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Abstract

Consistent query answering is the problem of computing those answers from a database
that are consistent with respect to certain integrity constraints that the database as whole
may fail to satisfy. Those answers are characterized as invariant under minimal forms
of restoring the consistency of the database. In this context, we study the problem of
repairing databases by fixing numerical data at the attribute level. For their relevance in
database applications with numerical domains, we consider denial and aggregate constraints.
After providing a quantitative definition of database fix, we investigate the computational
complexity of different problems, such as the existence and verification of fixes, and deciding
consistency of answers to conjunctive aggregate queries. We show tractability for special
cases; and provide approximation algorithms for some of the hard cases.

1 Introduction
Many database applications, like census, demographic, financial, and experimental data, contain
quantitative data, usually associated to nominal or qualitative data, e.g. number of children
associated to a household identification code (or address); or measurements associated to a
sample identification code. It is common for this kind of data to contain errors or mistakes with
respect to certain semantic constraints. For example, a census form for a particular household
may be considered incorrect if the number of children exceeds 20; or if the age of the wife is less
than 10. This kind of restrictions can be expressed using denial integrity constraints (ICs), that
prevent some attributes from taking certain values [9]. Other restrictions may be expressed by
means of aggregation ICs, e.g. the maximum concentration of certain toxin in a sample may
not exceed a certain specified amount; or the number of married men and married women must
be the same. In this kind of applications, inconsistencies (or mistakes) in numerical data are
resolved by changing individual attribute values, while values in the key attributes are kept,
e.g. without changing the household code, the number of children is decreased considering the
admissible values.

In this paper we consider the problem of fixing numerical data according to certain con-
straints while (a) keeping the values associated to the keys of the relations in the database,
and (b) minimizing the quantitative global distance from the modified instance to the original
instance. Since the problem may admit several global solutions, each of them involving possibly
many individual changes, we are particularly interested in characterizing and computing data
and properties that remain invariant under any of these fixing processes. We concentrate on
linear denial and aggregation constraints; and conjunctive and conjunctive aggregate queries.
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†Also: University of Manchester, Department of Computer Science, UK.



Database repairs have been extensively studied in the context of consistent query answering
(CQA), i.e. the process of obtaining the answers to a query that are consistent wrt a given
set of ICs [2] (c.f. [4] for a survey). There, consistent data is characterized as invariant under
all minimal restorations of consistency, i.e. as data that is present in all minimally repaired
versions of the original instance (the repairs). In particular, an answer to a query is consistent
when it can be obtained as a standard answer to the query from every possible repair. In most
of the research on CQA, a repair is a new instance that satisfies the given ICs, but differs
from the original instance by a minimal set, under set inclusion, of (completely) deleted or
inserted tuples. In that setting, changing the value of a particular attribute can be modelled
as a deletion followed by an insertion, but this may not correspond to a minimal repair.

In certain applications, like those mentioned above, it may make more sense to consider
correcting (updating) numerical values as a form of restoring consistency, which requires a new
definition of repair that considers: (a) the quantitative nature of individual changes, (b) the
association of the numerical values to other key values; and (c) a quantitative distance between
database instances.

Example 1. A company pays at most 6, 000 to an employee with less than 5 years of experience.
The following database D, with Name as the key, is inconsistent wrt this IC: Under the tuple

Employee Name Experience Salary

Sarah 6 12,000
Robert 4 7,000
Daniel 5 8,000

and set oriented semantics of repairs [2], the
only minimal repair corresponds to deleting
the tuple Employee(Robert, 4, 7000). How-
ever, we have two options that may make more

sense that deleting the employee Robert, which is a value for the key, namely changing the vio-
lating tuple to Employee(Robert, 5, 7000) or to Employee(Robert, 4, 6000). These two options
are satisfying an implicit requirement that the numbers do not change too much. 2

Update based fixes for restoring the consistency of a database are studied in [20]; and
changing values in attributes in a tuple is made a primitive repair action. In [20] semantic
and computational problems around CQA are analyzed from the perspective of update based
repairs. However, the peculiarities of changing numerical attributes are not considered, and
more importantly, the distance between databases instances used in [20] is, as in [2], set-
theoretic, and not quantitative, as we consider in this paper. Those repaired versions in [20]
are called fixes, and we have decided to keep the same name (instead of repairs), because our
basic repair actions are also changes of (numerical) attribute values.

The problem of correcting census data forms using disjunctive logic programs with stable
model semantics is addressed in [9]. Several underlying assumptions that are necessary for the
approach in [9] to work are made explicit and used in the current paper, extending the semantic
framework introduced in [9].

In this paper we provide the semantic foundations for fixes that are based on changes on
numerical attributes in the presence of key dependencies and wrt denial and aggregate integrity
constraints. Alternative semantics are considered, and next the problem of CQA is reexamined
accordingly. Fixing databases by changing numerical values while keeping the numerical dis-
tance to the original database to a minimum introduces interesting algorithmic and complexity
theoretic issues. In consequence, we study decidability and complexity of different decision and
optimization problems. We concentrate in particular on the “Database Fix Problem” (DFP),
consisting in determining the existence of a fix at a distance not bigger than a given bound. We
also consider the problems of construction and verification of such a fix. These problems are
highly relevant for large inconsistent databases. For example, solving DFP can help us find the
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minimum distance from a fix to the original instance; information that can be used to prune
impossible branches in the process of materialization of a fix.

We prove that DFP and CQA become undecidable in the presence of aggregation constraints.
However, the DFP is NP-complete for linear denials, which are enough to capture census like
applications. CQA belongs to ΠP

2 and becomes coNP -hard, but a relevant class of denials is
identified for which CQA becomes tractable. Considering approximation algorithms, we prove
that DFP is MAXSNP-hard [17], but can be approximated within a constant factor. All the
algorithmic and complexity results, unless otherwise stated, refer to data complexity [1], i.e. to
the size of the database that here includes a binary representation for numbers. All the proofs
and some other technical results are in Appendix A.1.

2 Preliminaries
Consider a relational schema Σ = (U ,R∪B,A), where U is the database domain that includes
Z,1 R is a set of database predicates, B a set of built-in predicates, and A is a set of attributes.
A database instance is a finite collection D of database tuples, i.e. of ground atoms of the form
P (c̄), where P ∈ R and c̄ is a tuple of constants in U . There is a set of attributes F ⊆ A
that contain all the flexible attributes, those that take values in Z and are allowed to be fixed.
Attributes outside F are called hard. F need not contain all the numerical attributes.

We also have a set of key constraints K, expressing that relations R ∈ R have a primary
key KR, KR ⊆ A. Later on (c.f. Definition 2), we will assume that K is satisfied both by an
initial instance D, denoted D |= K, and by its fixes. It also holds F ∩KR = ∅, i.e. values in key
attributes cannot be changed in a fixing process; so the constraints in K are hard. In addition,
there may be a separate set of flexible ICs IC that may be violated, and it is the job of a fix to
satisfy them again (while still satisfying K).

A linear denial constraint [14] has the form ∀x̄¬(A1, . . . , Am), where the Ai are database
atoms (i.e. with predicate in R), or built-in atoms of the form Xθc, where θ ∈ {=, 6=, <, >, ≤,
≥}, and the commas represent conjunctions. We will also accept atoms of the form X = Y , that
could be replaced by implicit equalities, i.e. by two different occurrences of the same variable
in different database atoms. If we allow atoms of the form X 6= Y in the denials, we will talk
of extended linear denials.
Example 2. The following are linear denial constraints: (a) No customer is younger than 21:
∀Id , Age, Income,Status¬(Customer(Id ,Age, Income , Status),Age < 21). (b) No customer
with income less than 60000 has “silver” status: ∀Id ,Age, Income,Status¬(Customer(Id ,Age ,
Income,Status), Income < 60000,Status = silver). (c) The reference person in a household and
his/her spouse must have different sex: ∀Address,Status1 , Status2 ,Sex1 ,Sex2¬(Household(
Address,Status1 , Sex1 ),Household ( Address , Status2 ,Sex2 ),Status1 = reference ,Status2 =
spouse, Sex1 = Sex2 ). 2

In this paper, in order to present some decidability and complexity-theoretic issues, we will
only consider the aggregation function sum, which can be used in some classes of aggregation
constraints (ACs) and aggregation queries. For a detailed account of ACs we refer to [19].
Filtering ACs are obtained by imposing conditions on the set of tuples over sum is applied,
e.g. sum(A1 : A2 = 3) > 5 refers the sum over A1 of tuples with A2 = 3. Multi-attribute ACs
allow arithmetical combinations of attributes as arguments for sum , e.g. sum(A1 + A2) > 5
and sum(A1 ×A2) > 100. If an AC involves attributes from more than one relation, we call it
multi-relation, e.g. sumR1

(A1) = sumR2
(A1), otherwise it is single-relation.

