
MASTER THESIS

A PORTABLE

MENU-GUIDED NATURAL LANGUAGE INTERFACE

TO KNOWLEDGE BASES

Student: Marco Trevisan

Student number: S1809725

Address: Via Giorgione 12 B

Santa Maria di Sala (VE)

30036 Italy

Phone number: +39 041 5781062

E-mail address: evenjn@gmail.com

Supervisors: Prof. Gertjan van Noord, University of Groningen

Prof. Enrico Franconi, Free University of Bozen-Bolzano

Programme: Research Master Linguistics

Specialization: Erasmus Mundus Masters Programme in
Language and Communication Technologies

Date of submission: December 7th, 2009

Abstract

Menu-based natural language interfaces to databases are software systems that
allow their users to edit a query by composing fragments of generated natural
language. The fragments available for this purpose are provided by the system
through contextual menus. This thesis discusses the development of such a system
which relies on a description logic reasoner to determine the available fragments,
and on natural language generation to produce them. The logic of the interface, along
with the query interaction model, are defined by the Query Tool framework. The
focus of this work is on the language model and on the resources needed to represent
a query in any knowledge domain, meeting the constraints imposed by the query
language and the interaction model of Query Tool. This thesis also documents two
experimental techniques to produce automatically the resources needed to interface
the system with a new knowledge base. The first technique mines a corpus for
natural language expressions describing a semantic relation. The second technique
produces a generation template from a natural language expression assembling the
appropriate lexical and syntactic elements.

ii

Table of Contents
1 Introduction...4

1.1 Query Tool...5
1.1.1 The query language of Query Tool...6
1.1.2 The query model of Query Tool...8
1.1.3 Operations of the query model...9

2 Natural Language Interface ..13
2.1 Requirements...13
2.2 Previous Art ..15
2.3 Language..18

2.3.1 Design goals...18
2.3.2 Syntax...21
2.3.3 Lexicon...23

2.4 Templates...24
2.4.1 Concept templates..24
2.4.2 Relation templates..25
2.4.3 Template maps..29

2.5 Generation..29
2.5.1 Document Planning..29
2.5.2 Microplanning..30
2.5.3 Lexicalization...30
2.5.4 Aggregation..34
2.5.5 Referring Expressions Generation...35
2.5.6 Surface Realization..36

3 Knowledge domain portability..37
3.1 Data-driven extraction of linguistic information...37

3.1.1 Algorithm...40
3.1.2 Evaluation..44

3.2 Rule-based template extraction..49
3.2.1 Tokenization...50
3.2.2 Part-of-Speech Tagger..51
3.2.3 Partitioning the set of relation IDs...53
3.2.4 Input preprocessing..55
3.2.5 Pattern matching on TT-IDs...57
3.2.6 Output of the transformation rules...58
3.2.7 Transformation rules..59
3.2.8 Evaluation..71

4 Conclusion...75
4.1 Open issues and future work..76

4.1.1 Natural Language Generator..76
4.1.2 Template generator...77

 Acknowledgements...lxxviii
 Appendix 1: Graphical User Interface...lxxix
 References..lxxx

iii

1 Introduction

atural language interfaces to databases (NLI) are software systems which allow
their users to access information stored in a database by typing requests in

some natural language [Androutsopoulos et al. 1995]. One of the approaches in NLI
development is to use natural language generation (NLG) to display both the query
and the elements which can be used to further refine it. In such a system, the users
are not free to type their queries. Instead, they have to compose the query by
selecting and combining fragments of natural language proposed by the system. The
system produces these fragments through NLG techniques on the basis of the
elements of the underlying formal query language.

N

This thesis discusses the development of such a NLI which takes advantage of the
capabilities of a specific variant of database, namely a knowledge base. A knowledge
base (KB) is, roughly speaking, a database system coupled with a deduction system.
The deduction system operates on a logic-based description of the constraints that
hold on the data, also known as ontology. The deduction system uses the ontology to
infer knowledge, that is, to augment the information available to the system beyond
the bare data. This information can be used to answer queries which otherwise a
simple database could not answer. Research in description logics achieved efficient
computational inference techniques for certain classes of inference problems. In
particular, some of these techniques allow to calculate efficiently whether a query is
not satisfiable, i.e. it will yield no results. This feature can be used to prevent the user
from carrying out an operation on the query when the result of the operation would
be an unsatisfiable query [Dongilli et al. 2004].

This thesis also discusses our efforts at improving the portability of our NLI. Our
system is not tailored to suit any specific KB or any particular knowledge domain: in
order to use it with a KB, it must be provided with appropriate linguistic resources.
We experimented with two different computational techniques with the goal of
reducing the effort of creating these resources, and ideally to realize an intelligent
NLI working out-of-the-box with any KB.

The first technique draws from an idea first presented in a work in variant
recognition [Lin & Pantel 2001], and later employed to identify meronymy relations
[Ittoo & Bouma 2009]. The system works under the hypothesis that paths in
dependency trees linking the same set of words tend to have the same meaning. We
use this hypothesis to address a specific sub-task of the generation of the resources
needed by our NLI, that is, the collection of natural language expressions describing
semantic relations defined in the ontology. To this purpose, we re-used and adapted
an algorithm developed for the project described in [Ittoo & Bouma 2009]. The
system we designed retrieves and ranks list of dependency paths for each relation in
the system, at the condition that the required linguistic resources are provided.
These dependency paths can be fed to the rule-based system to produce the
resources needed by our NLI.

The second technique follows an approach to domain independent generation
developed by Xiantang Sun [Sun 2009] under the supervision of Chris Mellish. In a
previous work they argue that "RDF representations carry rich linguistic information,

4

1 - Introduction

which can be used to achieve readable domain independent generation" [Sun &
Mellish 2007]. We argue that even though the information is not sufficient in general,
it is still useful to partially automate the production of the resources needed to
configure a NLG system for its use in a new domain. To this purpose, we built and
evaluated a system which implements Sun's approach as it was laid out in a draft of
his thesis [Sun 2009]. The system we built produces all the resources necessary to
configure our NLI for use with a new KB, using the KB itself as the only input data.
The generated resources are meant to be reviewed and corrected by systems
engineers and domain experts.

This introduction continues with an overview of Query Tool, the query interface
framework our NLI is based on. In the first part of this thesis, we focus on the
development of our natural language interface for Query Tool. We review the
requirements, we present some attempts to relate the system to previous art in this
field and we discuss the design of our natural language generator: the generated
language, the generation pipeline, and the bridge between knowledge base and
natural language, that is, our template map. In the second part, we switch to the
topic of the automated generation of the template map. We first discuss the approach
we adapted from [Ittoo & Bouma 2009], and we report the results of our evaluation.
Next we discuss the technique we implemented following Sun's approach, and for
this technique as well we report our experimental results.

1.1 Query Tool

A query interface to a database is a system that helps the user access information
stored in a database. The user interacts with the interface to encode her informative
needs into a piece of data called query. The most common kind of query interfaces,
often found on Web applications, are form-based interfaces. In this kind of interfaces,
the query is a set of labelled fields which the user fills with values. For example,
eBay1 allows the user to retrieve auctions for objects that are available to a specific
country. To do so, the user has to input the country name in a specific field of the
search form. Natural language interfaces (NLIs) are another kind of query interfaces.
In NLIs, the query is a natural language expression input by the user. While far less
common than form interfaces, NLIs can also be found on the Web. In WolframAlpha2,
to retrieve the countries with a GDP greater than a hundred million dollars, the user
may type [1] in the search box.

[1] Asian countries with a gross domestic product of more than 100 millions

Regardless of the input methods, all query interfaces eventually transform the query
into a format which can be processed by the database management system, e.g. into
a SQL query. In form-based interfaces this translation is often simple and immediate.
Natural language interfaces instead require a complex processing of the input, which
may rely on intermediate representations, e.g. first order logic formulas or DRT
(discourse representation theory) frames.

Query Tool is a framework for query interfaces to knowledge bases. A knowledge
base (KB) is a database system enriched with logical constraints and connected to a
logic reasoning system. A key component of a KB is its ontology. The ontology of a KB
is a representation of the constraints that hold on the data stored in the KB. The

1 An on-line auctions Web site accessible at www.ebay.com
2 A scientific knowledge base Web site accessible at www.wolframalpha.com

5

constraints are encoded as logical formulas, and therefore they can be fed to logical
reasoners for inference purposes. Another feature of ontologies is that the logical
language used to specify them usually frames the data into structures more similar to
the ones used in natural language than to those used in database schemas. For this
reason, the ontology plays a key role in bridging the gap between machine
processable data and human-readable text.

Query Tool defines an abstract model for queries on KB, and a set of operations on it.
To interact with a Query Tool-based interface, the user creates a new query, and
applies these operations until the query represents her informative needs. Through
its query model, Query Tool controls the actions of the user and drives the interaction
of the user with the KB. Query Tool's query model is abstract in the sense that it does
not specify how the query should be displayed to the user. In principle, the Query
Tool framework can be instantiated with any of the previously mentioned interfaces,
i.e. form-based interfaces, NLIs, and many others. A Query Tool query is an
intermediate representation of the user's informative needs: it will eventually be
transformed into an SQL query and fed to the database management system.

The main benefit of Query Tool is that, to a limited extent, it prevents the user from
composing queries which, if executed on the target KB, would retrieve no elements.
At any point during the query composition process, the set of available arguments for
the operations which can be carried on the query depends on the KB's ontology and
on the query composed so far. To calculate the available arguments, the tool relies on
the constraints described in the ontology, and on the services of a logic reasoner. For
example, if the query is [2]3 and if the target KB specifies that Male objects cannot be
in spouse relation with Male objects, then Query Tool will not allow the user to add to
the query the additional constraint Male(y) , on the ground that the resulting query
would be unsatisfiable.

