interpretation of the non-database
predicates in P \ PDB, which may vary across the interpretations embedding the database. Note that the
domain ∆I of an interpretation I(DB) embedding a database DB is not fixed, but it necessarily includes the
active domain CDB. We say that a database DB satisfies the constraints KB (or a database DB is consistent
with respect to the constraints KB) iff there exists I(DB) : I(DB) ∈ M(KB); in the following we will consider
only consistent databases.

Let a query Q be a (possibly closed) formula in FOL (possibly with predicate symbols other than ones
in PDB) and X be the (possibly empty) set of all free variables of Q; we write this as Q[X]. Intuitively, we
can think of a substitution as one possible answer to a query, as specified formally in the following.

Definition 1 (Query answering). The (certain) answer of a query Q[X] to a database DB under constraints

KB is a set of substitutions ΘC
X such that:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]}.

We focus in this paper on situations where such answers can be computed.
This definition generalises to full FOL constraints a framework which has been called also locally closed world
in AI (see, e.g., [10]), exact views in databases (see, e.g., [1, 9, 16]), or DBox in KR (see [17]).

Example 1. Given the unary database predicates MEETING and ACTIVITY, the constraints ∀x.Project(x)→
ACTIVITY(x), ∀x.MEETING(x) → ACTIVITY(x), ∀x.ACTIVITY(x) → Project(x) ∨ MEETING(x), and finally
∀x.Project(x) → ¬MEETING(x), together with the consistent database ACTIVITY:〈m〉, ACTIVITY:〈p〉, and
MEETING:〈m〉, the query Project(x) has the answer {x 7→ p}.

Important special well-behaved queries are the domain independent queries; here we adopt a generalisa-
tion of the definition in [4].

Definition 2 (Domain independence). A query Q[X] is domain independent iff for every pair of interpret-
ations I, J which agree on the interpretation of the predicates and constants (i.e., ·I = ·J ), and for every

substitution Θ∆I∪∆J

X :

act-range(Θ∆I∪∆J

X ) ⊆ ∆I and I,Θ∆I∪∆J

X |= Q[X]
iff

act-range(Θ∆I∪∆J

X ) ⊆ ∆J and J ,Θ∆I∪∆J

X |= Q[X].

Definition 3 (Ground domain independence). A query Q[X] is ground domain independent iff Q[X/ΘC
X] is

domain independent for every substitution ΘC
X.

2



Ground domain independence is a weaker property than domain independence for a query; we will see in
the next Section that it still makes queries behaving well.

Example 2. The query Project(x) is domain independent (and therefore also ground domain independent),
the query ¬Project(x) is not domain independent but it is ground domain independent, and the query
¬Project(x) ∧ ∀y.ACTIVITY(y) is neither domain independent nor ground domain independent.

Let’s see how the definitions above work in the special case of classical relational databases, where the
signature is restricted to database predicates only (P = PDB), the constraints and the query are only over this
restricted signature, the database is consistent with respect to the constraints, and the queries are domain
independent. We can prove (via the Lemma 5) that when all these conditions are met then the original
query answering problem in Definition 1 is reduced to:

{ΘCDB∪CQ
X | I(CDB∪CQ)

(DB) |= Q
[X/ΘCDB

X ]
}

where CQ is the set including the interpretation of each constant ai appearing in the query Q but not in
CDB, such that aIi = ai. Namely, query answering is reduced to a model checking problem over the unique

interpretation I(CDB∪CI
Q)

(DB) , for each n-tuple of constants in the active domain together with the constants

mentioned in the query, and the constraints do not play any role. Therefore it is enough to evaluate the
domain independent query Q[X] over the database DB using standard SQL query evaluation technologies,
which is exactly what we expected. That is the reason why its data complexity is as fast as in AC0 – which
is the complexity of model checking first order logic formulas with respect to the size of the interpretation.

Example 3. Given the unary database predicates MEETING and ACTIVITY, the constraint ∀x.MEETING(x)→
ACTIVITY(x), and the consistent database ACTIVITY:〈m〉, ACTIVITY:〈p〉, MEETING:〈m〉, the domain independent
query ACTIVITY(x) ∧ ¬MEETING(x) has the answer {x 7→ p}.

3 A general framework for query rewriting

We introduce in this Section implicit and explicit definability for queries, and discuss how explicit definitions
can be used for query rewriting, similar in spirit to the recent work in [15, 16].

In the following, given a set of constraints KB, a database DB, and a query Q, for every non-database
predicate P in σ(KB,Q) \ PDB, let P̃ be a renaming of P – a distinct non-database predicate symbol not

appearing anywhere in σ(KB,Q)∪PDB; and let extend the renaming transformation (̃·) in the obvious way to
formulas and sets of constraints and databases, by renaming the predicates in them. Given an interpretation
I, let I|PDB be an interpretation with the same domain ∆I and with the same interpretation function ·I
but defined only for the database predicates PDB.

Definition 4 (Implicit definability). Let I and J be two models of the constraints KB. A query Q[X] is
implicitly definable from the database predicates PDB under the constraints KB iff I|PDB = J |PDB and

∆I = ∆J implies that for every Θ∆I

X : I,Θ∆I

X |= Q[X] iff J ,Θ∆I

X |= Q[X].

Q is implicitly definable from PDB in KB if any two models of KB that have the same domain and agree in
what they assign to the database predicates in PDB also agree in what they assign to Q. In other words,
given a set of constraints, a query Q is implicitly definable if its extension depends only on the extension
of the database predicates; remember that both the constraints and the query may include more predicates
than just the database predicates. So, if a query is implicitly definable, then its evaluation depends only
on the database predicates, and vice-versa; therefore implicitly definable queries characterise exactly views.
The class of implicitly definable queries (first introduced by Tarski [18]) is exactly the class of queries for
which we will find exact rewritings (i.e., their explicit definitions).

Example 4 (continues Example 1). Given the database predicates MEETING and ACTIVITY, and the con-
straints introduced in Example 1, the query Project(x) is implicitly definable from the database predicates
MEETING and ACTIVITY.

An alternative equivalent reformulation of the semantic definition of implicit definability is the following
syntactic definition [18].

Definition 5 (Implicit definability: syntactic). A query Q[X] is implicitly definable from the database

predicates PDB under the constraints KB iff KB ∪ K̃B |= ∀X.Q[X] ↔ Q̃[X].

3



According to this definition, checking whether a query is implicit definable can be reduced to checking a
standard entailment in FOL. Note that the above definition holds for unrestricted (i.e., either finite or
infinite) models. It is possible that a query is not implicitly definable by considering unrestricted models,
while it would be by considering the interpretation of the database predicates to be necessarily finite (i.e.,
when the database is a finite set of tuples). That’s why we did not explicitly require the database DB
to be finite. If we require the database DB to be finite, then the framework proposed in this paper may
be incomplete, namely it may miss some rewritings. Note that, for example, the framework would be
complete again in the case of the fragment of FOL considered in Section 5, since in the guarded fragment
of FOL unrestricted models entailment and finite models entailment coincide [12]. Moreover, in some cases
finite model entailment is undecidable while unrestricted models entailment is decidable (e.g., FD + UID
+ coverage + disjointness) and then the tradeoff is whether to enforce all the constraints in the family
sacrificing finite consequences or whether to restrict the allowed constraints.