An aggregate conjunctive query has the form q(x1, . . . xm; sum(z)) ← B(x1, . . . , xm,
z, y1, . . . , yn), where its non-aggregate matrix (NAM) given by q′(x1, . . . xm) ← B(x1, . . . , xm,

1If necessary, with simple denial constraints, numbers can be restricted to N, or any interval, e.g. {0, 1}.
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z, y1, . . . , yn) is a usual first-order (FO) conjunctive query with built-in atoms, and the z does
not appear among the xi. Here the aggregation attribute is z. An aggregate conjunctive query
is cyclic (acyclic) if its NAM is a cyclic (acyclic) query [1]. An aggregate comparison query
is a sentence of the form q(sum(z)), sum(z)θk, where q(sum(z )) is the head of an aggregate
conjunctive query (with no free variables), θ is a comparison operator, and k is an integer
number. For example, Q : q(sum(z)), sum(z) > 5, with q(sum(z))← R(x, y), Q(y, z, w), w 6= 3
is an aggregate comparison query.

3 Least Squares Fixes
When we update numerical values to restore consistency, it is desirable to make the smallest
overall variation of the original values. Since the original instance and a fix share the same key
values, we can use them to compute variations in the numerical values. For a tuple k̄ of values
for the key KR of relation R in an instance D, t̄(k̄, R,D) denotes the unique tuple t̄ in relation
R in instance D whose key value is k̄.
Definition 1. For instances D and D ′ over schema Σ with the same set val(KR) of tuples of key
values for each relation R ∈ R, their square distance is ∆(D ,D ′) =

∑
R∈R,A∈F

k̄∈val(KR)

(πA(t̄(k̄, R,D))−

πA(t̄(k̄, R,D′)))2, where πA is the projection on attribute A. 2

Definition 2. For an instance D, a set of flexible attributes F , a set of key dependencies K,
such that D |= K, and a set of flexible ICs IC, a least squares fix (LS-fix) for D wrt IC is an
instance D′ such that: (a) D′ has the same schema and domain as D; (b) D′ has the same
values as D in the attributes in ArF ; (c) D′ |= K; (d) D′ |= IC; and (e) minimizes the square
distance ∆(D,D′) over all the instances that satisfy (a) - (d). 2

Example 3. (example 1 cont.) Here, R = {Employee}, A = {Name, Experience, Salary},
F = {Experience, Salary},KEmployee = {Name}. For D, the original instance, val(KEmployee )
= {Sarah , Robert ,Daniel}, t̄(Sarah,Employee ,D) = (Sarah , 6, 12000), etc. Candidate for fixes
were: D1 = { (Sarah , 6, 12, 000), (Robert , 5, 7, 000), (Daniel , 5, 8, 000)}, D2 = { (Sarah , 6,
12, 000), (Robert , 4, 6, 000), (Daniel , 5, 8, 000)}, with square distances to D: ∆(D,D1) = 1,
and ∆(D,D2) = 106, resp. D1 is the only LS-fix. 2

Example 4. Database D has tables Client(ID , A,M ), with key Id , attributes A for age and
M for amount of money; and Buy(ID , I ,P), with key {ID , I}, I for items, and P for prices.
We have denials IC1 : ∀ID , P,A,M¬( Buy(ID , I, P ),Client(ID , A,M), A < 18, P > 25) and

D: Client ID A M

1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

IC2 : ∀ID , A,M¬( Client( ID , A,M), A < 18,
M > 50), requiring that people younger than
18 cannot spend more than 25 on one item nor
spend more than 50 in the store. We added
an extra column in the tables with a notation
for each tuple. IC1 is violated by {t1,t4} and
{t1,t5}; and IC2 by {t1} and {t2}.

D′: D′′:Client’ ID A M

1 15 50 t′1
2 16 50 t2

′

3 60 900 t3
Buy’ ID I P

1 CD 25 t4
′

1 DVD 25 t5
′

3 DVD 40 t6

Client” ID A M

1 18 52 t1
′′

2 16 50 t2
′′

3 60 900 t3
Buy” ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6
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We have two LS-fixes (the modified version of tuple t1 is t′1, etc.), with ∆(D,D′) = 22 + 12 +
22 +12 = 10, and ∆(D,D′′) = 32 +12 = 10, resp. We can see that a global fix is not necessarily
the result of applying “local” minimal fixes to tuples. 2

The built-in atoms in linear denials determine an intersection of semi-spaces where the LS-
fixes live. As shown in the previous example, they take values in the “borders” of the solution
space (c.f. Proposition A.1, Appendix A.1). It is not difficult to construct examples where an
exponential number of fixes exists for a database. On the other side, for the kind of fixes and
ICs we are considering, it is possible that no fix exists, in contrast to [2, 3], where, if the set of
ICs is consistent as a set of logical sentences, it always exists a fix for a database.

Example 5. Relation R(X,Y ) has numerical attributes, X the key and Y flexible, and IC1:
∀X1X2Y ¬(R(X1, Y ), R(X2, Y ),X1 =1,X2 =2),∀X1X2Y ¬(R(X1, Y ), R(X2, Y ),X1 =1,X2 =3),
∀X1X2Y ¬(R(X1, Y ), R(X2, Y ),X1 =2,X2 =3),∀XY ¬(R(X,Y ), Y>3),∀XY ¬(R(X,Y ), Y <2).
The first three ICs force Y to be different in every tuple. Last two ICs require 2 ≤ Y ≤ 3. The
inconsistent database R = {(1,−1), (2, 1), (3, 5)} has no fix. Now, with IC2 containing ∀X,Y ¬(
R(X,Y ), Y > 1) and sum(Y ) = 10, any database with less than 10 tuples has no fixes. 2

In applications where fixes are based on changes of numerical values, computing concrete
fixes is a relevant problem. For example, in databases containing census forms, correcting
the latter before doing statistical processing is a common problem [9]. In databases with
experimental samples, we can fix certain erroneous quantities as specified by linear ICs. In
these cases, the fixes are relevant objects to compute explicitly, which contrasts with CQA [2],
where the main motivation for introducing repairs is to formally characterize the notion of a
consistent answer to a query as an answer that remains under all possible fixes. In consequence,
we now consider some decision problems related to existence and verification of fixes, and to
CQA under different semantics, whose suitability may be depend on the application.

Definition 3. For an instance D and set of ICs IC, we denote (a) Fix (D, IC) := {D′ | D′ is an
LS-fix of D wrt IC}. (b) Fix (IC) := {(D,D′) | D′ ∈ Fix (D, IC)}. (c) NE (IC) := {D |
Fix (D, IC) 6= ∅}, for non-empty set of fixes. (d) NE := {(D, IC) | Fix (D, IC) 6= ∅}. (e)
DFP(IC) :={(D, k)| there is D′ ∈ Fix(D, IC) with ∆(D,D′) ≤ k}, the database fix problem. 2

Definition 4. Let D be a database, IC a set ICs, andQ a conjunctive query. (a) A ground tuple
t̄ is a consistent answer to Q under the: (a1) skeptical semantics if for every D′ ∈ Fix (D, IC),
D′ |= Q(t̄). (a2) brave semantics if there exists D′ ∈ Fix (D, IC) with D′ |= Q(t̄). (a3)
majority semantics if |{D′ | D′ ∈ Fix (D, IC) and D′ |= Q(t̄)}| > |{D′ | D′ ∈ Fix (D, IC) and
D′ 6|= Q(t̄)}|. (b) Cqa(Q,D, IC,S) is the set of consistent answers to Q in D wrt IC under
semantics S. If Q is ground, Cqa(Q,D, IC,S) := {yes} when D |=S Q, i.e. is true in the
fixes of D according to semantics S; otherwise Cqa(Q,D, IC,S) := {no}. (c) Cqa(Q, IC,S) :=
{(D, t̄) | t̄ ∈ Cqa(Q,D, IC,S)}, the problem of consistent query answering. 2

4 Decidability and Complexity

Theorem 1. The problem NE , of existence of LS-fixes, under extended linear denials and
complex, filtering, multi-attribute, single-relation, aggregation constraints is undecidable. 2

This result can be proved by reduction from de undecidable Hilbert’s problem on solvability
of diophantine equations (c.f. Appendix A.2 for an example). Here we have the original database
and the set of ICs as input parameters.

Lemma 1. NE(IC) can be reduced in polynomial time to the complements of Cqa(False , IC,
Skeptical ), Cqa(True, IC,Majority), where False,True are always false, resp. true. 2
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In Lemma 1, it suffices for queries False ,True to be false, resp. true, in all instances that
share the key values with the input database. Then, they can be represented by ∃Y R(c̄, Y ),
where c̄ are not (for False), or are (for True) key values in the original instance.

Corollary 1. Under the hypothesis of Theorem 1, CQA under the skeptical or majority
semantics is undecidable. 2

In the following we will be interested in data complexity, when only the input database
varies and the set of ICs is fixed [1].

Lemma 2. For an instance D if there is a database instance D′ with the same schema and key
values as D that satisfies IC, then there is an LS-fix of D wrt IC. 2

Example 5, whose ICs ar logically consistent, does not satisfy the hypothesis of this lemma.