[2] Male(x) ⋀ spouse(x, y) ⋀ Person(y)

[3] Country(x) ⋀ PrimeMinister(x, y) ⋀ Female(y)

A positive side effect of this functionality is that the restriction of the available
arguments also qualifies the available arguments as relevant components of the data
model of the KB. These elements are displayed only in contexts where they are
immediately relevant to the user, and they inform the user about the capabilities of
the informative system. For example, suppose that the target KB specifies that
Country objects may relate to other Country objects through the Border relation and
through the RecognizesAsIndependent relation. If the query is [3], the list of available
operations provided by Query Tool will contain the following two operations:

• add RecognizesAsIndependent(x, z) ⋀ Country(z)

• add Border(x, z) ⋀ Country(z)

Users do not need to have previous knowledge about the database schema, nor
about the ontology. The elements that they may use to communicate their informative
needs are listed by the system and tailored to the context they specified so far.

1.1.1 The query language of Query Tool

In general, different KB management systems rely on different languages to
represents queries and knowledge. Presently, the most prominent knowledge

3 We assume the reader is familiar with first order logic notation.

6

1.1 - Query Tool

representation (KR) language is OWL, a W3C recommendation. Query Tool can be
used to query an OWL KB, but it also supports (Extended) ER KBs and others. In
general, different KR languages have different features, but certain basic features are
found in most KR languages, usually disguised under a different syntax. Research in
the field of Description Logics (DL) produced a theory of knowledge representation
languages which allows to describe and analyse the semantics features of these
languages. This theory collects results on the computational complexity of the
operations defined on these languages, which in turn gives information about the
complexity of reasoning with queries written in those languages.

Query Tool supports KBs with different query languages because the queries it
supports rely on features which are shared by most of the existing KR languages. In
other words, Query Tool allows the user to formulate queries in a language which is
simple enough to be translated to all the supported KR languages. In terms of
description logic, these features are known concept instantiation, limited existential
restriction and conjunction.

• Atomic Concept instantiation: the query language allows to specify that an
element should be an instance of a certain atomic concept. For example, it is
possible to specify that each object to be retrieved is an actor.

• Limited existential restriction: the query language allows to introduce a new
object Y and specify that a certain relation4 holds between a previously-
introduced object and Y. Y cannot refer to previously-introduced objects. For
example, it is possible to specify that each object to be retrieved is married to
another element.

• Conjunction: the query language allows to specify a list of atomic concept
instantiations and limited existential restrictions that must hold at the same time
for an element. For example, it is possible to specify that each object to be
retrieved is a Colombian actor, singer, film director and film producer whose
mother is Colombian and whose spouse is Peruvian.

In DL, queries characterized by these features are called tree-shaped conjunctive
queries. Each DL query is a kind of DL formula. In the following, we refer to DL
queries as DL query, and we will use the simple term query to refer only to the data
structure defined by Query Tool to represent tree-shaped conjunctive formulas.

Tree-shaped conjunctive DL queries are defined as follows. Given a set of atomic
concepts Ac = {c 0 , c 1 , c 2 , . . c i , . . c n} and a set of relations Ro = {r 0 , r 1 , r 2 , . . r i , . . r n} , the
syntax of the language of tree-shaped conjunctive DL queries is described by the
following BNF grammar, where S is the start symbol and all the elements of Ro ∪ Ac
are terminal symbols:

S : := C | ∃R.(S) | S ⊓ S

R ::= r i for each r i ∈ Ro

C ::= c i for each c i ∈ Ac

The “square cap” symbol ⊓ is used for conjunctions, while the construct starting with
the “there exists” symbol ∃ is used for limited existential restrictions.

The language can be given a direct model-theoretic semantics, but for simplicity we
provide instead a semantic-preserving map m from DL queries to formulas of model-

4 More precisely, object relations, also known as roles. Quert Tool cannot deal with relations between objects and data
type literals yet.

7

theoretic first order logic. We define the map recursively on the structure of the DL
formulas, as follows5 :

m(S) = m(S, x) x is a new variable

m(C, x) = C(x)

m(∃R.(S), x) = ∃y.(R(x, y) ⋀ m(S, y)) y is a new variable

m(S ⊓ S, x) = m(S, x) ⋀ m(S, x)

According to this mapping, [3] is mapped to [4], where x is a free variable.

[4] A ⊓ ∃R.(B ⊓ C) ⊓ D

[5] A(x) ⋀ ∃y.(R(x, y) ⋀ B(y) ⋀ C(y)) ⋀ D(x)

The language defined via this map is the fragment of first order logic consisting of
all formulas with a single free variable, composed using only unary predicates, binary
predicates, conjunctions, and existential quantifications, such that the undirected
graph induced by the applications of binary predicates (i.e. each application P(x, y)
corresponds to an edge between the vertex x and the vertex y) does not contain
loops.

1.1.2 The query model of Query Tool

The query model defined by Query Tool is a data structure for representing tree-
shaped conjunctive DL queries. In Query Tool, a query is a labeled directed n-ary
tree, where each node is labeled with a sequence of node labels, and each edge is
labeled with an edge label. Each node label refers to an atomic concept of the
ontology, each edge label refers to a relation of the ontology. When the context allows
to do so, we will identify node labels with the atomic concepts they refer to. For
example, we will write about the concepts labelling a node instead of about the
concepts referred by the node labels of a node. We will use this approach also with
edge labels.

The root of the tree is the node which has no entering edges. The query in
illustration 1 is rooted at the node labeled with Singer and Woman .

The function ro l l -up associates each node of the Query Tool query to a tree-shaped
conjunctive DL query. Each DL query defines a concept, in the sense that it identifies
a set of elements, the elements which satisfy it. For this reason, each node represents

5 Note that in this definition we abuse of the notation in that, for each DL concept, we use the same symbol to denote
the concept in the DL language and the corresponding unary predicate in the first order logic. We abuse the notation
in the same way with DL relation symbols.

8

Illustration 1: A Query Tool query

parent
ActorWoman

Singer

Man

spouse

Singer

parent

1.1 - Query Tool

an entity instantiating the concept associated with the node. For example, the last
node in illustration 1 represents a singer whose father is married to a female singer
mother of an actor, whereas the first node represents a female singer mother of an
actor married to the father of a singer.

The ro l l -up of the root is the formula [6]. The ro l l -up of the node labeled with Man is
[7], where spouse - 1 is the inverse of the relation spouse.

[6] Woman ⊓ Singer ⊓ ∃parent . (Actor) ⊓ ∃spouse.(Man ⊓
∃parent . (Singer))

[7] Man ⊓ ∃parent . (Singer) ⊓ ∃spouse - 1 . (Singer ⊓ Woman ⊓
∃spouse.(Actor))

Each node of the tree is associated with the formula [8], where c 0 , c 1 , c 2 , ... cN are the
labels of the node, r 0 , r 1 , r 2 , ... rM are the labels of the edges leaving the node and the
inverse of the labels of the edges entering the node. S0 , S1 , S2 , ... SM are the formulas
associated with the nodes on the other side of those edges. The query encoded by the
tree is the formula associated with the root node.

[8] c 0 ⊓ c1 ⊓ c2 ⊓ . . . cN ⊓ ∃r 0 . (S 0) ⊓ ∃r 1 . (S 1) ⊓ ∃r 2 . (S 2) ⊓ . . . ∃r M . (SM)

The semantics of description logic formulas does not depend on the order of the
elements appearing in conjunctions. However, the query model of Query Tool
maintains an ordering among the labels of each node and among the edges leaving
that node. The reason is that any user interface instantiating the Query Tool
framework must display the elements of the query in a certain order. If no order was
enforced, the labels or the children of a node could be scrambled after every
operation on the model, confusing for final users of the interface.

Query Tool allows the user to mark nodes as distinguished to select the entities that
should be visualized as part of the answer to the query. In addition, Query Tool allows
the user to mark edges as sticky, to make sure that deletion and substitution
operations do not remove the nodes they enter.

1.1.3 Operations of the query model

Query Tool defines four operations for the query model, each operation taking
different arguments. For each query, for each operation, Query Tool determines the
combinations of arguments the user can apply. The available combinations of
arguments depend on the target KB and on the query, and therefore they are re-
computed on-line after every modification to the query. The four operations Query
Tool provides are:

• addCompat ib le(node, concept)

• addProperty(node, re lat ion, concept)

• subst i tute(select ion, concept)

• delete(select ion)

These operations are defined formally in [Guagliardo 2009]. In the following, we
describe the operations one by one with the help of some examples. We will apply the
operations on the toy query depicted in illustration 2, targeting the toy ontology
depicted in illustration and 3.

9

The toy ontology contains a concept (Person) generalizing four other concepts (Man ,
Woman , Singer , Nun, Daughter). Woman is specialized by Nun and Daughter. Woman
and Man are disjoint. This implies that Nun and Man are incompatible concepts, as
well as Daughter and Man are. The ontology contains two relations: hasParent and
spouse . For both relations, the domain is Person and the range is Person . The
ontology also contains two constraints which are not depicted in the illustration.
First, Nun objects do not participate in spouse relations. Second, every Daughter
object participates in a hasParent relation in first position, i.e. on the side of children.

The toy query displayed in illustration 3 is a tree with two nodes connected by one
edge. The first node is labeled with the concept Woman , the other node is labeled
with the concept Person . The edge is directed from the first node to the second, and it
is labeled with the relation parent . The DL query encoded by the toy query is [9].