If a query is implicitly definable from the database predicates, we could hope to find an equivalent formula
using only database predicates, namely its explicit definition. This can be seen as the explicit view definition
over the database predicates associated to the query. Beth [6] and Craig [8] showed that if a formula Q is
implicitly definable from predicates PDB under constraints KB, then there exists its explicit definition, i.e.,
a formula Q̂ in FOL with σ(Q̂) ⊆ PDB logically equivalent to Q given KB.

Note that the notion of explicit definability is based on logical equivalence – that is, over all possible
substitutions with elements of the domain – and it is therefore stronger than what is needed to preserve
equivalence of query answering as defined in Definition 1 – which is based on substitutions with constants. It
would be possible to change the definition of query answering as a set of substitutions over domain elements
as opposed to a set of substitutions over constants. With this change, whenever an equivalent query rewriting
exists then an explicit definition would exist. However, such a changed definition of query answering would
require all the constants in FOL to satisfy the standard name assumption like active domain elements, i.e.,
for every constant a ∈ C it holds that aI = a. We are again faced with a tradeoff between the expressivity of
the constraints (allowing for constants with standard FOL semantics as opposed to constants with standard
name assumption) and the completeness of the rewriting process. Of course, if the constraints do not mention
constants at all, then the framework would be complete. Note that the framework is complete in the case of
the fragment of FOL considered in Section 4, since in this fragment of FOL constants do not appear in the
constraints.

Definition 6 (Explicit definability). A query Q[X] is explicitly definable from the database predicates PDB
under the constraints KB iff there is some formula Q̂[X] in FOL such that KB |= ∀X.Q[X] ↔ Q̂[X] and

σ(Q̂) ⊆ PDB.

Theorem 1 (Projective Beth definability). If a query Q is implicitly definable from the database predicates

PDB under constraints KB, then it is explicitly definable as a formula Q̂ in FOL with σ(Q̂) ⊆ PDB under
the constraints KB.

Craig [8] gave to this theorem a constructive proof, i.e., a procedure for computing explicit definitions.
The constructive proof of Craig relies on the notion of interpolation. We review a procedure for interpolant
calculation based on Tableau proofs in Appendix A.

Lemma 2 (Craig’s interpolation). If ϕ→ ψ is a valid formula in FOL and neither ϕ nor ψ are valid,
then there is a formula χ in FOL, called interpolant, whose predicate and constant symbols are among the
predicate and constant symbols of both ϕ and ψ, and both ϕ→ χ and χ→ ψ are valid formulas.

Note that the Beth definability and Craig interpolation theorems do not hold for all fragments of FOL:
there may not always be an explicit definition or an interpolant in the fragment itself, but of course there
will be one in FOL.

An interpolant is used to find the explicit definition of a given implicitly definable predicate as follows.

Theorem 3 (Interpolant as definition). Let Q be a query with n ≥ 0 free variables implicitly defined from
the database predicates PDB under the constraints KB. Then, the closed formula with c1, . . . , cn new distinct
constant symbols in C not appearing in KB or Q

((
∧
KB) ∧Q[X/c1,...,cn])→ ((

∧
K̃B)→ Q̃[X/c1,...,cn])

is valid, and its interpolant Q̂[c1,...,cn/X] defines the query Q explicitly from the database predicates PDB under
the constraints KB.

4



We can now combine these results to reduce answering of a definable query to a database under constraints
as in Definition 1 to answering of a rewritten query to the database only.

Theorem 4 (Query rewriting). Let DB be a database satisfying a set of constraints KB, and Q[X] be

implicitly definable from PDB under KB. Then there is a rewritten query Q̂[X] (from Theorem 3) in FOL
with σ(Q̂) ⊆ PDB such that:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]} = {ΘC
X | for every ∆I : I(∆I)

(DB)|PDB |= Q̂[X/ΘC
X]}

Proof (sketch). We can replace Q with Q̂ since they are logically equivalent in all the models of KB. Since Q̂
mentions only database predicates, we can restrict the interpretation I(DB) only to the database predicates,
and across these interpretations I(DB) is always the same but for the domain ∆I– which necessarily includes
the active domain CDB – and for the interpretation of constants in C not in the active domain CDB.

Even if this theorem shows how to get rid of the constraints KB by rewriting the original query Q into a
rewritten query Q̂ over only the database predicates, the original query answering problem in Definition 1
is still not yet reduced to model checking, since we have to consider all possible varying domains extending
the active domain. In order to enable the use of standard SQL query evaluation technologies it is necessary
to show the domain independence of the rewriting Q̂. Indeed, once we show its domain independence, then
we can prove that the original query answering problem in Definition 1 is reducible to the following model
checking problem in FOL, for each n-tuple of constants in the active domain, and therefore it is enough to
evaluate the query Q̂[X] over the database DB using standard SQL query evaluation technologies.

Lemma 5 (Active domain interpretation). Given a database DB and a domain independent query Q̂ over
PDB, then:

{ΘC
X | for every ∆I : I(∆I)

(DB)|PDB |= Q̂[X/ΘC
X]} = {ΘCDB

X | I(CDB)
(DB) |PDB |= Q̂[X/ΘCDB

X ]
},

where the interpretation of the constants in the query Q̂ not in CDB can be an arbitrary element of CDB.

Proof (sketch). Since the query Q̂ is domain independent, its answer does not change by varying the domain,
so we pick the smallest of such domains, which is unique and coincides with CDB. The additional constants
in the query not in CDB can be interpreted in an arbitrary way, since the answer would not depend on the
interpretation of these additional constants.

Theorem 6 (Domain independent rewriting). If the rewritten query Q̂[X] (from Theorem 4) is domain
independent, then:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]} = {ΘCDB
X | I(CDB)

(DB) |PDB |= Q̂[X/ΘCDB
X ]
}.

Proof (sketch). From Theorem 4 and Lemma 5.

Example 5 (continues Example 4). Given the database predicates MEETING and ACTIVITY, the constraints,
and the database introduced in Example 1, the query Project(x) is implicitly definable from the database pre-
dicates MEETING and ACTIVITY, it has the explicit definition ∀x.Project(x)↔ ACTIVITY(x)∧¬MEETING(x),
and therefore it can be rewritten as the domain independent query ACTIVITY(x)∧¬MEETING(x). Indeed, the
rewritten query has the same answer {x 7→ p} found in Example 1.

We describe now two relevant cases that help in deciding whether a rewritten query is domain independent
under constraints.

Theorem 7 (Domain independence from KB). Given a domain independent query Q and a set of domain

independent constraints KB, the rewritten query Q̂ (from Theorem 4) is domain independent.

Proof (sketch). Notation: we extend the meaning of ·I to arbitrary (open or closed) formulas as usual.

- Since Q̂ is the explicit definition of Q: for every I ∈ M(KB) : QI = Q̂I .
- Since KB is domain independent: for every I,J with ·I = ·J : I ∈ M(KB) iff J ∈ M(KB).