Proposition 1. For a fixed set IC of linear denials, deciding if an instance D has an instance
D′ (with the same key values as D) that satisfies IC with ∆(D,D′) ≤ k, k an integer number,
is in NP . 2

By Lemma 2, there is D′ with the same key values as D that satisfies the ICs at a distance
≤ k iff there is an LS-fix at a distance ≤ k. Thus, with Proposition 1 and a reduction of the
Vertex Cover Problem to DFP(IC0) for a fixed set of denials IC0, we obtain:

Theorem 2. Under the hypothesis of Proposition 1, DFP(IC), the problem of deciding whether
there exists an LS-fix wrt IC at a distance ≤ k, is NP-complete. 2

By Proposition 1, if there is a fix at a distance ≤ k, the minimum distance to D for a fix
can be found by binary search in log(k) steps. Actually, if an LS-fix exists, its square distance
to D is polynomially bounded by the size of D (c.f. proof of Theorem 3). Since D and a fix
have the same number of tuples, what matters is the size of the values taken in a fix, which are
constrained by a fixed set of linear denials and the condition of minimality.

Theorem 3. For a fixed set IC of extended linear denials, the problem NE(IC), of deciding if
an instance has an LS-fix wrt IC, is NP -complete. 2

Corollary 2. Under the hypothesis of Theorem 3, CQA under the skeptical and the majority
semantics is coNP -hard. 2

Theorem 4. For extended linear denials, the problem Fix (IC) of checking if an instance is an
LS-fix is coNP -complete. 2

Corollary 3. For extended linear denials, CQA under skeptical semantics is in ΠP
2 . [17] 2

The Vertex Cover Problem can be reduced in polynomial time to CQA for aggregate com-
parison queries under the brave semantics:

Proposition 2. Consistent query answering for aggregate comparison queries under linear
denials and brave semantics is coNP -hard. 2

5 Approximation

DFOP(IC) is the problem of finding the minimum distance from an LS-fix to the given instance.
There is an L-reduction to DFOP(IC) from the MAXSNP-complete [18, 17] B-Minimum Ver-
tex Cover Problem, the minimization vertex cover problem for graphs of bounded degree [13,
Chapter 10]. Thus, unless P = NP , there is no Polynomial Time Approximation Schema for
DFOP , in particular, it cannot be uniformly approximated within arbitrarily small constant
factors [17].
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Proposition 3. For a fixed set of linear denials DFOP is MAXSNP-hard. 2

Now we present an approximation algorithm for a restricted class of useful denial constraints,
that have the property that by doing local fixes, no new inconsistencies will be generated and
there will always be an LS-fix wrt to them (c.f. Proposition A.3, Appendix A.1).

Definition 5. A set of linear denials IC is local if: (a) Equalities between attributes and joins
involve only hard attributes; (b) There is a built-in with a flexible attribute in each IC; (c) No
attribute A appears in IC both in comparisons of the form A < c1 and A > c2.

2
2

In Example 5, IC is not local. Locality is a sufficient (c.f. Proposition A.3, Appendix A.1),
but not necessary condition for existence of LS-fixes. In Example 4, IC is local. For local
denials DFP is still NP -complete (cf. Proposition A.2, Appendix A.1).

Definition 6. A set I of database tuples from D is a violation set for an IC ic if I 6|= ic, and
for every I ′ $ I, I ′ |= ic. I(D, ic, t) is the set of violation sets for ic that contain t. A tuple t
is consistent if I(D, ic, t) = ∅ for every ic ∈ IC. 2

A violation set I for ic is a minimal set of tuples that simultaneously participate in the
violation ic. We label I with the corresponding ic using the pair (I, ic).

Definition 7. Given an instance D and ICs IC, a local fix for t ∈ D, is a tuple t′ with: (a) the
same values for the hard attributes as t; (b) S(t, t′) := {(I, ic) | ic ∈ IC, I ∈ I(D, ic, t) and
((I r {t}) ∪ {t′}) |= ic} 6= ∅; and (c) there is no tuple t′′ that simultaneously satisfies (a),
S(t, t′′) = S(t, t′), and ∆({t}, {t′′}) ≤ ∆({t}, {t′}). 2

S(t, t′) contains the violation sets that include t and are solved changing t by t′. A local fix
t′ solves some of them and minimizes the distance to t. Consistent tuples have no local fixes.

For a fixed set IC of local denials, we can solve an instance of DFOP by transforming it
into an instance of the MAXSNP-hard Minimum Weighted Set Cover Optimization Problem
(MWSCP) [16, 17]. By concentrating on local denials, we will obtain an instance of MWSCP
with elements in the underlying set U that have a bounded number of occurrences in the
collection S of subsets of U . This will allow us to obtain better approximation results than for
the general case of MWSCP [16], namely a constant approximation factor.

Given D, consider the conflict hyper-graph G [7], whose vertices are the database tuples,
and hyper-edges are the violation sets for elements ic ∈ IC (labelled with the corresponding
ic, so that we can have different hyper-edges with the same tuples in them). The underlying
set U in the instance for MWSCP contains the hyper-edges of G. The set collection S for
U contains the non-empty sets S(t, t′), where t′ is a local fix for tuple t ∈ D, with weight
w(S(t, t′)) = ∆({t}, {t′}) (by Proposition A.3, Appendix A.1, S covers U).

If we solve instance (U,S) for MWSCP by finding the minimum weight and a minimum
weight cover C, we could think of constructing a fix by replacing each inconsistent tuple t ∈ D
by a local fix t′ with S(t, t′) ∈ C. The problem is that there might be more than one t′ and
the key dependencies are not respected. However, we obtain an LS-fix D(C) as follows: (1)
For each tuple t with local fixes t1, . . . , tn, n > 1, and S(t, ti) ∈ C, obtain C′ replacing in C
all the S(t, ti) by S(t, t?), where t? is such that S(t, t?) =

⋃n
i=1 S(t, ti); (2) Let D(C) be the

instance obtained from D replacing t by t′ if S(t, t′) ∈ C′. It holds that D(C) is an LS-fix, and
w(C) = w(C′) = ∆(D,D(C)), so that the value for the objective function is kept. (Propositions
A.4 and A.5, Appendix A.1 prove all the last claims and the fact that we find S(t, t?) ∈ S.)

It can also be proved that every LS-fix can be obtained in this way (c.f. Proposition A.6,
Appendix A.1). We notice that the transformation from DFOP to MWSCP, and the construc-

2To check the condition, replace ≤ c and ≥ c by < c + 1 and > c − 1, resp.
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tion of D(C) from C can both be done in polynomial time in the size of D (c.f. Proposition A.7,
Appendix A.1).

Example 6. (example 4 continued) We illustrate the reduction from DFOP to MWSCP . The
violation sets are {t1,t4} and {t1,t5} for IC1 and {t1} and {t2} for IC2. The figure shows the
hyper-graph. For the MWSCP instance, we need the local fixes. Tuple t1 has one local fix wrt
IC1 and one wrt IC2, with weights 4 and 9, resp. Tuple t2 has one local fix with weight 1:
changing M from 51 to 50. Tuples t4 and t5 have one local fix each, with weights 4 and 1, resp.

t
1
 t
2
 t
3


t
4
 t
5
 t
6


A


B
 C
 D


Set S1 S2 S3 S4 S5

Local Fix t1’ t1” t2’ t4’ t5’
Weight 4 9 1 4 1

Hyperedge A 0 1 0 1 0
Hyperedge B 1 1 0 0 0
Hyperedge C 0 1 0 0 1
Hyperedge D 0 0 1 0 0

The MWSCP instance is shown in the table, where the elements are rows and the sets, columns.
An entry 1 means that the set contains the corresponding element; and a 0, otherwise. There
are two minimal covers, both with weight 10: C1 = {S2, S3} and C2 = {S1, S3, S4, S5}. D(C1)
and D(C2) are the two fixes for this problem. 2

If we apply the transformation to Example 5, which has a non-local set of ICs, we will
find that instance D(C), for C a set cover, can be constructed as above, but it does not satisfy
the flexible ICs, because changing inconsistent tuples by their local fixes solves only the initial
inconsistencies, but new inconsistencies are introduced.

Using a greedy algorithm, MWSCP can be approximated within a factor log(N), where
N is the size of the underlying set U [8]. The approximation algorithm returns not only an
approximation ŵ to the optimal weight w?, but also a cover Ĉ (not necessarily optimal). This
cover can be used to generate, via (Ĉ)′ as before, a database instance D(Ĉ) with the same
key values as D that satisfies K ∪ IC, but may not be LS-minimal. It holds ∆(D,D(Ĉ)) ≤ ŵ
(c.f. Proposition A.8, Appendix A.1). In consequence, ∆(D,D(Ĉ)) ≤ ŵ ≤ log(N) × w? =
log(N)×∆(D,D′), where D′ is an LS-fix.

In consequence, for any set IC of local denials, we have a polynomial time approximation
algorithm that solves DFOP(IC) within an O(log(N)) factor, whereN is the number of violation
sets for D wrt IC. This number N , the number of hyper-edges in G, is polynomially bounded
by the |D| (c.f. Proposition A.7, Appendix A.1), and may be relatively small if the number of
inconsistencies is small or the number of database atoms in the ICs is small, which is likely the
case in real applications. However, if we apply approximation algorithms for the special case of
MWSCP where the number of occurrences of an element of U in elements of S is bounded by a
constant, we can get an approximation within a constant factor [13, Chapter 3]. This is clearly
the case in our application, being m × |F| × |IC | a constant -and |D| independent- bound on
the frequency of the elements, where m is the maximum number of database atoms in an IC.