[9] Woman ⊓ ∃hasParent. (Person)

The operation addCompat ib le takes as input a node of the query and a concept, and it
adds the concept as a label to the input node, at the end of the sequence of labels of
the node. The concepts available as arguments for this operation are those concepts
which do not generalize, nor specialize, nor are equivalent to, nor are incompatible
with the concept represented by the ro l l -up of the node. For example, on the toy
query, Query Tool allows to apply the operation addCompat ib le on the node labeled
with Woman , with argument the concept Singer. Any other concept argument would
not be allowed, since all the other concepts are either generalizations (Person) or
specializations (Nun) of the concept associated with the node argument, that is [9], or

10

Illustration 3: Toy query

hasParent PersonWoman

Illustration 2: A toy ontology

Person

FemaleMale Singer

Nun

hasParentspouse

Daughter

1.1 - Query Tool

they are equivalent to it (Daughter) or they are not compatible with it (Man). After the
operation is applied, the resulting query is the one depicted in illustration 4,
associated with the DL query [10].

[10] Woman ⊓ Singer ⊓ ∃hasParent. (Person)

The operation addProperty takes as input a node of the query, a relation and a
concept, and it adds a new edge, pointing to a new node, to the sequence of edges
leaving that node. The edge is labeled with the input relation, and the new node is
labeled with the input concept. The arguments available for this operation are those
concepts and those relations that can be used to instantiate a limited existential
restriction compatible with the roll-up of the node argument. For example, on the toy
query, Query Tool allows to apply the operation addProperty on the node labeled with
Woman , with arguments the relation spouse and the concept Person . After the
operation is applied, the formula associated with the resulting query is [11]. The
resulting query is shown in illustration 5. If the node labeled with Woman was labeled
with Nun instead, Query Tool would not have allowed the addProperty operation with
argument spouse, since the ontology specifies that no Nun can participate in spouse
relations.

[11] Woman ⊓ ∃hasParent. (Person) ⊓ ∃spouse.(Person)

The operation subst i tute takes as input a concept and a selection, that is either a
node label, a node, or an entire sub-tree of the query. If the selection is a node label,
the operation replaces it with the input concept. Otherwise, the operation replaces
the node or the entire sub-tree with a node labeled with the concept. The concepts
available as arguments are those concept which generalize, specialize, or are
equivalent to the concept associated with the selected portion. For example, Query
Tool allows to Subst i tute the whole toy query with the concept Daughter. After the
operation is applied, the resulting query would be a single node labeled with
Daughter . Query Tool also allows to subst i tute the single label Person in the toy query
with any concept subsumed by Person , e.g. Man . Illustration 6 shows the result of this
latter substitution.

The operation delete simply takes as input a selection, and deletes it. If the selection
is a single node, and the node has children, delete will not have any effect. The exact
behaviour of substitute and delete is actually more complex, as Query Tool allows to
protect portions of the query from being removed or replaced, by marking edges as

11

Illustration 4: Toy query after AddCompat ib le

hasParent PersonWoman

Singer

Illustration 5: Toy query after AddProperty

hasParent
PersonWoman

Person

spouse

sticky. If some sticky edge would be removed as an effect of a delete or subst i tute
operation, the edge is not removed instead. Also, every node and every edge on the
path from the root of the query to the node pointed at by the sticky edge is not
removed. Node labels of the nodes in of the selected node or of the selected sub-tree
are removed regardless of sticky edges.

12

Illustration 6: Toy query after Subst i tute

hasParent
ManWoman

2 - Natural Language Interface

2 Natural Language Interface

uery Tool comes with two graphical user interfaces: the tree interface and the
natural language interface. Each of these interfaces provides a visual

representation of the query, widgets that allow to perform operations, and visual
access to the arguments for these operations. The natural language interface
represents the query as English text. This interface realizes the operations
addCompat ib le , addProperty, subst i tute , and delete as addition, substitution and
deletion of portions of the text.

Q

This section of the thesis describes the problems we faced during the realization of
this interface, and the solutions we adopted. The following part deals with the
requirements of the system, then we give an overview of similar work in this field.
Next, we describe the design of our NLI starting from the language used to generate
the natural language representation of the query, its syntax and its lexicon. The
generator relies on the features available in this language to build the text. Once the
language is defined, we proceed with describing the template map, our bridge
between the elements of the ontology and the linguistic resources necessary to
represent them as English text. Finally, we describe the generation procedure.

2.1 Requirements

The natural language interface for Query Tool must fulfil four basic requirements:

• the query must be presented as English text;

• the operations must be realized as insertion, deletion or substitution of portions
of the text;

• there must be an orderly association between the query elements and some
portions of the text;

• the execution of the query operations should affect the text minimally.

In the following, we will discuss each of these requirements in more detail. The first
requirement is that the interface must present the query to the user as English text.
For example, the query depicted in illustration 7, associated with the formula [1],
could be presented as [2].

[1] Man ⊓ ∃hasParent. (Singer)

[2] I am looking for a man. One of his parents is a singer.

The second requirement is that the interface must realize all query operations as
addition, deletion or substitution of portions of the text. For example, substituting

13

Illustration 7: Query Tool query for Man ⊓ ∃parent . (Singer)

Man Singer
hasParent

Singer with Woman in [1] could be realized as substituting a singer with a woman in [2].
Adding ∃spouse.(Actor) to the node labeled with Man could be realized as adding His

spouse is an actress right before One of his parents is a singer. Query Tool allows to extend the
query with arguments chosen among a set of available values. The interface should
present the available choices as natural language expressions, as fragments of text.

The third requirement is, the interface must associate portions of the text with edge
labels and node labels of the query, and it must order these portions according to the
order of the associated labels in the query. This means that the addition of a label to a
node must result in the insertion of text after the text associated with the other labels
of the node, and before the text representing the labels of the edges leaving the node.
The addition of an edge leaving a node must result in the insertion of text after the
text representing the labels of the node, and before the text representing the labels
of the other edges leaving the node. For example, adding Actor to the node labeled
with Man could change [2] into [3]. Adding ∃spouse.(Actor) to the node labeled with
Man could change [2] into [4].

[3] I am looking for a man. He is an actor. One of his parents is a singer.

[4] I am looking for a man. His spouse is an actress. One of his parents is a singer.

In addition to the order of the node labels of a node, and in addition to the order of
the edges leaving a node, the interface must also follow the order of the nodes
obtained visiting the query breadth-first. Let us elaborate a bit on this point. Given a
query, the interface must produce an English text as the concatenation of a sequence
of n strings t 0 , t 1, ... t n where n is the number of labels of the query. Each of these
strings must be associated with exactly one label of the query, and vice versa, i.e.
there must be an invertible function f associating each label of the query to one of the
strings in the sequence. In addition, f must be such that the sequence f (t 0), f (t 1), ... f (t n)
is the sequence of labels obtained visiting the query (which is a directed ordered n-
ary tree) breadth-first. Breadth-first means starting from the root, and listing, for
each node, the label of the edge entering the node, if any, followed by all the labels of
the node, in their order.

For example, the Query Tool query for [5], depicted in illustration 8, contains eight
labels. Query Tool's query model specifies that the labels and the outgoing edges of a
node are ordered. For the sake of this example, we can assume that the ordering is
the one given by the illustration lay out – upper labels before lower labels. With this
information, we can calculate the sequence of labels for the query, which is [6].

[5] Singer ⊓ Woman ⊓ ∃hasParent. (Actor) ⊓ ∃spouse.(Man ⊓ ∃hasParent.
(Singer))

14

Illustration 8: Query Tool query for Singer ⊓ Woman ⊓ ∃hasParent. (Actor) ⊓ ∃spouse.(Man
⊓ ∃hasParent. (Singer))

hasParent
ActorWoman

Singer

Man

spouse

Singer

hasParent

2.1 - Requirements

[6] [Singer, Woman, hasParent, Actor, spouse, Man, hasParent, Singer]

[7] I am looking for a singer. She is a woman, one of her parents is an actor, her spouse is a man. One of

the man's parents is a singer.

The interface could represent the query using the text [7], the concatenation of the
eight strings listed in the box below, which f maps orderly into the labels listed in [6].

The fourth requirement is that the query
operations should affect the text the least
possible. In particular, they should not affect
portions of text which are not directly involved
in the operation. They should modify the text in
a discreet way: for example, the addition of
∃spouse.(Actor) as in the previous example
should result in the insertion of His spouse is an

actress with no changes to the surrounding text.

Ideally, the interface would realize the
replacement or deletion of part of the query as
the replacement or deletion of all and only the
portions of text associated with the labels

contained in that part of the query. We believe that if that was the case, the user
would get quickly uncomfortable with the behaviour of the interface. The text
representing the query would sound extremely unnatural, for no anaphoric reference
could appear in the text. Anaphoric references such as She, her and the man in [7] are
sensitive to the replacement of the elements of the text they refer to. Replacing a man

with a woman in [7] would cause One of the man's parents to become One of the woman's parents.
Anaphoric references would not be the only problem: finite verbs, like “is”, must
agree with the number of their subjects, and therefore are affected by the same
issue. For these reasons, there is a conflict between between the linearity of the
behaviour of the interface and the range of linguistic features available to produce
the text, which in turns impacts the text readability.

Last but not least, one more requirement which we did not mention at the beginning.
The interface should be easily configurable to work with any KB, and software
developers with basic or no linguistic knowledge should be able to configure the
interface to query KB in any domain.

2.2 Previous Art

The requirements we just presented describe a problem that we may frame into the
literature in at least three different ways, not mutually-exclusive:

• a natural language interface to a database

• a natural language generator

• a controlled natural language editor

Each of these characterizations captures some of the features our system. Let us
briefly see how.

“A natural language interface to a database (NLI) is a system that
allows the user to access information stored in a database by typing

15

• I am looking for a singer.

• She is a woman,

• one of her parents is

• an actor,

• her spouse is

• a man.