- Since Q is domain independent: for every I,J with ·I = ·J : QI = Q̂J .
- From the previous steps: for every I,J ∈ M(KB) with ·I = ·J : Q̂I = Q̂J .

- Since Q̂ mentions only database predicates: for every I,J ∈ M(KB) with ·I = ·J : Q̂I|PDB = Q̂J |PDB .

- Since I|PDB and J |PDB do not depend on KB: for every I,J with ·I = ·J : Q̂I = Q̂J .

- Therefore Q̂ is domain independent.

5



This theorem is very important since it shows that if we have a set of domain independent constraints and a
domain independent query, we are guaranteed that the rewritten query is domain independent as well, and
so we can reduce the query answering under constraints into standard query answering of a database using
standard SQL query evaluation technologies. It is worth noting that the most important typical constraints
considered in the database literature are domain independent: tuple generating dependencies (thus including
foreign keys) and equality generating dependencies (thus including primary keys) are domain independent.

Lemma 8 (Domain independence of database constraints). Let tuple generating dependencies (TGDs) be
closed formulas of the form (∀X.A1 ∧ . . . ∧ An→∃Y.B1 ∧ . . . ∧ Bm), and equality generating dependencies
(EGDs) be closed formulas of the form (∀X.A1 ∧ . . . ∧ An → ∃Y.E) – with Ai and Bj atomic formulas
(excluding equality atoms) and E an equality atom. TGDs and EGDs are domain independent formulas.

Proof (sketch). It is enough to show that whenever a TGD or a EGD is true in the fixed interpretation

I(CDB)
(DB) then it is true also in any interpretation I(DB) with an arbitrary domain.

This implies that an implicitly definable domain independent query under tuple and equality generating
dependencies can be rewritten into a domain independent query over the database predicates only.

Theorem 9 (Ground domain independence). If C is a finite set, let’s extend the database DB with a new

unary relation >C containing all the constants in C. If the rewritten query Q̂[X] (from Theorem 4) is a
ground domain independent query, then the original query answering problem in Definition 1 is equivalent
to the query answering problem with a range restricted domain independent query:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]} =

{ΘCDB
X | I(CDB)

(DB) |PDB |= (Q̂[X] ∧ >C(x1) ∧ · · · ∧ >C(xn))
[X/ΘCDB

X ]
}.

Proof (sketch). Since CDB = C, by Theorem 4 we get:

{ΘC
X | for every I(DB) ∈ M(KB) : I(DB) |= Q[X/ΘC

X]} =

{ΘCDB
X | for every ∆I ⊇ CDB : I(∆I)

(DB)|PDB |= Q̂[X/ΘCDB
X ]
}.

Since the substitutions of the variables in Q̂ range only over the active domain CDB, we can add to the
query the restriction on the free variables without affecting its meaning. But now the range restricted query
is domain independent, and we can apply Lemma 5.

We will see in Section 5 an important application of this theorem to description logics constraints.
To sum up, we have seen in this section that in order to compute the rewriting of a query Q to a database

DB under constraints KB, we need to:

1. verify the properties which guarantee a domain independent rewriting;

2. check the consistency of the database DB wrt the constraints KB;

3. check that the query is implicitly definable from the database predicates PDB, by checking KB∪K̃B |=
∀X.Q[X] ↔ Q̃[X];

4. compute the interpolant Q̂ according to Theorem 3, which will be the rewriting of Q;

5. execute the domain independent rewriting Q̂ over the database DB using standard SQL.

Step 3 is the critical one, and ideally we would like to study interesting decidable fragments of FOL which
guarantee the termination of the step. On the other hand, step 4 is always guaranteed to terminate. Step 5
tells us that the data complexity of the query answering problem in this framework is in AC0. In the
appendix B our running example is fully worked out along the steps specified above.

4 Conjunctive queries and views

In this section we instantiate the general framework presented so far to conjunctive queries. We show how
the essential definitions specialise to this case, as this will lead us to the main insight needed to developing
the decision procedure for finding rewritings in this setting.

6



Definition 7 (Conjunctive View Rewriting Problem). Let Q be a conjunctive query formulated over a fixed
relational signature σ, Qi be conjunctive queries also formulated over σ, and Vi fresh predicate symbols of
arity equal to the number of free variables of the queries Qi, 0 < i ≤ k. We say that Q has a rewriting in
terms of view definitions

V = {∀Xi.Vi(Xi)↔ Qi}

if there is a (first-order) query QV over the signature {V1, . . . , Vk} such that

{∀Xi.Vi(Xi)↔ Qi} |= ∀X.Q↔ QV ,

where Xi and X are free variables of Qi and Q, respectively.

The set {V1, . . . , Vk} serves the role of the database predicates. For simplicity we use only binary relations
in σ as it is easy to see that, in the case of conjunctive queries and views, higher arity relations can be dealt
with using reification.

Also, in the following, we allow only connected conjunctive views: views in which every quantified variable
is connected to an answer variable through a sequence of relations.

Example 6 ([16]). Let Q(x, y)↔ ∃z, v, u.R(z, x), R(z, v), R(v, u), R(u, y), and

V1(x, y) ↔ ∃z, v.R(z, x), R(z, v), R(v, y),
V2(x, y) ↔ ∃z.R(x, z), R(z, y), and
V3(x, y) ↔ ∃z, v.R(x, z), R(z, v), R(v, y)

(As usual we omit the leading universal quantifiers in the view definitions.) It has been shown that Q has a
rewriting in terms of {V1, V2, V3} of the form ∃z.V1(x, z) ∧ ∀v.(V2(v, z)→ V3(v, y)).

Moreover, Nash et. al. [16] have shown that in the above case, a conjunctive rewriting cannot exist and
have constructed a first-order rewriting. We show that such rewritings can be obtained effectively.

Definition 8. Let Q be a conjunctive query and V = {∀Xi.Vi(Xi) ↔ Qi} a set of conjunctive views over
{R1, . . . , Rn}. We define a theory

ΣV = {∀Xi.Qi → Q̃i,∀Xi.Qi ← Q̃i | 0 < i ≤ k}

where Q̃i is obtained from Qi by substituting a symbol R̃j for Rj for all 0 < i ≤ k and 0 < j ≤ n.

We call the formulas ∀Xi.Qi → Q̃i and ∀Xi.Qi ← Q̃i rules (associated with a view Vi; note that there are
two rules associated with each view: one from left to right and one from right to left).

Explicit definability of Q in terms of V can be characterised as follows (see Theorem 1):

Proposition 10 (Explicit Definability for Conjunctive Views). Let Q be a conjunctive query and V a set of
conjunctive views over {R1, . . . , Rn}. Then Q has a rewriting in terms of V if and only if

ΣV |= ∀X.Q↔ Q̃,

where Q̃ is obtained from Q by substituting a symbol R̃i for Ri.

There are several steps for this to be practical:

1. We need a decision procedure for ΣV |= ∀X.Q↔ Q̃ to determine the existence of QV ,

2. We must be able to find QV effectively, and

3. We must make certain that QV is domain independent.

The last two issues have already been addressed by the general framework, as conjunctive queries and views,
when regarded to be constraints, are domain independent; in the sequel we thus concentrate on the first issue
and only briefly discuss effectiveness of finding the rewriting using one of the known effective algorithms for
construction of interpolants from proofs of interpolant existence [11, 14].