6 One Database Atoms Denials

We concentrate on one database atom denials (1DAD), i.e. of the form ∀¬(A,B), where atom A
has a predicate in R, and B is a conjunction of built-in atoms. They capture range constraints;
and census data is usually stored in single relation schemas [9]. For 1DADs, we can identify
tractable cases for CQA by reducing CQA under LS-fixes to CQA for (tuple and set-theoretic)
repairs of the form introduced in [2] for key constraints. This is because each violation set
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contains one tuple, maybe with several local fixes, but all sharing the same key values; and
then the problem consists in choosing one from different tuples with the same key values (c.f.
proof of Theorem 5). The transformation preserves answers to ground and open queries. The
“classical” repair problem has been studied in detail in [7, 6, 10]. For tractability of CQA, we
can use results about and algorithms for CQA obtained in [10] for the classical framework.

The join graph G(Q) [10] of a conjunctive query Q is a directed graph, whose vertices are
the database atoms in Q. There is an arc from L to L′ if L 6= L′ and there is a variable w that
occurs at the position of a non-key attribute in L and also occurs in L′. Furthermore, there is
a self-loop at L if there is a variable that occurs at the position of a non-key attribute in L,
and at least twice in L. When Q does not have repeated relations symbols, we write Q ∈ CTree

if G(Q) is a forest and every non-key to key join of Q is full i.e. involves the whole key. CTree

provides an extreme case of tractability of classical CQA, i.e. relaxing the conditions on the
queries we get intractability [10].
Theorem 5. For a fixed set of 1DADs and queries in CTree , consistent query answering is in
PTIME . 2

A conjunctive aggregate query belongs to CTree if its underlying non-aggregate conjunctive
query (its NAM) belongs to CTree . Even for 1DADs, with simple comparison aggregate queries
with sum, tractability is lost under the brave semantics.
Proposition 4. For a fixed set of 1DADs, CQA for aggregate queries that are in CTree or
acyclic is NP-hard under the brave semantics. 2

For queries Q that return a numerical value, the range semantics for CQA provides the min-
max and max-min answers, i.e. the supremum and the infimum, resp., of the set of answers to
Q from the fixes [3]. Using the Bounded Degree Independent Set Problem [12] we obtain:
Proposition 5. There is a fixed set of 1DADs and a fixed aggregate conjunctive query, such
that CQA under range semantics is NP -hard. 2

7 Conclusions
We have shown that fixing numerical values in databases that fail to satisfy some integrity
constraints poses many new computational challenges that had not been addressed before in
the context of consistent query answering. In this paper we have just started to investigate
some of the many problems that appear in this context. We concentrated on integer values,
which provide a useful and challenging domain. Moving to the real numbers would open many
new issues. Our framework could be applied to qualitative attributes with an implicit linear
order given by the application. We have developed (but not reported here) extensions to our
approach that consider minimum distribution variation LS-fixes that keep the overall statistical
properties of the database, and weighted LS-fixes that capture the relative relevance of numerical
attributes and scales of measurement issues.

The range semantics for CQA for queries that return numbers should be further investigated.
It was introduced in [3] for aggregate queries under functional dependencies and set-theoretic,
tuple-based repairs. There, a minimal interval is returned that contains the individual numerical
answers from all the possible fixes. Also more research on the role of aggregation constraints is
needed.

For related work, we refer to the literature on CQA (c.f. [4] for a survey and references). Pa-
pers [20] and [9] are the closest to our work, because changes in attribute values are basic repair
actions, but the peculiarities of numerical values and quantitative distances between databases
are not investigated. Under the set-theoretic, tuple-based semantics, [7, 5, 10] report on com-
plexity issues for conjunctive queries, functional dependencies and foreign key constraints. A
majority semantics was studied in [15] for database merging.
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A Appendix

A.1 Proofs

Those auxiliary technical results that are stated in this appendix, but not in the main body of
the paper, are numbered in the form A.n, e.g. Lemma A.1.

The following lemma proves that if a tuple is involved in an inconsistency, the set of con-
straints is consistent and there is at least one flexible attribute in each integrity constraint, then
there always exists a local fix for it.

Lemma A.1. For a database D and a consistent set of linear denial constraints IC, where each
constraint contains at least one built-in involving a flexible constraint and there are equalities
or joins only between hard attributes. Then, for every tuple t with at least one flexible attribute
and at least one ic in IC, I(D, ic, t) 6= ∅, there exists at least one local fix t′ 2

Proof: Each constraint ic ∈ IC has the form ∀x̄¬(P1(x̄), . . . , Pn(x̄), Ai < ci, Aj ≥ cj , Ak =
ck, Al 6= cl, . . .) and can be rewritten as a clause only with <, > and =:

∀x̄(¬P1(x̄) ∨ . . . ∨ ¬Pn(x̄) ∨Ai ≥ ci ∨Aj < cj ∨Ak < ck ∨Ak > ck ∨Al = cl ∨ . . .) (1)

This formula shows that since the repairs are done by attributes updates, the only way we have
of solving an inconsistency is by fixing at least one of the values of a flexible attribute. Let ic
be a constraint in IC such that I(D, ic, t) 6= ∅ and I be a violation set I ∈ I(D, ic, t). Now,
since ic ∈ IC, ic is a consistent constraints. Then for each flexible attribute A in ic we are able
to derive an interval [cl, cu] such that if the value of A is in it, we would restore the consistency
of I. For example if we have a constraint in form of equation (1) with A ≤ 5, then, if we want
to restore consistency by modifying A we would need to have A ∈ (−∞, 5]. If the constraint
had also A ≥ 1 the interval would be [1, 5]. Since t has at least one flexible attribute and
each flexible attribute has an interval, it is always possible to adjust the value of that flexible
attribute to a value in the interval [cl, cu] and restore consistency. By finding the adjustment
that minimizes the distance from the original tuple we have find a local fix for the tuple t. 2

The borders of an attribute in an extended denial correspond to the surfaces of the semi-
spaces determined by the buil-in atoms in it.

Proposition A.1. Given a database D and a set of linear denials IC, where equalities and
joins can only exist between hard attributes, the values in every flexible attributes in a local fix
t′ (c.f. Definition 7) of a tuple t ∈ D will correspond to the original value in t or to a border of a
constraint in IC. Furthermore, the values in every attributes of a tuple t′ ∈ D′ will correspond
to the original value of the attribute in the tuple in D or to a border of a constraint in IC. 2

Proof: First we will replace in all the constraintsX ≤ c byX < (c+1), X ≥ c byX > (c−1) and
X = c by (X > (c−1)∧X < (c+1)). We can do this because we are dealing with integer values.
Then, a constraint ic would have the form ∀x̄¬(P1(x̄), . . . , Pn(x̄), Ai < ci, Aj > cj , Ak 6= ck, . . .)
and can be rewritten as

∀x̄(¬P1(x̄) ∨ . . . ∨ ¬Pn(x̄) ∨Ai ≥ ci ∨Aj ≤ cj ∨Ak = ck ∨ . . .) (2)

This formula shows that since the repairs are done by attributes updates, the only way we have
of solving an inconsistency is by fixing at least one of the values of a flexible attribute. This
would imply to change the value of a flexible attribute Ai to something equal or greater than
ci, to change the value of a flexible attribute Aj to a value equal or smaller than cj or to change
the value of attribute Ak to ck.

If D is consistent wrt IC then there is a unique fix D′ = D and all the values are the same
as the original ones and therefore the proposition holds. If D is inconsistent wrt IC then there
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exists a tuple t with at least one flexible attribute and a set ICt ⊆ IC such that for every
ic ∈ ICt it holds I(D, ic, t) 6= ∅. If ICt is an inconsistent set of constraints then there exists no
local fix and the proposition holds. If ICt is consistent but there is at least one constraint with
no flexible attributes involved then, since it is not possible to modify any attribute in order to
satisfy the constraint, there is no local fix and the proposition holds.

So we are only missing to prove the proposition for ICt consistent and with at least one
flexible attributes for each ic in ICt. From Lemma A.1 we know that there exists a local fix
for t. Also, since ICt is consistent, using the same arguments as in proof of Lemma A.1, it is
possible to define for each flexible attribute A an interval such that if the value of A is in it we
would restore the consistency of the violation sets for constraints in ICt involving t. Then, we
need to prove that if a value of an attribute, say A, of a local fix t′ of t is different than the one
in t, then the value corresponds to one of the closed limits of the interval for A. Let us assume
that an attribute A is restricted by the constraints to an interval [cl, cu] and that the local fix
t′ takes for attribute A a value strictly smaller than cu and strictly greater than cl. Without
lost of generality we will assume that the value of attribute A in t is bigger than cu. Let t′′ be a
tuple with the same values as t′ except that the attribute A is set to cu. t′′ will have the same
values in the hard attributes as t and also S(t, t′) = S(t, t′′) since the value of A in t′′ is still in
the interval. We also have that ∆({t}, {t′′}) ≤ ∆({t}, {t′}). This implies that t′ is not a local
fix and we have reached a contradiction.