• One of the man's parents

• is a singer.

requests expressed in some natural language.” [Androutsopoulos et al.,
1995]

The definition fits almost perfectly. Our system is not the typical NLI in that the user
cannot type freely: instead, the user may only choose among the portions of text
proposed by the system. [Androutsopoulos et al., 1995] also report of a system,
NLMenu [Tennant et al. 1983], later evolved into LingoLogic [Thompson et al. 2005]
which is similar to ours in this respect. NLMenu is a menu-based natural language
understanding system. Rather than requiring the user to type his input to the system,
input to NLMenu is made by selecting items from a set of dynamically changing
menus. Active menus and items are determined by a predictive left-corner parser that
accesses a semantic grammar and lexicon. (Adapted from [Tennant et al. 1983].)

The main difference between our NLI and NLMenu is that our NLI relies on the
capabilities of KBs instead of using a semantic grammar to prevent the user from
composing unsatisfiable queries. Our approach has two benefits over semantic
grammars.

The first advantage is that our system is more effective than semantic grammars in
preventing the user to formulate queries that lead to no results. For each element of
the query, the set of extensions which can be attached to it depends on the whole
query, and not just on the element. By contrast, the semantic grammar of NLMenu is
context-free: this means that, for example, the query “a car” could be extended
specifying “with an electric engine” and later with "running on diesel". Our system
would forbid the second extension on the ground of logical incompatibility.

The second advantage is that our system requires less effort to be configured to
interface a new database. NLMenu and other NLIs based on semantic grammars
need a dedicated semantic grammar for each database, and each such grammar is to
be hand-crafted. Our system instead relies on the ontologies which have been
developed for these KB systems.

“Natural language generation systems combine knowledge about
language and the application domain to automatically produce
documents, reports, explanations, help messages, and other kinds of
texts.” [Reiter & Dale, 1997]

The first and the third of the four requirements listed in the previous chapter
describe a NLG system. The KB provides the interface with knowledge about the
application domain, in form of an ontology. The interface may combine this
knowledge with user-input linguistic resources and with a hard-coded language
model in order to transform Query Tool queries into text. However, our system also
allows to edit the generated text, to insert, replace or remove portions of it. This kind
of activity is slightly out of the scope of classic NLG literature, which focuses only on
producing the text. Also, an important subtask of NLG, called text planning, is not a
concern for our system, as the content to be represented and the order of its
representation are fixed. As a system generating text from ontologies, the system we
want to build is very similar to NaturalOWL [Androutsopoulos et al. 2008].
NaturalOWL generates English and Greek descriptions of individuals (e.g. items on
sale or museum exhibits) and classes (e.g. types of exhibits) from OWL DL ontologies
annotated with suitable linguistic and user modeling information. (Adapted from
[Androutsopoulos et al. 2008].)

“A computer-processable controlled natural language is a well-defined
subset of a natural language that can be translated unambiguously into

16

2.2 - Previous Art

a formal target language (and optionally vice versa).” (Rolf Schwitter,
quoted from a draft of the CNL Manifesto, 2009)

A controlled natural language (CNL) is a language engineered to be read and written
almost like a natural language. The lexicon and syntax of a CNL is restricted with
respect to the natural language it is modeled on, either prohibiting certain words or
syntactic constructs, or by allowing only selected ones. The focus of the current
research in this field are languages with formal syntax and semantics, free of
ambiguity, that can map each sentence of the language into a single logical formula
coherent with the meaning of the sentence. An editor for such a controlled natural
language can be used as a KB authoring system [Bernstein & Kaufmann 2006] but
also as a query interface [Bernstein et al. 2005].

An editor of this kind has many of the features of our system. Like in NLI and NLG
systems, the medium of representation of the query is text in a natural language.
Unlike NLG systems, the text can be edited, but unlike a NLI, the text cannot be
edited freely, but only according to the rules of the CNL. Our system differs from CNL
editors such as the one described in [Kuhn 2009]6 or the one developed for the
Grammatical Framework [Ranta 2004]7 in one point. In these systems the syntax,
together with the lexicon, determines the possible expansion of a text. For example,
at the beginning of a sentence, the user has the option start with a definite article, the,
or with an indefinite one, a. In our system, instead, the semantics determines the
possible expansions of the text, as the operations available through menus operate
directly at the semantic level. The Query Tool query model is so simple that the user
can control it relatively easily with buttons and menus. Should it become more
complex, for example allowing disjunction, negation, or cycles in the query graph,
then it may be more convenient for the user to edit the text at the syntactic level
instead of browsing a forest of menus to pick the desired function.

One challenge in the design of controlled natural language lies in keeping its syntax
unambiguous but still user-friendly. This challenge does not appear in Query Tool
because the system does not need to interpret the natural language representation of
the query, so no ambiguity needs to be resolved.

In addition to the systems described above, there is another system in the literature
sharing many features with ours: WYSIWYM [Power et al. 1998], also known as
Conceptual Authoring. This system does not fall in any of the previous
characterizations, but it does use NLG technologies and an interaction model similar
to that of NLMenu. WYSIWYM editing (acronym for “what you see is what you
mean”) is a knowledge editing method in which text in natural language is the
medium to view and edit knowledge. The text employed to this purpose is generated
by the system. The user can edit the text only by clicking on "anchors" in the text and
choosing from a list of semantic alternatives, presented as expressions in natural
language. Each choice directly updates the KB, from which a new text is then
generated. (Adapted from [Power et al. 1998].)

One difference between WYSIWYM and our system is that the first knowledge is
represented using domain-specific object-oriented models, while ours relies on
description logic, with the benefit that the list of semantic alternatives is calculated
using production-level DL reasoners. Adapting WYSIWYM to a new domain requires
adapting the domain-specific model and, following this model, the associated
linguistic resources (templates). Our system relies on existing DL-based formalisms

6 E.g. http://attempto.ifi.uzh.ch/webapps/acewikigeo/
7 E.g. http://www.cs.chalmers.se/~aarne/GF/demos/index.html

17

for domain knowledge representations. This allows to reuse existing knowledge
schemas (ontologies) and possibly NL technologies designed for them.

WYSIWYM has been used also as a natural language interface to databases [Hallet
et al. 2007], but WYSIWYG originates as a tool for editing machine-processable
knowledge and high-quality text representing that knowledge. Our system is a tool
for editing a query in a very simple query language powered by DL reasoners. The
text produced by our system will on average be not longer than a paragraph
describing a small set of related elements. A text produced with WYSIWYM will
usually be much longer and much more structured, where the structure of the
generated text may vary greatly across different domains. Instructions for operating
a washing machine cannot be generated in the same way as descriptions of museum
exhibits. For this reason, the complexity of the generation facilities used in
WYSIWYM is on another level with respect to the NLG system Query Tool needs.

Query Tool blends selected features of all the systems presented above, namely
menu-based query editing, natural language generation to represent the query being
edited and the natural language expressions which can be used to edit it. The novelty
of the approach is the DL-based query representation and the DL-reasoning used to
restrict the elements which can be used to edit the query.

The work described in this thesis is not the first attempt at designing a natural
language interface for Query Tool. The first version of the tool adopted a simple
solution based on concatenation of canned text. The second solution [Dongilli 2008]
relied on KMPL, a grammar development environment working with systemic
functional grammars. In a subsequent stage, we developed the prototype of a NLG
system [Trevisan 2008] following the documentation of NaturalOWL
[Androutsopoulos et al. 2008]. A different project [Perez 2009] investigated on the
syntactic features the NLG system could use in the generated text, with the aim of
defining a controlled natural language simple to support and expressive enough to be
used with real-world ontologies. The NLG system we are going to describe relies on
many ideas and insights introduced in the project mentioned above.

2.3 Language

In this section we describe the syntactic and lexical features we selected to support
in our NLG system. This selection follows from an analysis of the requirements and
an analysis of a corpus of ontologies.

2.3.1 Design goals

Two goals drive the choice of the features to include in the generation language:

• Expressiveness – the language should be flexible enough to describe any query
in any domain, within the limits of the underlying query language

• Readability – the language should permit the creation of text that humans would
enjoy reading

In the following, we will review the elements which contribute to define the meaning
of the text to be produced.

18

2.3 - Language

Introducing the query

The text our system generates describes the information need of the user. Query
Tool always presents an initial query at the beginning of each interaction, and this
initial query, if represented without any contextual information, like in [8], may be
obscure for users accustomed to type their query in an empty text box.

[8] A thing.

We could use expressions like [9-12] to contextualize the query itself. Among those,
the formulation which most faithfully corresponds to the system's interpretation of
the user's input is [11], but we chose instead to rely on the simpler [12].

[9] Please tell me about ...

[10] I am searching for ...

[11] Please show me a list of all the elements that, according to the information you possess, are ...

[12] I am looking for ...

As an aside, we adopted [8] as the representation of the concept Top, which is the
concept subsuming all other concepts. However, depending on the target ontology, a
more appropriate expression could be [13].

[13] A thing or a person.

Representing a query

A query in Query Tool is the description of a set of features which identify the set of
objects exhibiting them. For example, the query student(x) identifies the set of all
objects which exhibit the feature of being a student. Queries in Query Tool are
recursive structures: every node is the root of a query, which is a sub-query of the
query rooted at the parent of the node. Each of these sub-queries is, in turn, a
description of a set of features which identify the set of objects exhibiting them. In a
similar way, humans use natural language to identify a set of objects by listing the
features that characterize them. There are many ways to describe such a set of
elements in natural language, but all of them rely on a noun phrase. We could
represent [14] using any of [15-19].

[14] student(x) ⋀ actor(x)

[15] I am looking for students who are also actors.

[16] I am looking for a student who is also an actor.

[17] I am looking for all the students who are also actors.

[18] I am looking for a list of students who are also actors.

[19] I am looking for some students who are also actors.