7



4.1 Decidability of Rewriting Existence for Conjunctive Views

We use a modified version of chase [2] for this purpose. Recall that we only use binary relations in the
conjunctive queries; views, however, can be of any arity. In the following we can therefore assume that the
chase corresponds to a labelled directed graph G whose nodes are numbered by integers and whose directed
edges are labelled by a relation name.

Definition 9 (Level Based Complete Chase). Let Q be a conjunctive query, V a set of conjunctive views
over {R1, . . . , Rn}. We define applylrV (G) to be an application of a “left-to-right” rule associated with the view
V to the (partial) chase G in the standard fashion TGDs apply in a chase; in addition we disallow creating
unnecessary anonymous objects. applyrlV (C) is defined symmetrically and, more generally, both applylrV (C)
and applyrlV (C) are defined as the exhaustive application of all left-to-right and right-to-left rules for all V ∈ V
on C, respectively. The integer substitutions for variables are called the nodes of the chase, and the level
based chase is defined as follows:

chase0
V(Q) = {Rl(i, j)|Rl(xi, xj) ∈ Q},

chase2k
V (Q) = applyrlV (chase2k−1

V (Q))and

chase2k+1
V (Q) = applylrV (chase2k

V (Q)).

We call chasekV(Q) the k-th round of the chase and define the level based complete chase to be chaseV(Q) =⋃
k≥0 chase

k
V(Q).

Observe that, due to the structure of constraints in ΣV , the chase is organised in two separate left-to-right
and right-to-left rounds. Note that the heads and bodies of the rules switch their rôles in these two rounds.
Since we disallow creating any new witnesses when they already exist, each of these phases terminates after
finitely many applications of the rules: only symbols R̃i (Ri, respectively) are generated in each round.

Proposition 11 ([2]). ΣV |= ∀X.Q → Q̃ if and only if Q̃
hom−→ chaseV(Q), where

hom−→ is a homomorphism

from the query that maps query variables of Q̃ to the nodes corresponding to query variables of Q.

Note that it is enough to test the implication Q→ Q̃ rather than Q↔ Q̃ since the problem is symmetric.

Example 7. The chase rounds for Q(0, 1) from Example 6:

R(2, 0), R(2, 3),R(3, 4), R(4, 1)
V1→

R̃(5, 0), R̃(5, 6), R̃(6, 4)
V2→

R(2, 0), R(2, 3),R(3, 4), R(4, 1), R(5, 7), R(7, 4)
V3→

R̃(5, 0), R̃(5, 6), R̃(6, 4), R̃(5, 8), R̃(8, 9), R̃(9, 1)

The last line contains a homomorphic image of Q̃(0, 1) (and note that not all constraints were “applied” to
keep the example simple).

In general, there is no guarantee that the chase terminates; indeed it is not difficult to construct views
for which the chase is infinite. We develop a blocking chase incorporating a blocking condition for firing a
rule that ensures that the chase terminates and for which Proposition 11 remains intact.

Our blocking condition depends critically on the symmetry of the constraints in ΣV . In particular, this
symmetry ensures that any fresh nodes introduced by the (complete) chase rounds can trace their parenthood
to other nodes already present in the (partial) chase and can therefore be organised in generations.

Definition 10 (Chase Predecessor). Let n be a node introduced by a rule in ΣV for which n was a witness
for a variable x in the head of the rule. Then there is a node m that was matched by the same variable x in
the body of the rule. We say that m is an immediate predecessor of n.

At every round of the chase we record the immediate predecessors for all nodes that appear in the chase
(nodes inherited from the previous round by virtue of matching a universally quantified variable for some ΣV
are their own predecessors). In this way, for every tuple of constants appearing in the chase we can define
a tuple of same generation k-predecessors (for any k up to the number of chase rounds) by taking the kth

immediate predecessor for each of the nodes.

This observation leads to the following Lemma:

Lemma 12. If a rule body matches a state of the chase with a substitution θ then, for any number of chase
rounds k, it also matches with a substitution θ′ in which the constants are replaced by their k-predecessors.

8



Proof (sketch). Consider a match consisting of constants, some of which were created by the last round of
the chase. There is a homomorphism from these constants to their immediate predecessors due to symmetry
of rules in ΣV (each rule can be run backwards). Repeating this process and composing with the query match
yields the result.

This lemma allows us to prune spurious applications of the rules. It also allows us to determine which
views are possibly relevant to a rewriting of a particular query: it is only those that match the (initial chase
graph of the) original query.

Definition 11 (Neighborhood). Let Q be a conjunctive query, and V a set of connected conjunctive view
definitions. We write width(Q,V) to denote the length of the longest simple path occurring in the body of Q
or of some Vi ∈ V. In addition, given the context of a non-negative integer k, we then write Li to denote

{R(m,n) | R(m,n) ∈ chasekV(Q) ∧ i; m ∧ i; n},

where p ; q holds when there exists an undirected simple path in chasekV(Q) of length not exceeding
width(Q,V).

Definition 12 (Level Based Blocking Chase). Let Q be a conjunctive query, V a set of connected conjunctive
view definitions, and k a non-negative integer. For G = chasekV(Q), let (Vi, S) denote the possibility for either
of the two rules for view Vi ∈ V to match nodes S ⊆ VG. We say that the application of the rule (Vi, S) is

blocked in G if there exists j > 1 such that for each p ∈ S we have a homomorphism Lp
hom−→Lq where q is

the jth predecessor of node p.

We define the level based blocking chase chaseblk
V (C) to be the level based complete chase in which, for all k,

no left-to-right rule for V is fired on nodes S occurring in G = chasekV(Q) for which (V, S) is blocked in G.

Note that the homomorphism above requires nodes representing the distinguished variables of the original
query to be mapped to themselves, in addition to preserving of all labelled edges. Also, it is sufficient to block
the left-to-right rules as every individual round of the chase terminates and observe that all applications of
those rules can trace their matches to the original query.

Lemma 13. Let Q be a connected conjunctive query and V a set of connected conjunctive views over
{R1, . . . , Rn}. Also let chaseV(Q) and chaseblk

V (Q) be level based complete and blocked chases of Q using ΣV ,

respectively. Then Q̃
hom−→ chaseV(Q) if and only if Q̃

hom−→ chaseblk
V (Q).

Proof (sketch). The “if” direction is immediate. For the “only-if” direction, consider any sequence of rule
applications of length k in chaseV(Q) starting with a blocked rule. We show that the result of this sequence
has a homomorphic image in chaseblk

V (Q) by induction on k:
For k = 1, the claim follows immediately from the definition of blocking; for k = i > 1 we assume that

the result of all sequences of length i− 1 has a homomorphic image in chaseblk
V (Q). Then, however, the last

rule matches this image and thus has been applied in chaseblk
V (Q). Hence the result of its application in

chaseblk
V (Q) has a homomorphic image in chaseblk

V (Q).

Lemma 14. For a given conjunctive query Q and a set of connected conjunctive view definitions V, there
exists k such that chaseblk

V (Q) ⊆ chasekV(Q).