For the second part of the proposition, the proof of the first part can be easily extended
to prove that the values in D′ will correspond to a border of a constraint in IC, because the
LS-fixes are combination of local fixes. 2

Proof of Theorem 1: Hilbert’s 10th problem on existence of integer solutions to diophantine
equations can be reduced to our problem. Given a diophantine equation, it is possible to
construct a database D and a set of ICs IC such that the existence of a fix for D wrt IC implies
the existence of a solution to the equation, and viceversa. 2

Proof of Lemma 1: First for the skeptical semantics. Given a database instance D, consider
the instance (D,no) for Cqa(False , IC,Sk), corresponding to the question “Is there a fix of D
wrt IC that does not satisfy False?” has answer Yes iff the class of fixes of D is empty. For
the majority semantics, for the instance (D,no) for Cqa(True , IC,Maj ), corresponding to the
question “Is it not the case that the majority of the fixes satisfy True?”, we get answer yes iff
the set of fixes is empty. 2

Proof of Corollary 1: From Theorem 1 and Lemma 1. 2

Proof of Lemma 2: Let ρ be the square distance between D and D′ in Definition 1. The circle
of radius ρ around D intersects the non empty “consistent” region that contains the database
instances with the same schema and key values as D and satisfy IC. Since the circle has a finite
number of instances, the distance takes a minimum in the consistent region. 2

Proof of Proposition 1: First of all, we notice that a linear denial with implicit equalities, i.e.
occurrences of a same variable in two different database atoms, e.g. ∀X,Y,Z¬(R(X,Y ), Q(Y,Z),
Z > 3), can be replaced by its explicit version with explicit equalities, e.g. ∀X,Y,Z,W¬(R(X,Y ),
Q(W,Z), Y = W,Z > 3).

Let n be the number of tuples in the database, and l be the number of attributes which
participate in IC. They are those that appear in built-in predicates in the explicit versions of
the ICs that do not belong to a key or are equal to a key (because they are not allowed to
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change). For example, given the denial ¬(P (X,Y ), Q(X,Z), Y > 2), since its explicit version
is ¬(P (X,Y ), Q(W,Z), Y > 2,X = W ), the number l is 1 (for Y ) if X is a key for P or Q, and
3 if X is not a key (for Y,X,W ).

If there exist a fix D′ with ∆(D,D′) ≤ k, then no value in a flexible attribute in D′ differs
from its corresponding value (through the key value) in D by more than

√
k. In consequence,

the size of a fix may not differ from the original instance by more than l× n× bin(k)/2, where
bin(k) is the size of the binary representation of k. Thus, the size of a fix is polynomially
bounded by the size of D and k. Since we can determine in polynomial time if D′ satisfies the
ICs and if the distance is smaller than k, we obtain the result. 2

Proof of Theorem 2: Membership: According to Lemma 2, there is an LS-fix at a square
distance ≤ k iff there is an instance D′ with the same key values that satisfies IC at a square
distance ≤ k. We use Proposition 1.

Hardness: We can reduce Vertex Cover (VC) to DFP(IC0) for a fixed set of denials IC0.
Given an instance (V, E), k for VC, consider a database D with a relation E(X,Y ) and key
{X,Y } for the edges of the graph, and a relation for the vertices V (X,Chosen), where X is the
key and attribute Chosen , the only flexible attribute, is initially set to 0. The constraint IC :
∀X,Y,C1, C2¬(E(X,Y )∧V (X,C1)∧V (X,C2)∧C1 < 1∧C2 < 1) expresses that for any edge,
at least one of the incident vertices is be covered. A vertex cover of size k exists iff there exists
an LS-fix of D wrt IC at a distance ≤ k. The encoding is polynomial in the size of the original
graph. 2

Proof of Theorem 3: For hardness, linear denials are good enough. We reduce the graph
3-colorability problem to NE (IC0), for a fixed set IC0 of ICs. Let G = (V, E) be an undirected
graph with set of vertexes V and set of edges E . Consider the following database schema,
instance D, and set IC0 of ICs:

1. Relation V ertex(Id ,Red ,Green,Blue ) with key Id and domain N for the last three
attributes, actually the only three flexible attributes in the database; they can be subject to
changes. For each v ∈ V we have the tuple (v, 0, 0, 0) in Vertex (and nothing else).

2. Relation Edge(id1, id2); and for each e = (v1, v2) ∈ E , there are the tuples (v1, v2), (v2, v1)
in Edge. This relation is not subject to any fix.

3. Relation Tester(Red ,Green,Blue ), with extension (1, 0, 0), (0, 1, 0), (0, 0, 1). This relation
is not subject to any fix.

4. Integrity constraints:
∀ixyz¬(Vertex (i, x, y, z), x < 1, y < 1, z < 1); ∀ixyz¬(Vertex (i, x, y, z), x > 1) (the same for
y, z); ∀ixyz¬(Vertex (i, x, y, z), x = 1, y = 1, z = 1); ∀ixyz¬(Vertex(i, x, y, z), x = 1, y = 1); etc.
∀ijxyz¬(Vertex (i, x, y, z),Vertex (j, x, y, z),Edge(i, j),Tester (x, y, z).

The graph is 3-colorable iff the database has a fix wrt IC0. The reduction is polynomial
in the size of the graph. If there is an LS-fix of the generated instance, then the graph is
3-colorable. If the graph is colorable, then there is a consistent instance with the same key
values as the original instance; then, by Lemma 2, there is an LS-fix.

For membership, it suffices to prove that if an LS-fix exists, then its square distance to D is
polynomially bounded by the size of D, considering both the number of tuples and the values
taken by the flexible attributes.

We will show that if a fix D′ exists, then all the values in its flexible attributes are bounded
above by the maximum of n1 + n + 1 and n2 + n + 1, where n is the number of tuples in the
database, n1 is the maximum absolute value in a flexible attribute in D, and n2 is the maximum
absolute value of a constant appearing in the ICs.
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The set of denial ICs put in disjunctive form gives us a representation for all the ways we have
to restore the consistency of the database. So, we have a constraint of the form ϕ1 ∧ϕ2 · · ·ϕm,
where each ϕi is a disjunction of negated database atoms and inequalities, e.g. something like
¬P (X,Y,Z)∨¬R(X1, Y1)∨X ≤ c1∨Y ≤ c2∨Z 6= Y1. Since fixes can be obtained by changing
values of non key attributes, each tuple in a fix is determined by a set of constraints, each of
which is a disjunction of atoms of the form Xiθicm or Xi 6= Yj, where θi is an inequality of
the form ≤,≥, <,>. E.g. from ¬P (X,Y,Z) ∨ ¬R(X1, Y1) ∨X ≤ c1 ∨ Y ≤ c2 ∨ Z 6= Y1 we get
X ≤ c1 ∨ Y ≤ c2 ∨ Z 6= Y1, which for a specific tuple becomes Y ≤ c2 ∨ Z 6= Y1 if X is part of
the key and its specific value for the tuple at hand does not satisfy X ≤ c1 (otherwise we drop
the constraint for that tuple). In any case, every tuple in a fix can take values in a space S
that is the intersection of the half-spaces defined by inequalities of the form Xiθicm minus the
set of points determined by the non-equalities Xi 6= Yj.

If there is a set of values that satisfies the resulting constraints, i.e. if there is an instance
with the same key values that satisfies the ICs, then we can find an LS-fix at the right distance:
if the difference between any value and max(c1, · · · , cl) is more than n + 1 (the most we need
to be sure the inequalities Xi 6= Yj are satisfied), then we systematically change values by 1,
making them closer to the borders of the half-spaces, but still keeping the points within S. 2

Proof of Corollary 2: coNP -hardness follows from Lemma 1 and Theorem 3. 2

Proof of Theorem 4: We reduce 3-SAT’s complement to LS-fix checking for a fixed schema
and set of denials IC. We have a table Lit(l, l̄) storing complementary literals (only), e.g.
(p,¬p) if p is one of the variables in the instance for SAT. Also a table Cl storing tuples of the
form (ϕ, l, k), where ϕ is a clause (we assume all the clauses have exactly 3 literals, which can
be simulated by adding extra literals with unchangeable value 0 if necessary), l is a literal in
the clause, and k takes value 0 or 1 (the truth value of l in ϕ). The first two arguments are the
key of C. Finally, we have a table Aux(K,N), with key K and flexible numerical attribute N ,
and a table Num(N) with a hard numerical attribute N .

Given an instance Φ = ϕ1 ∧ · · · ∧ ϕm for 3-SAT, we produce an initial extension D for the
relations in the obvious manner, assigning arbitrary truth values to the literals, but making sure
that the same literal takes the same truth value in every clause, and complementary literals take
complementary truth values. Aux contains (0, 0) as its only tuple; and Num contains (s + 1),
where s is the number of different propositional variables in Φ.