Plural expressions like [15, 17, 18, 19] are more accurate considering that the
system will return the list of qualifying elements. However, [17] cannot be split into
two separate sentences, and the other plural forms become verbose when split (see
for example [24]). Instead of using singular forms in sub-queries and plural forms in
the main query, we chose to use singular forms whenever possible. This reduces the
complexity of the generation and reduces the amount of linguistic information
necessary to port the application to a new domain. The downside is that sometimes

19

plural form is more adequate than singular form. For example, [15] sounds better
than [16].

Representing relations

When an edge labeled with the relation R leaves a node N and enters a node M, it
means that for each element x in the set of elements described by the query rooted in
N, there exists at least one element y among those described by the query rooted in
M, such that R(x, y) . For example, [20] describes the set of all teachers who have a
child who is a student. A faithful representation of [20] would be any of [21-25]. In
this case it is not handy to use a plural expression to represent the query rooted in
the node associated with the variable x. The reason is, splitting the sentence requires
to introduce an “each of” expression, which in turn introduces the singular form.
Compare [24] with [25]: [24] is more coherent with the fact that the system will
return a list of teachers, but also more wordy.

[20] teacher(y) ⋀ mother-of(y, x) ⋀ student(x)

[21] Please show me the list of all elements such that each element is a teacher and it is the mother of at

least one element who is a student.

[22] I am looking for the teachers who are mothers of at least one student.

[23] I am looking for the teachers who are mothers of some students.

[24] I am looking for some teachers. Each of them is the mother of at least one student.

[25] I am looking for a teacher. It is the mother of at least one student.

Since every node is associated with a sub-query, and each sub-query is represented
by a noun phrase, the representation of an edge will always connect two noun
phrases. It is in general easy for humans to produce a sentence out of a triple (node,
edge, node), but the process cannot easily be automatized, because the natural
language expressions which can be used to represent a relation do not fit into a
single syntactic category. A relation may be represented by a proposition [26], by an
adjective [27], by a noun [28], by a verb [29], or even by a more complex expression
[30].

[26] I am looking for a flat opposite a park.

[27] I am looking for a food typical of a country.

[28] I am looking for a woman mother of a teacher.

[29] I am looking for a shop selling shirts.

[30] I am looking for a person who has been co-authoring a
book with a

Nobel laureate.

While in principle one could need more than one sentence to represent a relation,
this is rarely the case, and most triples (node, edge, node) can be described with a
single clause.

Representing concepts

When a node X is labeled with the concept C , it means that each element x in the set
defined by the query rooted in X possesses the feature represented by C. While in
principle even a whole clause could be necessary to represent a concept, like in [34],

20

2.3 - Language

most concepts can be represented using nouns [31] or adjectives [32], or noun
phrases [33].

[31] I am looking for a limousine.

[32] I am looking for a blue car.

[33] I am looking for a pick-up truck with air
conditioning.

[34] I am looking for a ship destroyed during WWII.

Again, while in principle one could need more than one sentence to represent a
concept, we assume that a noun phrase will be adequate in most cases.

Readability

The requirements for the NLI specify that each label of the query should be
associated with a textual element, and they also specify the order of these elements
in the text. Therefore, it is not possible to improve the readability of the text by re-
ordering its elements. However, there are other dimension of the language which
affect the readability of the text.

One dimension is the lexical choice. The same concept may be represented using
different expressions in different contexts. We did not work on this feature, as it
would require more effort from the knowledge engineers, and it would be hard to
support it without targeting a specific domain. Another dimension is ellipsis, that is,
the possibility of removing elements of text which are redundant for its
comprehension. Another dimension is the choice of referents in anaphoric references.

The language for the generation is a fragment of English we crafted by selecting
syntactic and lexical features according to the observations given in the previous
section. In the following we describe the design choices and the resulting language,
syntax and lexicon.

2.3.2 Syntax

The syntax of the generated language is defined by the following context free
grammar, described in [35-48] and [51-53].

[35] λE.LIST := E | E CONJ E | COMMALIST<E> CONJ E

[36] λE.COMMALIST := E | E COMMA COMMALIST<E>

[37] COMMA := ,

[38] DOT := .

[39] CONJ := and

The fist two rules are parametrized on a syntactic category. They will be used in the
following rules to define lists of nouns, adjectives, adverbs and other categories.

[40] TEXT := S | S TEXT

[41] S := LIST<C> DOT

[42] C := NP VP

21

This rules above simply specify how a text is composed out of sentences (S), and how
sentences are composed out of a list of clauses (LIST<C>) followed by a dot (DOT).
The constituents of a clause are a noun phrase (NP) and a verb phrase (VP).

[43] NP := PRONOUN (OF NP) | (DET) (LIST<ADJ>) LIST<NOUN> (OF NP)

[44] DET := a | the | some | its

[45] ADJ := OPENADJ

[46] OF := of

[47] PRONOUN := it | some | one

[48] NOUN := thing | OPENNOUN

[49] the Black Pearl cursed crew

[50] a rubber chicken with a pulley in the middle

A noun phrase can either be a pronoun or a sequence of common nouns preceded by
a sequence of adjectives, introduced by an optional determiner. Any noun phrase may
be followed by another noun phrase introduced by the preposition of. This allows for
reasonably complex noun phrases describing a set of concepts, but it does not allow
to handle more complex noun phrases like [49] or [50]. However, we will later see
that these complex noun phrases can still be inserted verbatim in the lexicon, as
common nouns: they will be handled by the system as canned text.

[51] VP := VERB OPENBODY (PREP) NP

[52] VERB := have | be | look | OPENVERB

[53] PREP := OF | for | by | in | with | . . .

A verb phrase always starts with a verb and always ends with a noun phrase,
optionally introduced by a preposition. In between, the grammar allows arbitrary
strings, which are not further processed during generation. Note that the grammar
does not admit sentences like [54], even though sentences like these could be an
elegant text describing a node labeled with two concepts, black and tea . In such
cases, the generation system will have to use a formulation like [55].

[54] The tea is black.

[55] The tea is a black thing.

As these rules show, the grammar already defines a minimal lexicon. We will see in
the next section that the lexicon can be extended to meet the specific application
needs. Each user-defined lexical element is categorized either as an OPENVERB , an
OPENNOUN , or an OPENADJ , depending whether it is a verb, a noun, or an adjective.
A fourth category, OPENBODY , can be used to insert arbitrary strings within a verb
phrase. Typically, they will be additional complements and/or adverbs.

Altogether these rules define a pretty simple fragment of English, sophisticated
enough to handle adjectives properly, and to allow anaphora. Anaphora can be
realized using definite articles in place of indefinite ones, or using pronouns instead
of nouns. The context-free grammar does not make it explicit, but verbs and noun
phrases can be elided. We will discuss ellipsis in the chapter dedicated to natural
language generation.

The language uses agreement features to ensure, for example, that pronouns match
the noun phrase they refer to, and that the verb form matches the subject of the

22

2.3 - Language

clause. Agreement features for noun phrase elements are gender, number and
person. Because of the structure of the Query Tool queries, anaphoric references can
only appear in subject position. For this reason, pronouns do not need case marking
features, as their case will always be nominative.

2.3.3 Lexicon

The lexicon of the language is the set of words that can be used to write the text.
These words are also known as lexemes. The set of lexemes of our language is not
fixed: should new words become necessary, they can be added to the set of available
words. The default lexicon of our language is essentially empty. When the knowledge
engineers configure the Query Tool to access a particular ontology, they can extend
the lexicon with new lexemes. To do so, they can create and load a list of lexical
entries. Each lexical entry defines a lexeme by specifying some information regarding
how the word changes in different contexts, i.e. given different values of its
agreement features.

The lexemes are classified either as closed-class or open-class lexemes. Closed-class
lexemes are prepositions, determiners, conjunctions and pronouns. Open-class
elements are nouns, adjectives and verbs. The set of closed-class lexemes available is
fixed, whereas the set of open-class elements can be extended.

One of the goals of this project is to make life easier for knowledge engineers who
want to use Query Tool with their KB. In order to port the GUI to a new interface, the
engineers must create new linguistic resources such as a new lexicon and a map from
elements of the ontology to lexical elements. This process may be boring and time-
consuming, and it could also be non-trivial when the linguistic information needed by
the system is complex. For the benefit of the knowledge engineers and for the benefit
of the linguistic resource generators, which we'll discuss later on in this thesis, our
language is designed to work with minimal linguistic information and ideally with
whatever kind of information is available. To this purpose, the Query Tool NLI accepts
partially-specified lexical entries. This choice has an impact on the language itself, as
some constructs are not available to the generator when some lexical information is
missing.

Verbs

In order to support a wide range of verb tenses and moods, the lexical entries for the
verbs should be rich in detail: they should include the base form of the verb, the past
tense, the past participle and possibly other information. Our lexicon contains verb
entries of two kinds: totally-specified verbs and partially-specified verbs. Each verb of
the first kind must specify the base form (e.g. fly), the past tense (e.g. flew)†, the
present participle (e.g. flying), the past participle (e.g. flown) and the simple present
active third person singular (e.g. flies). Each verb of the second kind must specify a
single form introduced by should (e.g. should have been flying), together with optional†

inflection information, i.e. mood, voice, tense and aspect.

The first kind of lexical entry is suitable for use with any form of verb. The second
kind of lexical entry is basically canned text, which can be used in any context a verb
is needed. The optional inflection information can be used to prevent the generator to
use the lexical entry to produce a form of the verb for which there is no support. The
choice of verb forms based on should was suggested in [Perez 2009] as a solution to

† Feature not implemented yet in the lexicon import/export module.

23

context-independent realization of verbs. This feature addresses the need for a simple
and flexible tool which makes it easier to port the language to a different domain.
These verb forms are not sensitive to the person and number of the subject, and
therefore need no further treatment. More information regarding the mood and the
voice is however useful in order to treat ellipsis properly.