Proof (sketch). It is straightforward to first show that there are a finite number of homomorphically distinct
possibilities for Li in chaseV(C) by appeal to Lemma 12. It then follows, again straightforwardly, that there
exists k such that, by Lemma 12, all possibilities (V, S) for firing a rule in chasekV(Q) are blocked.

Our main result for this section now follows from Proposition 11 together with Lemmas 13 and 14 above.

Theorem 15. For a given conjunctive query Q and a set of connected conjunctive view definitions V, the
implication problem ΣV |= ∀X.Q↔ Q̃ is decidable.

9



4.2 Effective Construction of the Rewriting

We use Tableau or Resolution to construct a Craig interpolant for the first-order constraints representing
the conjunctive views. Since we can determine whether the interpolant exists in advance using Theorem 15,
the success of the construction is guaranteed in finite time.

Theorem 16. Let Q be a conjunctive query and V a set of conjunctive views over {R1, . . . , Rn} such that
a rewriting over V w.r.t. the views exists. Then there is an algorithm that, given Q and V, computes QV .

Proof (sketch). We use a Tableau-based construction of Craig interpolants [11] as outlined in Appendix A;
note that the tableau closes after finitely many steps since Q is known to be explicitly definable w.r.t. V.

A similar result can be shown for resolution-based proofs [14] obtaining an interpolant essentially identical
to the hand-constructed rewriting presented in [16]. The corresponding resolution proof confirming the
existence of the rewriting is presented in Appendix C.

5 Guarded fragment and ontology languages

In this section, we briefly introduce the specialisation of the framework presented in Section 3 in the case of
constraints expressed as Description logics (DLs) axioms [5]. The main motivation of this work is to address
the scalability of query answering over large data sets in DL knowledge bases. This is of particular interest
because the data complexity of the query answering problem in expressive DLs is intractable whereas our
framework allows one to use standard SQL query evaluation techniques.

Data in a DL knowledge base is typically stored in the so-called ABox component. An ABox differs from
a database since it has an open-world semantics as in sound views and it is incompatible with the database
(exact views) semantics as defined in Section 2. There are approaches to deal with ABoxes using standard
relational database technology: for example, in the DL-Lite DL the expressivity of the description logic
language is restricted in order to reduce query answering to SQL querying (see, e.g., [3]). But differently
from DL-Lite, in our work we want to focus on knowledge bases with a database (exact views) semantics for
the data – called DBox.

In [17], the problem of query answering under ALC DL constraints is studied using the DBox semantics
as defined in Section 2. Here we generalise the approach by expressing the constraints in the decidable
guarded fragment GF of FOL (already considered by [15]), which includes ALC. We prove now a general
theorem which guarantees that the rewriting under GF constraints of an implicitly definable query is always
a ground domain independent query in GF (due the Beth definability property for GF [13]), and so we can
always use SQL to evaluate the rewritten query.

Theorem 17 (Ground domain independence of GF). Queries in the guarded fragment GF of FOL are
ground domain independent.

Proof. See Appendix D

6 Conclusions and future work

The paper presented a general framework for finding equivalent query rewritings in the context of combined
knowledge and data bases, which used standard theorem proving techniques to find them. The question of
when the rewritings can be efficiently evaluated was addressed, and two applications of the framework were
shown: one dealing with an ontology language, and the other with a useful subclass of conjunctive views
(which was generally an open problem).

In addition to defining the general framework and to the theoretical contributions of the paper, we have
also started experimental evaluation of the proposed techniques with the help of a state of the art first-order
theorem prover. Indeed, the resolution proof presented in Appendix C for the running example (Example 6)
is generated automatically in a fraction of a second.

We have begun work on several topics:

• Practical approaches to query evaluation face additional complications, such as dealing with binding
patterns, duplicate semantics, ordering of data, size of the rewritings, and costs of executing relational
operators, all of which crucially impact on performance of query engines. Of particular interest is
extracting alternative query reformulations from first-order proofs of explicit definability.

10



• Many classes of constraints for which reasoning is decidable have been proposed both for databases
and in the area of knowledge representation. However, constraints have to be balanced against the
kinds of queries that can be expressed. We have started to investigate various combinations (such as
description logics combined with positive first-order queries) in our framework.

Further, we plan to extend our decidability result to the class of all (i.e., including disconnected) conjunctive
views based on a decision procedure for testing whether an explicit definition exists.

11



References

[1] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using materialized views. In
Proc. PODS, pages 254–263, 1998.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[3] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. DL-Lite in the
light of First-Order Logic. In Proc. of the 22nd AAAI Conference on Artificial Intelligence, pages
361–366, July 2007.

[4] Arnon Avron. Constructibility and decidability versus domain independence and absoluteness. Theor.
Comput. Sci., 394(3):144–158, 2008.

[5] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[6] E. W. Beth. On Padoa’s methods in the theory of definitions. Koninklijke Nederlandse Akademie van
Wetenschappen, Proceedings, 56:330–339, 1953. also Indagationes mathematicae, vol. 15.

[7] Patrick Blackburn and Maarten Marx. Constructive interpolation in hybrid logic. Journal of Symbolic
Logic, 68(2):463–480, 2003.

[8] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
Journal of Symbolic Logic, 22(3):269–285, 1957.

[9] Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation with constraints. SIGMOD Record,
35(1):65–73, 2006.

[10] Oren Etzioni, Keith Golden, and Daniel S. Weld. Sound and efficient closed-world reasoning for planning.
Artificial Intelligence, 89(1–2):113–148, 1997.

[11] M. Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-Verlag, 1996.

[12] Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.

[13] Eva Hoogland, Marten Marx, and Martin Otto. Beth definability for the guarded fragment. In Pro-
ceedings of LPAR’99, volume 1705 of LNAI, pages 273–285. Springer-Verlag, 1999.

[14] Guoxiang Huang. Constructing Craig interpolation formulas. In Computing and Combinatorics, LNCS
959, pages 181–190, 1995.

[15] Maarten Marx. Queries determined by views: pack your views. In Proc. PODS, pages 23–30, 2007.

[16] Alan Nash, Luc Segoufin, and Victor Vianu. Determinacy and rewriting of conjunctive queries using
views: A progress report. In Proc. ICDT, pages 59–73, 2007.

[17] İnanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with ontologies over DBoxes.
In Craig Boutilier, editor, IJCAI, pages 923–925, 2009.

[18] Alfred Tarski. Some methodological investigations on the definability of concepts. In Logic, Semantics
and Metamathematics, pages 296–319. Clarendon Press, Oxford, UK, 1956.



A Tableau Expansion and Interpolation Rules

Validity of a formula ϕ→ ψ is checked by constructing a closed biased tableau whose root is labeled with
{L(ϕ), R(¬ψ)}. Interpolant calculation rules are then applied to the closed tableau, yielding an interpolant
I of ϕ,ψ. We review the expansion rules and interpolant calculation rules by Fitting [11] and present
the interpolant calculation rules for the case of FOL with equality. The biased expansion and interpolant
calculation for the case of FOL with equality are analogous to the corresponding rules for constructing
interpolants in quantified hybrid logic by Blackburn and Marx [7].