Consider now the following set of denials:
(a) ¬(Cl(ϕ,L,U), U > 1); ¬(Cl(ϕ,L,U), U < 0) (possible truth values).
(b) ¬(Cl(ϕ,L,U), Cl(ψ,L, V ), U 6= V, Aux(K,N), N 6= 0, N 6= Z) (same value for a literal
everywhere).
(c) ¬(Cl(ϕ,L,U), Cl(ψ,L′, V ),Lit(L,L′), U = V, Aux(K,N), N 6= 0, N 6= Z) (complementary
literals).
(d) ¬(Cl(ϕ,L,U),Cl (ϕ,L′, V ),Cl (ϕ,L′′,W ), U = V = W = 0, L 6= L′, ...,Aux (K,N), N = 0
(each clause becomes true).
(e) ¬Num(Z),Aux (K,N), N 6= 0, N 6= Z) (possible values).

It holds that the formula is unsatisfiable iff the instance D′ that coincides with D except
for Aux that now has the only tuple (0, s + 1) is an LS-fix of D wrt IC. Thus, checking D′ for
LS-fix is enough to check unsatisfiability.

For membership to coNP , for an initial instance D, instances D′ in the complement of
Fix (IC) have witnesses D′′ that can be checked in polynomial time, namely instances D′′ that
have the same key values as D, satisfy the ICs, but ∆(D,D′′) < ∆(D,D′). 2
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Proof of Proposition 2: The reduction can be established with a fixed set IC0 of ICs. Given
an undirected graph G = (V, E), consider a database with relations V (X,Z), E(U,W ), where
X is a key and Z is the only flexible attribute and takes values in {0, 1} (which can be enforced
by means of the linear denials ∀X∀Z¬(V (X,Z), Z > 1), ∀X∀Z¬(V (X,Z), Z < 0) in IC0).
Intuitively, Z indicates with 1 if the vertex X is in the cover, and with 0 otherwise. Attributes
U, V are vertices and then, non numerical.

In the original database D we have the tuples V (e, 0), with e ∈ V; and also the tuples
E(e1, e2) for (e1, e2) ∈ E . Given the linear constraint ∀X1Z1X2Z2¬(V (X1, Z1), V (X2, Z2),
E(X1,X2), Z1 = 0, Z2 = 0) in IC0, the LS-fixes of the database are in one-to-one correspondence
with the vertex covers of minimal cardinality.

For the query Q(k) : q(sum(Z)), sum(Z) < k, with q(sum(Z)) ← V (X,Z), the instance
(D, yes) for consistent query answering under brave semantics has answer No, (i.e. Q(k) is false
in all fixes) only for every k smaller than the minimum cardinality c of a vertex cover. 2

Proof of Corollary 3: Let IC and a query Q be given. The complement of CQA is in NPcoNP :
Given an instance D, non deterministically choose an instance D′ with D′ 6|= Q and D′ a fix

of D. The latter test can be done in coNP (by Theorem 4). But NPcoNP = NPΣP
1 = ΣP

2 . In
consequence, CQA belongs to coΣP

2 = ΠP
2 . 2

Proof of Proposition 3: By reduction from the MAXSNP-hard problem B-Minimum Vertex
Cover (BMVC), which asks to find a minimum vertex cover in a graph whose nodes have a
bounded degree [13, chap. 10]. We start by encoding the graph as in the proof of Proposition
2. We also use the same initial database D. Every LS-fix D′ of D corresponds to a minimum
vertex cover V ′ for G and vice versa, and it holds |V ′| = ∆(D,D′). This gives us an L-reduction
from BMVC to DFP [17]. 2

Proposition A.2. For the class of local denials, DFP is NP-complete. 2

Proof: Membership follows from Theorem 2. For hardness, we can do the same reduction as
in Theorem 2, because the ICs used there are local denials. 2

Lemma A.2. Given a database D and a set of consistent linear denials IC with joins only
between hard attributes and with at least one flexible attribute in each of them, there will
always exist an LS-fix D′ of D wrt IC. 2

Proof: As shown in proof of Lemma A.1 for every flexible attribute in F it is possible to define,
using the integrity constraints in IC, an interval [cl, cu] such that if the value of attribute A is in
that interval there is no constraint ic ∈ IC with a built-in involving A such that I(D, ic, t) 6= ∅.
Let D′′ be a database constructed in the following way: for every tuple t ∈ D such that the
value of a flexible attribute does not belong to its interval, replace its value by any value in
the interval. Clearly D′ will have the same schema and key values and will satisfy IC but will
not necessarily differ from the original database in a minimal way. By Lemma 2 we know there
exists an LS-fix D′ for D wrt IC. 2

Definition 8. Given a databaseD and a set of ICs IC, a local fix t′ for a tuple t does not generate
new violations if

⋃
ic∈IC(

⋃
l∈D′ I(D′, ic, l) r

⋃
l∈D I(D, ic, l)) = ∅ for D′ = (Dr {t})∪{t′}. 2

Lemma A.3. For a set IC of local denials, if t′ is a local fix of a tuple t, then t′ does not
generate new violations3 in database D wrt IC. Furthermore, this holds also for t′ a ”relaxed”
local fix where the distance to t is not necessarily minimal 2

3c.f. Definition 8
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Proof: Tuple t′ can only differ from t in the value of flexible attributes. Let us assume that one
of the modified values was for an attribute A. Since we have local constraints, attribute A can
only be in the constraints related either to < and ≤ or to > and ≥, but not both. Without lost
of generality, we will assume that the constraint is written as in equation 1 and that A is related
only to > and ≥. Since t′ is a fix, S(t, t′) is not empty and there is a set ICt of constraints for
which t′ solves the inconsistency in which t′ was involved. There is an interval [cl,+∞) for A
that can be obtained by the limits given in ICt that show the values of A that would force the
satisfaction of the constraints in ICt that have attribute A in an inequality. This shows that
the value of attribute A in t′ is bigger than the value of A in t.

ForD′ = (Dr{t})∪{t′}we need to prove that
⋃

ic∈IC(
⋃

l∈D′ I(D′, ic, l) r
⋃

l∈D I(D, ic, l)) =
∅. By contradiction let us assume that for a constraint ic ∈ IC there exists a violation set I
such that I ∈ ⋃

l∈D′ I(D′, ic, l) and I 6∈ ⋃
l∈D I(D, ic, l). There are two cases to consider:

• (I, ic) ∈ S(t, t′). Then I ∈ I(D, ic, t), but since we wanted an I 6∈ ⋃
l∈D I(D, ic, l) this is

not possible.
• (I, ic) 6∈ S(t, t′). Then we have two possibilities I 6∈ I(D, ic, t) or ((I r {t}) ∪ {t′}) 6|= ic.

– Let us consider first that I 6∈ I(D, ic, t). We have that I ∈ ⋃
l∈D′ I(D′, ic, l) and

since t′ is the only difference between D and D′ we have I ∈ I(D′, ic, t′). Since all the
constraints can only have attribute A with > or ≥ we now that in particular ic does.
Since I 6∈ I(D, ic, t) we know that A satisfied the condition in ic and since we know
that t′ has a bigger value than in t, it is not possible to generate an inconsistency in
D′. We have reached a contradiction.

– Let us consider ((I r {t}) ∪ {t′}) 6|= ic. Then I ∈ I(D′, ic, t′). From our assumption
I 6∈ ⋃

l∈D I(D, ic, l).This is the same situation analyzed in previous item.
In all the cases we have reached contradiction and therefore the proposition is proved. Since we
never used the property of minimal distance between t′ and t, the second part of the Lemma is
also proved. 2

Proposition A.3. For local denials it always exists an LS-fix for a database D; and for every
LS-fix D′, D′ r D is a set of local fixes. Furthermore, for each violation set (I, ic), there is a
tuple t ∈ I and a local fix t′ for t, such that (I, ic) ∈ S(t, t′). 2

Proof: Since each attribute A can only be associated to < or > built-ins, but not both, it
is clear that set of local denials is always consistent. By Lemma A.2, there always exists a fix
D′. Now we need to prove that D′ r D is a set of local fixes. By contradiction assume that
t′ ∈ (D′ rD) is not a local fix of the tuple t. This can happen in the following situations:
• t was consistent. From Lemma A.3 we know that no new inconsistencies can be added

by the modifications done to the other tuples and therefore t is not related to any incon-
sistency. Then D? = D′ r {t′} ∪ {t} is also consistent and ∆(D,D?) < ∆(D,D′). But D′

is an LS-fix so this is not possible.
• t is involved at least in one violation set. If S(t, t′) = ∅ then t′ is not solving any violation

set and therefore D? = D′ r {t′} ∪ {t} is also consistent and ∆(D,D?) < ∆(D,D′). But
D′ is an LS-fix so this is not possible. Now, if S(t, t′) 6= ∅, from Lemma A.2, considering
D = {t} and IC = {ic|(I, ic) ∈ S(t, t′)}, there exists an LS-fix D′ of D, i.e. there
exists a local fix t′′ such that S(t, t′′) = S(t, t′). Since t′′ is a local fix we know that
∆({t}, {t′′}) ≤ ∆({t}, {t′}). They cannot be equal that would imply that t′ is a local fix
and it is not. Then D? = D′ r {t′} ∪ {t} is also consistent and ∆(D,D?) < ∆(D,D′).
Again, this is not possible because D′ is an LS-fix

The second part of the proposition can be proved using Lemma A.2 and considering a database
D = I and a set of constraints IC = {ic}. 2

Proposition A.4. For a database D and a set of local denial constraints IC:
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1. For a set of local fixes {t1, . . . tn} of a tuple t there always exists a local fix t? such that
S(t, t?) =

⋃n
i=1 S(t, ti).