Nouns

Each noun lexical entry specifies the singular or the plural form of the noun, or both.
This allows to use nouns which do not have both forms, or nouns for which only one
form is known. Each noun entry must also specify whether it is countable, i.e.
whether it can be introduced by an indefinite article. In case it is, the entry must
specify whether a instead of an should be used. Finally, each noun entry must specify
one gender among the possible values (neuter, feminine , mascul ine).

While verb lexical entries come in two flavours, one to support detailed information
and the other one to support partially specified information, the noun lexical entries
as we defined them support also canned-text nouns. As long as the user provides all
the necessary information to treat them properly, i.e. information about the
determiners which can be used and about the gender, a noun lexical entry can
support any range of noun phrases, from composite nouns like [56] to noun phrases
like [57].

[56] Table tennis

[57] Great Wyrm's holy water sprinkler of the blessed hammer of destiny

Adjectives

Each adjective entry specifies the adjective itself, and whether a instead of an should
be used as an indefinite article in noun phrases where the adjective comes right after
the article.

2.4 Templates

The Query Tool natural language interface is portable, i.e. it is not crafted to target
any specific knowledge domain. Instead, it is designed to edit queries over any target
KB. Before it can be used to query a new KB, it must be provided with a lexicon
including all the nouns, verbs and adjectives needed to generate the natural language
representation of queries.

However, lexical information alone is not enough to generate text describing queries,
because the connection between the concepts and relations in the KB and the lexicon
is missing. The system needs information about how each concept and each relation
of the ontology mentioned in the query contributes to the syntactic structure and the
lexical elements of the generated text.

As explained in §2.3.1, every concept label of a node contributes an adjective or a
noun to the noun phrase associated with the node. Every label of an edge contributes
a whole clause. The subject of the clause is the noun phrase associated with the node
the edge is leaving. The noun phrase associated with the destination node, instead,
may become the direct object of the clause, an indirect object, or another component
of the verb phrase of the clause.

24

2.4 - Templates

2.4.1 Concept templates

We named “concept template” the data structure which encodes the contribution of
a single concept label to a noun phrase. We designed two kinds of concept templates:
noun-based concept templates and adjective-based concept templates.

• A noun-based concept template consists of a reference to a noun lexeme and a
value for its number (singular or plural).

• An adjective-based concept template consists simply of a reference to an
adjective lexeme. This template is to be used when a concept contributes an
adjective modifying a noun. (E.g. a concept like yel low.)

These templates allow to associate concepts only with simple noun phrases, even if
our grammar would allow more complex ones. While a more powerful set of concept
templates could be useful for real applications, we didn't develop the system further
in this direction. In order to create a more complex noun-based template, it is
possible to craft a canned-text noun lexical entry that corresponds to the complex
noun phrase to be associated with the concept, and use a simple noun-based concept
template referring to that lexical entry.

2.4.2 Relation templates

We named “relation template” the data structure which encodes the contribution of
a single relation label to a clause. Each relation template contributes the stub of a
clause: the clause representing an edge of the query labeled with the relation
associated with the relation template. We designed two kinds of relation templates:
noun-based relation templates and verb-based relation templates.

The data structure of a verb-based relation template follows the structure of the
clause first explained in §2.3.2. A verb-based template consists of:

• A reference to a verb lexeme. This is the main verb of the contributed clause.

• A choice of values for its voice, its tense and its aspect. These are the
coordinates needed to realize the referred verb lexeme into a finite verb form.

• A boolean value flagging whether it is to be introduced by should.

• A string, which we named the body of the template. As explained in §2.3.2, this
string allows for arbitrary canned text to be inserted right after the main verb of
the clause. This string may be empty, and will typically contain adverbs, a direct
objects, and/or complements.

• An optional preposition.

Collectively, the information stored in a verb-based relation template identifies a
finite verb form, optionally followed by an arbitrary string and/or a preposition. The
content of the arbitrary string is arbitrary in the sense that no grammaticality check
is performed on it. It is up to the knowledge engineers who craft the template to
avoid using strings that would not make sense combined with the rest of the clause.

25

Illustration 9: A fragment of a query

living_with personwoman

Like all relation templates, a verb-based relation template contributes the stub of a
clause. The intended subject of this clause is the noun phrase associated with the
node the edge the relation is labeling is leaving. Illustration 9 displays a fragment of
a query consisting of two nodes connected by an edge. The edge is labeled with the
relation l iv ing_with , it is leaving the node labeled with the concept woman , and it is
entering the node labeled with the concept person . Let us suppose that the relation
l iv ing_with is mapped to the verb-based relation template displayed in table 1. The
clause associated with this fragment of query is [58], where the subject is the noun
phrase associated with the node labeled with woman .

[58] The woman should be living with a person.

A verb-based template is flexible enough to handle almost all the ways a relation can
contribute to a clause representing the connection between two nodes. In §2.3.1, we
presented a sample of textual expressions representing relations, which we repeat
here for convenience.

[59] I am looking for a flat opposite a park.

[60] I am looking for a food typical of a country.

[61] I am looking for a woman mother of a teacher.

[62] I am looking for a shop selling shirts.

[63] I am looking for a person who has been co-authoring a
book with a

Nobel laureate.

26

Ontology element Associated template

l iv ing_with verb base live

3rd person present lives

simple past lived

present participle living

past participle lived

voice act ive

tense present

aspect progressive

should VERO

body -

preposition with

Table 1: Fragment of a template map containing
the template associated with the relation l iv ing_with

2.4 - Templates

The following sentences, [64-68] show how the same expressions can be
accommodated to fit into a verb-based template. In each of the following sentences,
the contribution of the relation is highlighted with a bold typeface, while the
underlined segment of text is the body of the verb-based relation template associated
with the relation.

[64] The flat should be opposite a park.

[65] The food should be typical of a country.

[66] The woman should be the mother of a teacher.

[67] The shop should be selling shirts.

[68] The person should have been co-authoring a
book with a

Nobel laureate.

However, there is a class of expressions describing relations which cannot be
modeled using the verb-based relation template as we defined it. Examples of such
expressions are [69, 70, 71].

[69] The mother of the teacher should be a woman.

[70] The official language of the country should be a Semitic language.

[71] A branch of the company should be located in an African country.

In these expressions, the contribution of the relation is highlighted with a bold
typeface: in [69] the originating relation could be has_mother , in [70] it could be
off ic ia l_ language , in [71] it could be has_branch . In all of them the subject of the
clause is not the noun phrase associated with the node the edge is leaving. Instead,
the subject is a complex noun phrase which contains, in one of its branches, the noun
phrase associated with that node.

Note that while [71] can be reformulated to fit the format of a verb-based relation
template, like in [72], there is no clean way to reformulate [69] and [70] to the same
end.

[72] The company should have a branch located in an African country.

That there is a difference between [69, 70] and [71]: in the first two, the noun
contributed by the relation is introduced by a definite article, the; [71] instead is
introduced by an indefinite article, a. This difference corresponds to the relation
being functional (one is not expected to have more than one mother) or not (a
company may have more than one branch).

In order to handle this class of relations, we designed a different kind of relation
templates, which we named noun-based relation templates. Noun-based relation
templates are similar to noun-based concept templates, in that they also contain a
reference to the lexical entry of a noun, and a value for its number (singular or plural).
However, the contribution of a noun-based relation template is the stub of a clause. In
this clause, the verb is a simple present indicative should be. The subject of the clause is
the main contribution of the relation: it is a complex noun phrase built around the
noun designated by the template. The noun phrase associated with the node the edge
is leaving still plays a relation in the clause: it is a child of the complex noun phrase,
introduced by the proposition of.

In addition to the information already mentioned, each noun-based relation template
contains a boolean flag used to specify whether the relation is functional or not. In

27

case the relation is functional, the subject of the clause contributed by the noun-
based relation template will be introduced by the definite article the, like in [73, 74,
75].

[73] The mother of the actor should be ...

[74] The official language of the country should be ...

[75] The eye of the Cyclops should be ...

In case the relation is not functional, the subject of the clause is depends on whether
the noun-based template is plural or not, and whether the noun specified in it is
uncountable or not. If the noun specified in the noun-based template is countable, the
subject is the noun itself, introduced by an indefinite article, like in [76, 77, 78]

[76] A mother of the actor should be ...

[77] An official language of the country should be ...

28

Ontology element Associated template

ship noun singular ship

plural -

countable VERO

indefinite article a

gender female

number singular

produced_in_col labor
at ion_with

verb base -

3rd person present -

simple past -

present participle -

past participle produced

voice passive

tense present

aspect Simple

should FALSO

body in collaboration

preposition with

Table 2: Template map containing mappings for a concept and for a relation

2.4 - Templates

[78] An eye of the pirate should be ...

If the noun is uncountable, the subject will be an indefinite pronoun, some, followed
by the original noun introduced by of, like in [79, 80, 81].

[79] Some of the knowledge of the system is ... (inferred, domain-specific)

[80] Some of the music of the album is ... (classical, jazz, rock)

[81] Some of the software of the company is ... (proprietary, shareware, open-source)

If the noun-based template specifies the noun to be plural, the subject will be an
indefinite pronoun, one, followed by the original noun introduced by of, like in [82, 83,
84].

[82] One of the mothers of the actor should be ...

[83] One of the official languages of the country should be ...

[84] One of the eyes of the pirate should be ...

2.4.3 Template maps

In our system, the gap between the ontology and the lexicon is filled by a map which
associates each concept to a concept template, and each relation to a relation
template. We will refer to this map simply as “the template map”.