We first review the biased tableau expansion rules, which are straightforwardly obtained from the usual
expansion rules. Here, X,Y are L or R. We start with the propositional rules

negation rules α-rule β-rule

X(¬¬ϕ)
X(ϕ)

X(¬>)
X(⊥)

X(¬⊥)
X(>)

X(ϕ1 ∧ ϕ2)
X(ϕ1)
X(ϕ2)

X(¬(¬ϕ1 ∧ ¬ϕ2))
X(ϕ1) | X(ϕ2)

Here, ϕ,ϕ1, ϕ2 are formulae.
We proceed with the first-order expansion rules. We write a formula ϕ with each free occurrence of

the variable x replaced with term t as ϕ(t). Cpar extends C with an infinite set of new constants, called
parameters. A parameter is new if it does not occur anywhere in the tableau.

γ-rule δ-rule

X(∀x.ϕ)
X(ϕ(t))

(for any t ∈ Cpar)

X(∃x.ϕ)
X(ϕ(p))

(for a new
parameter p)

Finally, we review the equality rules.

reflexivity Tableau replacement

X(ϕ)
X(t = t)
(t ∈ Cpar

occurs in ϕ)

X(t = u)
Y (ϕ(t))
Y (ϕ(u))

Note that the biased reflexivity rule is slightly different from the usual reflexivity rule, because it is necessary
to correct where constants come from, in order to ensure that the interpolant constructed later does not
contain constants that do not appear in both the original formulas.

For the interpolant rules we use the notation S
int−−→ I, where S = {L(ϕ1), . . . , L(ϕn), R(ψ1), . . . , R(ψm)}

is a set of biased sentences, to mean that I is interpolant for the sentence ϕ1 ∧ · · · ∧ϕn→ (¬ψ1, . . . ,∨¬ψm).

Observe that if {L(ϕ), R(¬ψ)} int−−→ I, I is an interpolant of ϕ→ ψ, as desired.
We start with the calculation rules for closed branches.

S ∪ {L(ϕ), L(¬ϕ)} int−−→ ⊥ S ∪ {L(ϕ), R(¬ϕ)} int−−→ ϕ

S ∪ {R(ϕ), R(¬ϕ)} int−−→ > S ∪ {R(ϕ), L(¬ϕ)} int−−→ ¬ϕ

S ∪ {L(⊥)} int−−→ ⊥ S ∪ {R(⊥)} int−−→ >

We proceed with the calculation rules corresponding to the respective tableau expansion rules. We start
with the propositional case.

S ∪ {X(ϕ)} int−−→ I

S ∪ {X(¬¬ϕ)} int−−→ I

S ∪ {X(>)} int−−→ I

S ∪ {X(¬⊥)} int−−→ I

S ∪ {X(⊥)} int−−→ I

S ∪ {X(¬>)} int−−→ I

S ∪ {X(ϕ1), X(ϕ2)} int−−→ I

S ∪ {X(ϕ1 ∧ ϕ2)} int−−→ I

S ∪ {L(ϕ1)} int−−→ I1 S ∪ {L(ϕ2)} int−−→ I2

S ∪ {L(¬(¬ϕ1 ∧ ¬ϕ2))} int−−→ I1 ∨ I2



S ∪ {R(ϕ1)} int−−→ I1 S ∪ {R(ϕ2)} int−−→ I2

S ∪ {R(¬(¬ϕ1 ∧ ¬ϕ2))} int−−→ I1 ∧ I2
For the first-order case, assume S = {L(φ1), . . . , L(φn), R(ψ1), . . . , R(ψm)} and p is a parameter that does
not occur in S or φ. In addition, with ϕ[t1/t2] we denote the formula obtained from ϕ by replacing every
occurrence of the term t1 with t2.

S ∪ {X(ϕ(p))} int−−→ I

S ∪ {X(∃x.ϕ(x))} int−−→ I

S ∪ {L(ϕ(c))} int−−→ I

S ∪ {L(∀x.ϕ(x))} int−−→ I
if c occurs in {φ1, . . . , φn}

S ∪ {R(ϕ(c))} int−−→ I

S ∪ {R(∀x.ϕ(x))} int−−→ I
if c occurs in {ψ1, . . . , ψn}

S ∪ {L(ϕ(c))} int−−→ I

S ∪ {L(∀x.ϕ(x))} int−−→ ∀x.I[c/x]
otherwise

S ∪ {R(ϕ(c))} int−−→ I

S ∪ {R(∀x.ϕ(x))} int−−→ ∃x.I[c/x]
otherwise

We conclude with the calculation rules for equality.

S ∪ {X(ϕ), X(t = t)} int−−→ I

S ∪ {X(ϕ)} int−−→ I

S ∪ {X(t = u), X(ϕ(u))} int−−→ I

S ∪ {X(t = u), X(ϕ(t))} int−−→ I

S ∪ {R(t = u), L(ϕ(u))} int−−→ I

S ∪ {R(t = u), L(ϕ(t))} int−−→ t = u→ I
if u occurs in {ϕ(t), φ1, . . . , φn}

S ∪ {L(t = u), R(ϕ(u))} int−−→ I

S ∪ {L(t = u), R(ϕ(t))} int−−→ t = u ∧ I
if u occurs in {ϕ(t), ψ1, . . . , ψm}

S ∪ {R(t = u), L(ϕ(u))} int−−→ I

S ∪ {R(t = u), L(ϕ(t))} int−−→ I[u/t]
otherwise

S ∪ {L(t = u), R(ϕ(u))} int−−→ I

S ∪ {L(t = u), R(ϕ(t))} int−−→ I[u/t]
otherwise

Correctness of the propositional and standard first-order interpolant calculation rules was shown by Fitting
[11]. Correctness of the rules for equality was shown by Blackburn and Marx [7].

B Fully worked out example for Section 3

Example 8 (Example 1 complete). For the sake of clearness, let us sum-up all the tasks for query rewriting
in case of Example 1. So, the database predicates are

MEETING and ACTIVITY .

The database DB is
ACTIVITY : 〈m〉 , ACTIVITY : 〈p〉 , and MEETING : 〈m〉 .

The set KB of constraints is:

∀x.Project(x)→ ACTIVITY(x) , (1)

∀x.MEETING(x)→ ACTIVITY(x) , (2)

∀x.ACTIVITY(x)→ (Project(x) ∨ MEETING(x)) , (3)

∀x.Project(x)→ ¬MEETING(x) . (4)

The query is:
Q(x)↔ Project(x) .

Now,

1. we check the consistency of the database DB wrt the constraints KB. To this end, consider the set of
constraints KBDB

∀x.ACTIVITY(x)↔ (x = m) ∨ (x = p) ,
∀x.MEETING(x)↔ (x = m) ,
(m 6= p) .

(5)

We have that DB is consistent wrt the constraints KB iff KB ∪ KBDB has a model, which indeed can
be verified using a FOL theorem prover.