2. For local fixes t′, t′′ and t′′′ of a tuple t with S(t, t′′′) = S(t, t′) ∪ S(t, t′′), it holds that
∆({t}, {t′′′}) ≤ ∆({t}, {t′}) + ∆({t}, {t′′}). 2

Proof: First we will prove item (1). Let ICt = {ic|I(D, ic, t) 6= ∅ and ICS(t, t′) = {ic|(I, ic) ∈
S(t, t′)}. ¿From Lemma A.2, considering D = {t} and IC any subset of ICt, there always exists
an LS-fix D′ of D. This LS-fix is a local fix of tuple t with ICS(t, t′) = IC. Since we can find a
local fix for any IC ⊆ St then clearly the lemma can be satisfied.

Now we will prove item (2). If the flexible attributes that where modified in t′ and t′′

are disjoint, then t′′′ when combining the modifications I’ll get ∆({t}, {t′′′}) = ∆({t}, {t′}) +
∆({t}, {t′′}). Now, we will consider the case were t′ and t′′ have at least one flexible attribute,
say A that is modified by both local fixes. In this case t′′′ will have a value in A that solves the
inconsistencies solved by and t′ and t′′. This value will in fact correspond to the value of A in
t′ or t′′ and therefore we will have that ∆({t}, {t′′′}) < ∆({t}, {t′}) + ∆({t}, {t′′}). Let M be
the set of attributes that are modified both by t′ and t′′, we can express the relation as follows:
∆({t}, {t′′′}) =

∑
A∈F (πA(t) − πA(t′′′))2 =

∑
A∈F (πA(t) − πA(t′))2 +

∑
A∈F (πA(t) − πA(t′′))2

−∑
A∈MMin{(πA(t)− πA(t′))2, (πA(t)− πA(t′′))2} 2

Proposition A.5. If an optimal cover C for the instance (U,S) of MWSCP has more than
one S(t, t′) for a tuple t, then there exists another optimal cover C′ for (U,S) with the same
total weight as C but with one t′ such that S(t, t′) ∈ C. Furthermore, D(C) is an LS-fix of D
wrt IC with ∆(D,D(C)) equal to the total weight of the cover C. 2

Proof: First we will prove the first part of the Proposition. Let us assume that we have
{S(t, t′), S(t, t′′) ∈ C}. From Proposition A.4 there exists an S(t, t′′′) ∈ S such that S(t, t′′′) =
S(t, t′)∪ S(t, t′′), i.e such that it covers the same elements as S(t, t′) and S(t, t′′). From Propo-
sition A.4 ∆({t}, {t′′′}) ≤ ∆({t}, {t′}) + ∆({t}, {t′′}) and therefore that weight of S(t, t′′′)
is smaller or equal than the sum of the weight of the original two sets. If ∆({t}, {t′′′}) <
∆({t}, {t′}) + ∆({t}, {t′′}) we would have that C is not an optimal solution so this is not
possible. Then ∆({t}, {t′′′}) = ∆({t}, {t′}) + ∆({t}, {t′′}). Then, if we define C′ = (C r
{S(t, t′), S(t, t′′)})∪{S(t, t′′′)} we will cover all the elements and we will have the same optimal
weight.

Now we need to prove that given D(C) is an LS-fix. D(C) is obtained by first calculating C′
and therefore we have an optimal cover with at most one S(t, t′) for each tuple t. Then D(C) is
obtained by replacing t by t′ for each S(t, t′) ∈ C. It is direct that D(C) has the same schema as
D and that it satisfies the key constraints. Now, since C′ covers all the elements, all the incon-
sistencies in D are solved in D(C). From Lemma A.3 the local fixes t′ do not add new violations
and therefore D(C) |= IC. We are only missing to prove that D(C) minimizes the distance from
D. Clearly ∆(D,D(C)) =

∑
t∈D ∆({t}, {t′}) =

∑
S(t,t′)∈C′ wS(t,t′) =

∑
S(t,t′)∈C wS(t,t′) = w. So,

since the optimal solution minimizes w, ∆(D,D(C)) is minimum and D(C) is an LS-fix 2

Proposition A.6. For every LS-fix D′ of a database D wrt a set of local denials IC, there
exists an optimal cover C for an instance (U,S) of MWSCP such that D′ = D(C). 2

Proof: To prove it it is enough to construct this optimal cover. Let C = {S(t, t′)|t′ ∈ (D′ rD).
By definition C′ = C and D(C) = D′. We need to prove that C is an optimal cover. Since
D′ is consistent, all the violation sets were solved and therefore C is a cover. Also, since
∆(D,D′) = ∆(D,D(C)) = w and ∆(D,D′) is minimum, C minimizes the weight and therefore
is an optimal cover. 2
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Proposition A.7. The transformation from DFOP to MWSCP , and the construction of the
instance D(C) from a set cover C can be done in polynomial time in the size of D.
Proof: We have to establish that the transformation of DFOP into MWSCP given above is an
L-reduction [17]. So, it remains to verify that the reduction can be done in polynomial time in
the size of instance D for DFP(IC), i.e. that G can be computed in polynomial time in n, the
number of tuples in D. Notice that if mi the number of database atoms in ici ∈ IC, and m the
maximum value of mi there are at most nmi hyper-edges associated to ici ∈ IC, each of them
having between 1 to m tuples. We can check that the number of sets S(t, t′) and their weights
are polynomially bounded by the size of D. There is one S(t, t′) for each local fix. Each tuple
may have no more than |F| × |IC| local fixes, where F is the set of flexible attributes.

The weight of each S(t, t′) is polynomially bounded by the maximum absolute value in an
attribute in the database and the maximum absolute value of a constant appearing in IC (by
an argument similar to the one given in the proof of Proposition 1).

With respect to D(C), the number of sets in S is polynomially bounded by the size of D,
and since C ⊆ S, C is also polynomially bounded by the size of D. To generate C′ it is necessary
to search through S. Finally, in order to replace t in D for each tuple t′ such that S(t, t′) ∈ C
we need to search through D. 2

Proposition A.8. Given a cover Ĉ obtained with the approximation algorithm for an instance
(U,S) of MWSCP , D(Ĉ) will have the same schema as D, will satisfy the key and the set of
constraints IC, but will not necessarily minimize the distance to the original database D. We
also have that ∆(D,D(Ĉ)) ≤ ŵ, where ŵ is the total weight of Ĉ, and therefore that ∆(D,D(Ĉ))
is a better approximation than ŵ to the optimal solution 2

Proof: Using the same arguments as in the proof of Proposition A.5 we have that since Ĉ is
a cover then D(Ĉ) has the same schema as D, satisfies the keys and satisfies IC. What we are
not sure of is if D(Ĉ) minimizes the distance to D. Before we had that Ĉ′ had the same weight
as C. Now, from Proposition A.4 ∆({t}, {t′′′}) ≤ ∆({t}, {t′}) + ∆({t}, {t′′}), and since Ĉ is not
optimal they are not necessarily equal so, wĈ′ <= ŵ. Then ∆(D,D(Ĉ)) ≤ ŵ but not necessarily
minimal. 2

Proof of Theorem 5: Based on the tractability results in [10], it suffices to show that the LS-
fixes for a database D are in one-to-one and polynomial time correspondence with the repairs
using tuple deletions [2, 7] for a database D′ wrt a set of key dependencies.

Since we have 1DADs, the violation sets will have a single element, then, for an inconsistent
tuple t wrt a constraint ic ∈ IC, it holds I(D, ic, t) = {t}. Since all the violation sets are
independent, in order to compute a fix for D, we have to generate independently all the local
fixes t′ for all inconsistent tuples t such that ({t}, ic) ∈ S(t, t′), with ic ∈ IC; and then combine
them in all possible ways.

Those local fixes can be found by considering all the candidate fixes (not necessarily LS-
minimal) that can obtained by combining all the possible limits for each attribute provided by
the ICs (c.f. Proposition A.1); and then checking which of them satisfy IC, and finally choosing
those that minimize ∆({t}, {t′}). There are at most 2|F| possible candidate fixes, where F is
the set of flexible attributes.

Let us now define a database D′ consisting of the consistent tuples in D together with all
the local fixes of the inconsistent tuples. By construction, D and D′ share the same keys. Since
each inconsistent tuple in D may have more than one local fix, D′ may become inconsistent
wrt its key constraints. Each repair for D′, obtained by tuple deletions, will choose one local
fix for each inconsistent tuple t of D, and therefore will determine an LS-fix of D wrt IC. 2
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Proof of Proposition 4: The NP-complete PARTITION problem [11] can be reduced to this
case for a fixed set of 1DADs. Let a A be a finite set, whose elements a have integer sizes s(a).
We need to determine if there exists a subset S of A, such that

∑
a∈S s(a) = n := (

∑
a∈A s(a))/2.