Table 2 illustrates a fragment of a sample template map. The sample contains the
mapping of two ontology elements: a concept and a relation. The templates contain
references to lexical elements, but the neither the templates nor the template map
contain any lexical information. In the table, the referenced elements are the verb
and the noun. The information contained in the referenced elements is shown for
illustration purposes, highlighted with a dark background.

2.5 Generation

Our work on this part of the system is essentially a revision and an enhancement of
the natural language generator documented in [Trevisan 2009]. There, we described
a simple generation system based on templates similar to the ones we presented in
the previous section, and generating a language similar to the one presented in
§2.3.2.

For this description we adopted [Reiter & Dale 200] as the reference architectural
model. The procedure to generate text from the input is divided into three modules,
each module carrying out orderly a number of different tasks.

• The document planning module performs the content determination and the
document structuring task.

• The microplanning module performs the lexicalization, the referring expression
generation, and the aggregation.

• The surface realization module performs the linguistic realization and the
structure realization.

In the following, we will explain and discuss each of these modules and tasks as they
are realized in our system.

29

2.5.1 Document Planning

In general, the document planning module of a NLG system selects the information
to be conveyed in the generated text (content determination), its order and its
structure (document structuring). The output of the module is a document plan,
consisting in a data structure containing messages, the atomic elements of
information.

In our system, the input to this module is a Query Tool query as we defined it in
§1.1.2 with the additional constraint that each node must have at least one label.
When the input query contains a node with no labels, a new label referring to the
concept Top is inserted at this stage of the process.

The requirements for the Query Tool GUI specify the pieces of information to be
conveyed in the text and their presentation order in function of the input query. In
our system, we identify two kinds of messages: the information provided by a node
label and the information provided by an edge label. According to the requirements
all labels should contribute to the meaning of the generated text, in the order they
would appear by traversing the tree in pre-order (see §2.1).

The requirements do not enforce any specific structure for the document. Our
observation is that the query is declarative in nature: our system only needs to
develop it into a series of statements that elaborate the declared information need.
Many NLG systems use Rhetorical Structure Theory to specify the structure of the
text to be produced. Using the terms of the RST framework, the structure of our text
would be a chain of elaborations of the initial statement which introducing the query.

This analysis of the document planning problem justifies our choice for the data
structure for the document plan: a list of messages, each message being a node label
or an edge label. To produce a document plan, the document planner simply traverses
the query in a pre-order: starting from the root, each node is processed first
collecting all the node labels in their order, and for each outgoing edge, in the order
they appear, the edge label is collected and the destination node is visited recursively.

2.5.2 Microplanning

In the architecture described in [Reiter & Dale 2000], the microplanning module of
the NLG system fills the gap between the document plan, which specifies the
messages to be conveyed and their order, and the text specification, which specifies
in full detail the syntactic structure of the final text including lexical information.
Another module, the surface realizer, will transform the text specification into proper
plain text.

In our generation pipeline, the microplanning process is the most complex, because
at this point all the information which so far was stored on separate layers blends
into a single structure. This process is subdivided into three tasks: the lexicalization,
the aggregation and referring expressions generation. In our system, the tasks are
performed in this order.

2.5.3 Lexicalization

The lexicalization procedure builds the bulk of the text specification, along with
some auxiliary data structures needed for the subsequent microplanning tasks.

30

2.5 - Generation

The procedure begins with the creation of an empty text specification. The text
specification is a tree of abstract syntactic specifications. Abstract syntactic
specifications are the NLG equivalent of syntactic constituents in Feature Grammars.
For example, the abstract specification (AS for short) of a common noun consists of a
reference to a common noun lexeme plus a feature structure containing information
such as the number, the person, the case marking. Given an AS of any syntactic
constituent, the surface realizer can compute its surface form straightforwardly.

The procedure also creates an empty semantic map. The map will store the
association between syntactic elements of the text specification and labels of the
query. The procedure also creates a map between noun phrases and nodes of the
query. This map will be later used in the referring expression generation and
aggregation tasks.

The actual processing of the document plan begins by associating two noun phrases
(NP) to each node of the query: the introductory NP and the referring NP. We called
this sub-task “lexicalization of a node”. After all nodes have been lexicalized, the
whole tree is lexicalized, filling the text specification with clauses built by
instantiating the templates associated with the elements of the document plan. The
lexicalization of nodes and the lexicalization of the tree share a common subtask,
which we discuss here shortly before describing the two lexicalization sub-tasks.

Template instantiation

The template instantiation procedure produces a syntactic element using a template
as a blueprint. Depending on the kind of template, the syntactic element is different.
For concept templates, the output is a noun phrase. For relation templates, the
output is a verb phrase missing a noun phrase.

When the input is a noun-based concept template, the output noun phrase is
composed of a determiner AS and a common noun AS. The determiner is a/an when
the grammatical number specified in the template is singular and the lexeme is
countable; otherwise, the determiner is some. The common noun is an instance of the
common noun lexeme specified in the template, with the same grammatical number
specified in the template.

When the input is an adjective-based concept template, the output noun phrase is
composed of a determiner AS, a common noun AS and an adjective AS. The
determiner is always a/an, the common noun is an instance of the lexeme th ing , with
singular grammatical number. The adjective is an instance of the adjective lexeme
specified in the template.

When the input is a noun-based relation template, the output is an incomplete noun
phrase. It may be composed either of a determiner AS, a common noun AS, a
preposition AS, like in [85, 86]. Otherwise it may be composed of a pronoun AS and
an incomplete propositional phrase AS composed of a preposition AS, a determiner
AS, a common noun AS, and another preposition AS, like in [87, 88]. The first
configuration is returned when the common noun specified in the template is singular
and countable; otherwise, the second configuration is returned.

The first determiner is either definite or indefinite when the template is functional or
not, respectively. The second determiner, when present, is always definite. In this
context, each preposition AS is an instance of the lexeme of. The common noun AS is
an instance of the common noun lexeme specified in the template, with the same

31

grammatical number specified in the template. The pronoun AS is some or one when
the lexeme specified in the template is uncountable or countable, respectively.

[85] The official language of ...

[86] An official language of ...

[87] Some of the music of ...

[88] One of the official languages of ...

When the input is a verb-based relation template, the output is an incomplete verb
phrase. The verb phrase is composed of a verb AS, a piece of canned text and an
optional preposition AS. The verb is an instance of the verb lexeme specified in the
template, the canned text is the body of the template, and the proposition, if present,
is an instance of the preposition lexeme specified in the template. The verb is
instantiated considering all the details provided in the template: the voice, the tense,
the aspect, and whether it must be introduced by should or not.

Lexicalizing a node

The lexicalization of a node is the first sub-step of the lexicalization. The purpose of
this sub-step is to produce, for each node of the query, two noun phrases, called the
introductory NP and the referring NP of the node. The introductory NP is a NP which
can be used to refer, for the first time in the text, to the object identified by the node.
Using the terminology of [Reiter & Dale 2000], the introductory NP is used for the
initial reference to the node. The introductory NP conveys as much information about
the node as it is possible using a single common noun and as many adjectives as it is
feasible. Labels associated with noun-based templates which are not represented in
the introductory NP will be represented by other NPs in a different sentence.

The referring NP is a NP which can be used for all other references to the object
identified by the node. Using the terminology of [Reiter & Dale 2000], the referring
NP is used for subsequent references to the node. It is the basis for the generation of
referring expressions: the referring expressions generator step will use this NP to
model pronouns referring to the same object.

The sub-step processes all the node label messages associated with the input node in
the order given in the query. For each such label, the system fetches from the
template map the concept template associated with the label. In general, some of
these labels are associated with noun-based templates, other labels are associated
with adjective-based templates.

When this procedure fetches a noun-based template for the first time, the template
is instantiated into a NP, and the common noun of this NP is taken to be the base
noun. If all the concept templates are adjective-based, the base noun is taken to be
th ing . The introductory NP is produced as a NP composed of an indefinite article, all
the adjectives produced instantiating all the adjective-based templates associated
with the other labels, and the base noun. The referring NP is produced as a NP
composed of a definite article and the base noun. In case all the templates are
adjective-based, the referring NP is produced as a NP composed of a definite article,
the adjective obtained instantiating the first template, and the base noun.

For example, consider [89], the list labels of a node. Let's also suppose that the first,
second and third concepts are associated with adjective-based templates, while the
other two concepts are associated with noun-based templates.

32

2.5 - Generation

[89] Musl im f i lmDirector Russian singerSongwri ter

According to our definition, the introductory NP for the node is [90], and the
referring NP is [91].

[90] a Muslim Russian film director

[91] the film director

All the labels used to produce such NPs are marked as used, in order to avoid using
them again to produce sentences in the next step, that is, tree lexicalization.

Lexicalizing the tree

Once each node has been lexicalized, the lexicalization process continues by
generating one clause for each message which has not been used yet. For each node
label of each node, the lexicalizer generates a clause. The subject of the clause is a
copy of the referring NP of the node. The verb phrase of the clause is composed of
the copula verb should be, and, as subject complement, the NP instantiating the
template associated with the concept referred to in the node label.

For each edge outgoing a node X and entering a node Y, the lexicalizer generates a
clause. Depending on the kind of template associated with the relation referred to in
the edge label, the lexicalizer produces a different kind of clause.

• If the template is verb-based, the subject of the clause is a copy of the referring
NP of the node X. The verb phrase of the clause is produced instantiating the
template associated with the relation referred to in the edge label. The verb
phrase obtained in this way is incomplete: it lacks a NP to be complete. To fill
this gap, the lexicalizer uses the introductory NP associated with the node Y.

• If the template is noun-based, the subject of the clause is the NP obtained
instantiating the template itself. The noun phrase obtained in this way is
incomplete: it lacks a NP to be complete. To fill this gap, the lexicalizer uses the
referring NP associated with the node X. The verb phrase of the clause is
composed of the copula verb should be, and, as subject complement, the
introductory NP associated with the node Y.