2. we check that the query is implicitly definable from the database predicates PDB. To do so, we check
(using a FOL theorem prover) whether KB ∪ K̃B |= ∀x.Q(x)↔ Q̃(x), where

Q̃(x)↔ ˜Project(x) ,

and K̃B is

∀x. ˜Project(x)→ ACTIVITY(x) , (6)

∀x.MEETING(x)→ ACTIVITY(x) , (7)

∀x.ACTIVITY(x)→ ( ˜Project(x) ∨ MEETING(x)) , (8)

∀x. ˜Project(x)→ ¬MEETING(x) . (9)

3. we now compute the interpolant Q̂(c) according to Theorem 3. To this end, consider a new constant c.
We know by Theorem 3 that

(
∧
KB ∧ Q(c))→ (

∧
K̃B → Q̃(c)) (10)

is valid and, thus, we may compute an interpolant Q̂(c) of it. Then Q̂(x) is the rewriting of Q(x). To
show this step, let us consider the interpolation rules in Appendix A. Now, it is easily verified that the
following holds:

S ∪ {X(ϕ1 ∨ ϕ2), X(ϕ2)), X(¬ϕ1)} int−−→ I

S ∪ {X(ϕ1 ∨ ϕ2), X(¬ϕ1)} int−−→ I
(11)

and, similarly,

S ∪ {R(ϕ1 ∨ ϕ2), L(¬ϕ1), L(¬ϕ2)} int−−→ ϕ1 ∧ ϕ2 . (12)

Now, as formula (10) is valid, according to Appendix A, the interpolant computation starts with S0 =
{L(ϕ), R(¬ψ)}, where ϕ is ∧

KB ∧ Q(c)

and ¬ψ is ∧
K̃B ∧ ¬Q̃(c) .

As c occurs in the labelled formulae, by applying the interpolation rule for ∀, we may instantiate/ground

all universal quantified formulae in KB and K̃B with constant c, which we denote KB[x/c] and K̃B[x/c],
respectively. Now, by applying the interpolation rule for conjunction, it suffices to compute an inter-
polant for

S =
⋃

ϕ∈KB[x/c]

{L(ϕ)} ∪ {L(Q(c))} ∪
⋃

ψ∈K̃B[x/c]

{R(ψ)} ∪ {R(¬Q̃(c))} .

Therefore, we have:

(a) L(¬Project(c) ∨ ACTIVITY(c)) [Input]

(b) L(¬MEETING(c) ∨ ACTIVITY(c)) [Input]

(c) L(¬ACTIVITY(c) ∨ Project(c) ∨ MEETING(c)) [Input]

(d) L(¬Project(c) ∨ ¬MEETING(c)) [Input]

(e) L(Q(c)) [Input]

(f) R(¬ ˜Project(c) ∨ ACTIVITY(c)) [Input]

(g) R(¬MEETING(c) ∨ ACTIVITY(c)) [Input]

(h) R(¬ACTIVITY(c) ∨ ˜Project(c) ∨ MEETING(c)) [Input]



(i) R(¬ ˜Project(c) ∨ ¬MEETING(c)) [Input]

(j) R(Q̃(c)) [Input]

(k) L(ACTIVITY(c)) [(11):a,e]

(l) L(¬MEETING(c)) [(11):d,e]

(m) R(¬ACTIVITY(c) ∨ MEETING(c)) [(11):h,j]

(n) Q̂(c) := ACTIVITY(c) ∧ ¬MEETING(c), [(12):k,l,m]

Therefore, the rewriting of Q is

∀x.Q̂(x)↔ (ACTIVITY(x) ∧ ¬MEETING(x)) .

4. we conclude by executing Q̂ over the database DB using standard SQL query evaluation technologies:

SELECT ACTIVITY.0 FROM ACTIVITY , MEETING

WHERE ACTIVITY.0 != MEETING.0

and we get the answer {x 7→ p}.

C Resolution Proof of Existence of Rewriting in Example 6

1. Q(sk0, sk1) [Input]

2. ¬Q̃(sk0, sk1) [Input]

3. V2(X0, X1) ∨ ¬R̃(X0, X3) ∨ ¬R̃(X3, X1) [Input]

4. R(sk3(X0, X1), X1) ∨ ¬V2(X0, X1) [Input]

5. R(X0, sk3(X0, X1)) ∨ ¬V2(X0, X1) [Input]

6. R̃(sk4(X0, X1), sk5(X0, X1)) ∨ ¬V1(X0, X1) [Input]

7. R̃(sk5(X0, X1), X1) ∨ ¬V1(X0, X1) [Input]

8. R̃(sk4(X0, X1), X0) ∨ ¬V1(X0, X1) [Input]

9. R̃(sk6(X0, X1), sk7(X0, X1)) ∨ ¬V3(X0, X1) [Input]

10. R̃(sk7(X0, X1), X1) ∨ ¬V3(X0, X1) [Input]

11. R̃(X0, sk6(X0, X1)) ∨ ¬V3(X0, X1) [Input]

12. V3(X0, X1) ∨ ¬R(X0, X4) ∨ ¬R(X5, X1) ∨ ¬R(X4, X5) [Input]

13. V1(X0, X1) ∨ ¬R(X4, X0) ∨ ¬R(X5, X1) ∨ ¬R(X4, X5) [Input]

14. Q̃(X0, X1) ∨ ¬R̃(X2, X3) ∨ ¬R̃(X2, X0) ∨ ¬R̃(X4, X1) ∨ ¬R̃(X3, X4) [Input]

15. R(sk13(X0, X1), sk14(X0, X1)) ∨ ¬Q(X0, X1) [Input]

16. R(sk14(X0, X1), X1) ∨ ¬Q(X0, X1) [Input]

17. R(sk12(X0, X1), X0) ∨ ¬Q(X0, X1) [Input]

18. R(sk12(X0, X1), sk13(X0, X1)) ∨ ¬Q(X0, X1) [Input]

19. R(sk13(sk0, sk1), sk14(sk0, sk1)) [Res:1,15]

20. R(sk12(sk0, sk1), sk0) [Res:1,17]

21. R(sk12(sk0, sk1), sk13(sk0, sk1)) [Res:1,18]

22. ¬R(sk12(sk0, sk1), X1) ∨ ¬R(sk13(sk0, sk1), X2) ∨ V1(X1, X2) [Res:13,21]



23. ¬R(sk13(sk0, sk1), X1) ∨ V1(sk0, X1) [Res:20,22]

24. V1(sk0, sk14(sk0, sk1)) [Res:19,23]

25. ¬R̃(X0, X1) ∨ ¬R̃(X0, sk0) ∨ ¬R̃(X2, sk1) ∨ ¬R̃(X1, X2) [Res:2,14]

26. ¬R̃(sk7(X1, X2), sk1) ∨ ¬R̃(X3, sk6(X1, X2))

∨ ¬V3(X1, X2) ∨ ¬R̃(X3, sk0) [Res:9,25]

27. ¬R̃(X1, sk6(X2, sk1)) ∨ ¬V3(X2, sk1) ∨ ¬R̃(X1, sk0) [Res:10,26]

28. ¬V3(X1, sk1) ∨ ¬R̃(X1, sk0) [Res:11,27]

29. ¬R̃(X1, sk5(X2, X3)) ∨ V2(X1, X3) ∨ ¬V1(X2, X3) [Res:3,7]