We use two tables: Set(Element ,Weight), with key {Element ,Weight}, containing the tu-
ples (a, s(a)) for a ∈ A; and Selection(Element ,X, Y ), with key Element , flexible numeri-
cal attributes X,Y (the partition of A) taking values 0 or 1 (which can be specified with
1DADs), and initially containing the tuples (a, 0, 0) for a ∈ A. Finally, we have the 1DAD
∀E,X, Y ¬(Selection(E,X, Y ),X < 1, Y < 1).

There is a one-to-one correspondence between LS-repairs of the original database and par-
titions X,Y of A (collecting the elements with value 1 in either X or Y ). Then, there is
a partition with the desired property iff the query Q : (Set(E,W ),Selection(E,X, Y ),X =
1, sum(W ) = n) has answer yes under the brave semantics. The query used in this proof is
acyclic and belongs to the class CTree . 2

Proof of Proposition 5: By reduction from a variation of Independent Set, for graphs whose
vertices have all the same degree. It remains NP-hard as a special case of Independence Set for
Cubic Planar Graphs [12]. Given an undirected graph G = (V, E) with degree d, and a minimum
bound k, we create a relation Vertex (V,C1, C2), where the key V is a vertex and C1, C2 are
flexible and taking values 0 or 1, but all equal to 0 in the initial instance D. It is subject to the
denial IC : ∀V,C1, C2¬(Vertex (V,C1, C2), C1 < 1, C2 < 1). A second relation Edge(V1, V2,W ),
with hard attributes only, contains the tuples (v1, v2, 1) for (v1, v2) ∈ E or (v2, v1) ∈ E . Every
vertex v appears in each argument in exactly d tuples.

Consider the ground query aggregate conjunctive query Q:
q(sum(W ))← Edge(V1, V2,W ),Vertex (V1, C11, C12),Vertex (V2, C21, C22), C11 = 1, C21 = 0).

We are interested in the maximum value for Q in Fix(D, IC ), i.e. the min-max answer
introduced in [3].
In a fix, the tuples (v1, 1, 0) and (v2, 0, 1) in Vertex partition V, so in a fix, the tuples of the
form (v, 1, 0) determine a subset of V, and every set of vertices can be obtained in this way.
In particular, an independent set I corresponds to the tuples of the form Vertex(v, 1, 0) in a
fix D(I). In every such a fix D(I), the answer to Q will be d × |I|, because the predicate
Edge(V1, V2,W ) in the query will be satisfied one and only one time for every edge incident to
vertex belonging to I.

Then, among independent set fixes, the maximum value for Q is d × m, where m is the
maximum cardinality of an independent set. Wrt to answers to Q from fixes that do not
correspond to independent sets, we have two cases. If S ⊆ V is determined by the tuples
(v, 1, 0) is a fix D′, and S $ I for some independent set I, then Q(S) < Q(D(I)) ≤ d×m.

If S is not contained in any independent set, it does contain an independent set I, I ⊆ S,
that cannot be extended to a larger independent set still contained in S. For the maximal
independent I ′ that contains I it holds Q(S) < Q(D(I ′)) ≤ d×m.

In consequence, the min-max answer for Q is d×m; and then there is an independent set
of size at least k iff min−max answer to Q ≥ k × d. 2

A.2 An Example for Theorem 1

Consider the diophantine equation

2x3y2 + 3xy + 105 = x2y3 + y2. (3)

Each term t in it will be represented by a relation R(t) with 8 attributes taking values in N:
three, X1,X2,X3, for the maximum exponent of x, three, Y1, Y2, Y3, for the maximum exponent
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of y, one, C, for the constant terms, plus a last one, K, for a key. Value 0 for a non-key attribute
indicates that the term appears in t, otherwise it gets value 1. We introduce as many tuples in
R(t) as the coefficient of the term; they differ only in the key value. We will see that only the
0 values will be subject to fixes. These are the relations and their ICs:

R(2x3y2) X1 X2 X3 Y1 Y2 Y3 C K
0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 2

For this table we have the following set, IC(2x3y2), of ICs:
∀x1 · · · x8¬(R(2x3y2)(x1, . . . , x8) ∧ x1 6= x2), ∀x1 · · · x8¬(R(2x3y2)(x1, . . . , x8) ∧ x2 6= x3),
∀x1 · · · x8¬(R(2x3y2)(x1, . . . , x8) ∧ x5 6= x6), ∀x1 · · · x8¬(R(2x3y2)(x1, . . . , x8) ∧ x4 6= 1),
∀x1 · · · x16¬(R(2x3y2)(x1, . . . , x8) ∧R(2x3y2)(x9, · · · , x16) ∧ x1 6= x9)
∀x1 · · · x16¬(R(2x3y2)(x1, . . . , x8) ∧R(2x3y2)(x9, · · · , x16) ∧ x5 6= x13).

R(3xy) X1 X2 X3 Y1 Y2 Y3 C K
1 1 0 1 1 0 1 3
1 1 0 1 1 0 1 4
1 1 0 1 1 0 1 5

IC(3xy):
∀x1 · · · x16¬(R(3xy)(x1, . . . , x8) ∧R(3xy)(x9, . . . , x16) ∧ x3 6= x11),
∀x1 · · · x16¬(R(3xy)(x1, . . . , x8) ∧R(3xy)(x9, · · · , x16) ∧ x6 6= x14),
∀x1 · · · x8¬(R(3xy)(x1, . . . , x8) ∧ x1 6= 1), ∀x1 · · · x8¬(R(3xy)(x1, . . . , x8) ∧ x2 6= 1),
∀x1 · · · x8¬(R(3xy)(x1, . . . , x8) ∧ x4 6= 1),
∀x1 · · · x8¬(R(3xy)(x1, . . . , x8) ∧ x5 6= 1).

R(105) X1 X2 X3 Y1 Y2 Y3 C K
1 1 1 1 1 1 105 6

IC(105):
∀x1 · · · x8¬(R(105)(x1, . . . , x8) ∧ x1 6= 1), ∀x1 · · · x8¬(R(105)(x1, . . . , x8) ∧ x2 6= 1),

∀x1 · · · x8¬(R(105)(x1, . . . , x8) ∧ x3 6= 1), ∀x1 · · · x8¬(R(105)(x1, . . . , x8) ∧ x4 6= 1),
∀x1 · · · x8¬(R(105)(x1, . . . , x8) ∧ x5 6= 1), ∀x1 · · · x8¬(R(105)(x1, . . . , x8) ∧ x6 6= 1),
∀x1 · · · x6¬(105(x1, · · · , x6) ∧ x7 6= 105).

Similar tables R(x2y3) and R(y2) and corresponding sets of ICs are generated for the terms
on the RHS of (3).

Next we need ICs that are responsible for making equal all xs and ys in all terms of the
equation:
∀x1 · · · x16¬(R(2x3y2)(x1, . . . , x8) ∧R(3xy)(x9, · · · , x16) ∧ x1 6= x11),
∀x1 · · · x16¬(R(2x3y2)(x1, . . . , x8) ∧R(3xy)(x9, . . . , x16) ∧ x5 6= x13)
∀x1 · · · x16¬(R(2x3y2)(x1, . . . , x8) ∧R(x2y3)(x9, · · · , x16) ∧ x1 6= x10)
∀x1 · · · x16¬(R(2x3y2)(x1, . . . , x8) ∧R(x2y3)(x9, . . . , x16) ∧ x5 6= x12)
∀x1 · · · x16¬(R(2x3y2)(x1, . . . , x8) ∧R(y2)(x9, . . . , x16) ∧ x5 6= x13).

Now we construct a single table R(equ) that represents equation (3) by appending the
previous tables:
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R(equ) X1 X2 X3 Y1 Y2 Y3 C K
0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 2
1 1 0 1 1 0 1 3
1 1 0 1 1 0 1 4
1 1 0 1 1 0 1 5
1 1 1 1 1 1 105 6
1 0 0 0 0 0 1 7
1 1 1 1 0 0 1 8

We need ICs stating the correspondence between the terms in the tables R(t) and table R(equ):
∀x1 · · · x16¬(R(equ)(x1, . . . , x8) ∧R(2x3y2)(x9, . . . , x16) ∧ x8 = x16 ∧ x1 6= x9),
∀x1 · · · x16¬(R(equ)(x1, . . . , x8) ∧R(2x3y2)(x9, . . . , x16) ∧ x8 = x16 ∧ x2 6= x10),
· · · · · · · · ·
∀x1 · · · x16¬(R(equ)(x1, . . . , x6) ∧R(y2)(x7 · · · x16) ∧ x8 = x16 ∧ x7 6= x15).

Finally, we have one aggregate constraint that is responsible for making equal the LHS and
RHS of equation (3):
sumR(equ)(x1 ·x2 ·x3 ·x4 ·x5 ·x6 ·x7 : x6 < 7) = sumR(equ)(x1 ·x2 ·x3 ·x4 ·x5 ·x6 ·x7 : x6 > 6).

If the database has a fix, then there is an integer solution to the diophantine equation. If
the equation has a solution s, then there is an instance R(equ)′ corresponding to s that satisfies
the ICs. By Lemma 2, there is an LS-fix of the database.

The reduction could be done with the table R(equ) alone, making all the ICs above to refer
to this table, but the presentation would be harder to follow.
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