30. V2(sk4(X1, X2), X2) ∨ ¬V1(X1, X2) [Res:6,29]

31. R(sk14(sk0, sk1), sk1) [Res:1,16]

32. ¬R(X1, sk3(X2, X3)) ∨ ¬R(X3, X4) ∨ ¬V2(X2, X3) ∨ V3(X1, X4) [Res:4,12]

33. ¬R(X1, X2) ∨ ¬V2(X3, X1) ∨ V3(X3, X2) [Res:5,32]

34. ¬V2(X1, sk14(sk0, sk1)) ∨ V3(X1, sk1) [Res:31,33]

35. V3(sk4(X1, sk14(sk0, sk1)), sk1) ∨ ¬V1(X1, sk14(sk0, sk1)) [Res:30,34]

36. ¬R̃(sk4(X1, sk14(sk0, sk1)), sk0) ∨ ¬V1(X1, sk14(sk0, sk1)) [Res:28,35]

37. 2 [Res:8,24,36 (w/forward subsumption)]

D The Guarded Fragment GF
In this section, we consider the decidable guarded fragment GF of FOL (Section 2). Since FOL is function-
free, the set of terms consists of constants and variables. The set of GF-formulas is the smallest set such
that

1. Every R(ti, . . . , tn), where R is an n-place relation symbol in P and t1, . . . , tn are terms, is an atomic
GF-formula.

2. If ϕ is a GF-formula then ¬ϕ ∈ GF .

3. If ϕ, ψ are GF-formulas then ϕ ∧ ψ and ϕ ∨ ψ are GF-formulas.

4. If G is an atomic GF-formula, ϕ is a GF-formula, and X is a finite, non-empty sequence of variables
such that X ⊆ free(ϕ) ⊆ free(G) then

∃X.G ∧ ψ and ∀X.G→ ψ

are GF-formulas.

Here free(ϕ) means the set of free variables of ϕ. A sentence (also called a closed formula) of GF is a formula
of GF with no free-variable occurrences. An atom G that relativizes a quantifier as in rule 4 is the guard of
the quantifier.

The semantics of GF is given by interpretations as usual. An assignment in an interpretation I = 〈∆I , ·I〉
is a mapping A from the set of variables to the set ∆I . We denote the image of the variable x under an
assignment A by xA. To each term t, we associate a value tI,A in ∆I as follows:

1. For a constant symbol c, cI,A = cI .

2. For a variable x, xI,A = xA.



Two assignments A and B in the interpretation I agree on a set of variables X if and only if xA = xB for
every x ∈ X. An assignment B in the interpretation I is an X-variant of the assignment A, provided A and
B agree on every variable except possibly the ones X.

The truth of a formula ϕ w.r.t. an interpretation I and assignmentA in I, written I,A |= ϕ, is inductively
defined as follows.

1. I,A |= R(t1, . . . , tn) iff 〈tI,A1 , . . . , tI,An 〉 ∈ RI .

2. I,A |= ¬ϕ iff I,A 6|= ¬ϕ.

3. I,A |= ϕ ∧ ψ iff I,A |= ϕ and I,A |= ψ.

4. I,A |= ϕ ∨ ψ iff I,A |= ϕ or I,A |= ψ.

5. I,A |= ∀X.G→ ϕ iff I,B |= G implies I,B |= ϕ for every assignment B in I that is an X-variant of A.

6. I,A |= ∃X.G ∧ ϕ iff I,B |= G and I,B |= ϕ for some assignment B in I that is an X-variant of A.

A formula ϕ is true in an interpretation I, written I |= ϕ, provided I,A |= ϕ for all assignments A in I.
We will be considering GF-formulas in negation normal form. A GF-formula ϕ is in negation normal

form if and only if the negation sign appears only in front of atomic formulas in ϕ. A GF-formula ϕ can be
rewritten into an equivalent formula ϕ′ in negation normal form in time linear in the size of ϕ.

Proof of Theorem 17. Let I and J are two interpretations that agree on the interpretation of the predicates
and constants. The following claim will be useful in proving the lemma.

Claim 18. For every GF-formula ϕ in negation normal form, if A is an assignment in I and B is an
assignment in J such that A and B agree on free(ϕ) then I,A |= ϕ if and only if J ,B |= ϕ.

Proof. We proceed by induction on the structure of ϕ which is in negation normal form.

1. ϕ = R(t1, . . . , tn), where t1, . . . , tn are terms. I,A |= R(t1, . . . , tn) iff 〈tI,A1 , . . . , tI,An 〉 ∈ RI . Since

RI = RJ and A, B agree on free(ϕ), 〈tI,B1 , . . . , tI,Bn 〉 ∈ RJ , i.e., J ,B |= R(t1, . . . , tn).

2. ϕ = ¬R(t1, . . . , tn), where t1, . . . , tn are terms. I,A |= ¬R(t1, . . . , tn) iff I,A 6|= R(t1, . . . , tn) iff

〈tI,A1 , . . . , tI,An 〉 6∈ RI . Since RI = RJ and A, B agree on free(ϕ), 〈tI,B1 , . . . , tI,Bn 〉 6∈ RJ , i.e., J ,B |=
¬R(t1, . . . , tn).

3. ϕ = ϕ1 ∧ ϕ2. I,A |= ϕ1 ∧ ϕ2 iff I,A |= ϕ1 and I,A |= ϕ2 iff by the inductive hypothesis, J ,B |= ϕ1

and J ,B |= ϕ2 iff J ,B |= ϕ1 ∧ ϕ2.

4. ϕ = ϕ1 ∨ ϕ2. Analogous to the previous case.

5. ϕ = ∃Y.G ∧ ψ. I,A |= ∃Y.G ∧ ψ iff I,A′ |= G and I,A′ |= ψ for some assignment A′ in I that is an
Y-variant of A. Let B′ be exactly like B except that yB

′
= yA

′
for every y ∈ Y. B′ is an assignment in

J because by GI = GJ , yB
′

= yA
′ ∈ ∆J , for every y ∈ Y. Furthermore, B′ is an Y-variant of B by

its construction. Since A′ and B′ agree on free variables in G, and GI = GJ , we have J ,B′ |= G. We
know that free(ψ) ⊆ free(G), and since A′ and B′ agree on free(G), we have that A′ and B′ also agree
on free(ψ). But then J ,B′ |= ψ by the inductive hypothesis. Hence, J ,B |= ∃Y.G ∧ ψ.

6. ϕ = ∀Y.G→ ψ. Analogous to the previous case.

Let Q[X] be a query in GF . We need to show that Q[X/ΘC
X] is domain independent for every substitution

ΘC
X. To this aim, we pick an arbitrary substitution ΘC

X because then the desired result will follow by our
choice of ΘC

X being arbitrary. Suppose A and B are assignments in I and J , respectively. Since Q[X/ΘC
X] is

a sentence, A and B trivially agree on the free variables of Q[X/ΘC
X]. But then by Claim 18, we have that

I,A |= Q[X/ΘC
X] if and only if J ,B |= Q[X/ΘC

X]. Since this holds for any such assignment A and B, we can
conclude that Q[X/ΘC

X] is domain independent.