The first clause of the query is always half-canned, as the final text should start with
[92]. The generator uses the introductory NP associated with the root node of the
query to complete the clause.

[92] I am looking for ...

Each of the clauses generated in the whole lexicalization process are nested in a
single sentence. The next step of the microplanning will merge consecutive sentences
where feasible.

Semanticization

During the microplanning stage, while the system builds the text specification, the
microplanner links syntactic elements to the elements of the query they describe.
There are several reasons to do so.

• The first reason is to inform the referring expressions generator whether a noun
phrase is referring to an entity which was already introduced. For this reason,
we want to connect each noun phrase describing a node to the node itself.

33

• The second reason is to inform the aggregator whether the subjects of two
consecutive clauses are references to the same logical entity. This is the first
condition for the aggregation of the clauses.

• The third reason is, the generator must return a one-to-one association between
the query elements and some portions of the text, as specified in the
requirements. Thus, the microplanner must connect each node label and each
edge label to some syntactic element of the output text, so that the surface
realizer will be able to tell which portion of the final generated text is associated
with each label.

For these motivations, the microplanner builds, along with the text specification, a
map which connects various elements of the text specification to nodes and labels of
the query. We named this map the semantic map. The semantic map connects each
noun phrase to at most one node. Some noun phrases may be not connected to any
node. When a noun phrase is generated during the lexicalization of a node or during
the lexicalization of a node label, the system connects that noun phrase to that node.

The semantic map also connects each single edge label and node label to a single
specific contiguous portion of the text. To this aim, our microplanner maps each
syntactic constituent of each AS obtained by template instantiation with the edge or
node label used to retrieve the template. The result is that even when, during the
aggregation process, the AS are dismembered and parts of them are discarded, the
single constituents that make it to the final text specification are still connected to
the semantic elements that originated them. When surface realization will transform
AS into text, this information will be carried on to the final text.

2.5.4 Aggregation

The aggregation step analyses the list of clauses produced in the lexicalization step
in order to join adjacent clauses with the same subject into a single sentence, and to
elide syntactic elements wherever it is possible to do so.

In our aggregation module, the first condition for any kind of aggregation between
two consecutive clauses is that the subjects of the clauses refer to the same node. If
this condition is not met, no aggregation will take place. Once this condition is met,
the aggregator merges the two clauses into a single sentence, appending the second
clause to the list of clauses the first clause belongs to. The clauses in the list are
coordinated using a comma or a conjunction, as specified in the generative grammar
(rule 41).

If the verbs of the clauses have the same voice, i.e. they are both passive or both
active, the subject of the second clause is elided. (E.g. [93, 94, 95].) This elision also
occurs when a clause with a passive verb follows a clause with a copula. (E.g. [96].)

[93] The actor should be a singer and the father of a boy.

[94] The film should be produced by a Bollywood company and directed by a Kannadiga artist.

[95] The firm should manufacture goods and provide services.

[96] The book should be a novel and should be written by a woman.

After the subject is elided, it may be the case that further ellipsis is possible. If both
clauses have a copula and a subject predicate, the copula of the second clause is
elided. (E.g. [93].)

34

2.5 - Generation

If the clauses are both active or both passive, some elements of the verb of the
second clause may be elided. The aggregator will consider the all the elements that
make up the verb of the second clause, against all the elements that make up the
final verb form of the first clause, in the order they appear. If the two lists of elements
share a prefix, the elements in the second clause that are part of this prefix are
elided. For example the aggregation of [97] and [98] produces [95], where the
auxiliary should is elided.

[97] The firm should manufacture goods.

[98] The firm should provide services.

The elements considered in this operation are the atomic components of the verbs.
These may be finite and infinite verb forms, including auxiliary verbs. For example, in
[99] the elements of the verb are those listed in [100]. Note that these elements are
sub-components of the verb phrase AS because they are sub-components of the verb
of the verb phrase. In other NLG systems, the full list of auxiliaries of a verb may be
not available until surface realization. This is not the case in our system.

[99] The car should be produced in an European Country.

[100] [should, be, produced]

When eliding the suffix would cause all elements of the verb to disappear, the
aggregator makes sure that at least one syntactic constituent semantically linked to
the edge label remains not elided. Eliding all references to a edge label would make
the contribution of the edge label disappear from the generated text, and thus to a
violation of the requirements. When there are no other elements in a verb phrase
associated with the edge label besides the verb, the aggregator will avoid eliding all
the elements of the verb. Instead, it will elide at most all of them but one.

2.5.5 Referring Expressions Generation

The aim of the referring expressions generation step is to replace noun phrases used
as subsequent references with more appropriate expressions. These expressions are
more appropriate in the sense that they should be just as informative as needed for
the reader to understand what semantic entity the expression refers to. In general,
the problem of referring expression generation is hard, since it requires to consider
what entities the reader considers relevant in the context, and what characteristics of
the entity are useful to disambiguate the reference. For our system, we adopted a
naïve approach: subsequent references to the same node are realized as pronouns
whenever they co-refer with the subject of the previous clause. Otherwise, they are
realized using the referring NP of the node. For example, [101] is turned into [102],
but [103] is left unchanged. We introduced an exception to this rule to accommodate
the introductory clause, so that [104] becomes [105].

[101] The actor should be a singer and the actor should live in an Indian city.

[102] The actor should be a singer and he should live in an Indian city.

[103] The actor should be married to a singer. The singer should be Muslim. The actor should live in an

Indian city.

[104] I am looking for a woman. The woman should an actress.

[105] I am looking for a woman. It should be an actress.

35

Note that when the reference appears within a prepositional phrase attached to
another noun phrase, instead of turning the reference into a pronoun, the
propositional phrase is replaced by a possessive determiner attached to the noun
phrase. For example, [106] is turned into [107], and [108] is turned into [109].

[106] The mother of the singer should be an Indian.

[107] His mother should be an Indian.

[108] One of the parents of the actress should be an Indian.

[109] One of her parents should be an Indian.

This naïve approach fails when the reference is ambiguous. This may be the case
when a pronoun matches more than one noun phrase in the previous clause (e.g.
[110]), or when the referring NP of two nodes are identical (e.g. [111]).

[110] The girl1 should live with a woman2. She1 should like strawberries.

[111] The woman1 should live with an Indian woman2. The woman2 should like strawberries.

We acknowledge these limits, but for the purposes of our experiment we believe that
this approach is sufficient.

2.5.6 Surface Realization

Surface realization is the task of transforming a text specification into a data
structure called surface form. The surface form contains the final product of the
generation, that is, text. In general, the surface form encapsulates the text into a
structure convenient for the presentation layer of the software, which is going to
display the text to the user. Depending on this layer, the surface form may be a as
simple as a sequence of characters, or an HTML document, or another kind of data
structure.

In our system, the surface form must convey the text plus an association between
some spans of text and some elements of the query. The structure we chose is a list of
cells, each cell containing a fragment of text, and each possibly containing a
reference to a label of the query. The concatenation of the contents of the cells is the
generated text.

Our surface realizer navigates through the list of sentence ASs which make up the
text specification, and fills up the list of cells by visiting the components of each
sentence AS and recursively visiting the sub-component ASs of each AS. ASs which
do not have sub-component AS are transformed into a cell. For example, each
common noun AS is transformed into the content of a cell using the common noun
lexeme and the grammatical agreement information stored in the AS. If the semantic
map connected the AS to a query label, a reference to the label is also stored in the
cell. Other ASs are processed in a similar way. The surface realizer also takes care of
capitalization and spacing. In detail, the first character of the content of the first cell
of each sentence is capitalized, and a space between two cells is always present
except when the following cell is a punctuation mark.

36

3 - Knowledge domain portability

3 Knowledge domain portability

ost natural language interfaces to databases are bound to a specific knowledge
domain, that is, they are built to handle questions regarding a specific topic,

e.g. flight routes, chemical compounds, real estates [Androutsopoulos et al. 1995]. A
NLI is portable when it can be adapted for use in different knowledge domains. To
this purpose, the system must be adapted to cope with all the words and expressions
that are typical of the target domain. To connect a portable NLI to a database in a
new domain, it is usually necessary to associate linguistic resources to the elements
of the database schema. For example, it may be necessary to associate to each class
of elements in the database a set of synonyms which may be used to refer to elements
of that class. The exact nature of the adaptation depends on the specific NLI, and it
may range from modifying the source code to using a simple dedicated software to
associate parts of the database schema to existing lexical resources

M

As we already explained in many occasions, in order to configure the Query Tool
natural language interface to query a KB, the software engineer must produce a
template map for the KB's ontology. This task requires a basic knowledge of some
linguistic concepts such as the voice of a verb, the past participle of a verb, and
others. In our vision, the software engineer would produce the template map using a
software utility: this utility would allow the engineer to browse the ontology and fill a
template for each concept and each relation, in the same spirit of Masque's domain
editor, as presented in [Androutsopoulos et al. 1995, p. 26]. The tool may also support
the engineer by displaying a sample sentence obtained using the information in the
template. Ideally, we would like the system to fill the template automatically, but this
task is too hard in general to accomplish. Instead, we would like to provide a tool
capable of suggesting to the engineer a selection of automatically generated
templates. For each relation, and for each concept, the engineer would be presented
with a series of sentences generated using these templates, and given the chance of
selecting one of them. The system would assign to the relation or to the concept the
template used to generate the selected sentence. In the following two chapters, we
will describe two experiments with some techniques that could provide a kick-start
towards this challenging goal.

3.1 Data-driven extraction of linguistic information

Unlike the next approach, which focuses on extracting templates from linguistic
information available in relation identifiers, our first experiment aims at collecting
additional linguistic information describing a target relation. This information could
be useful to fill in a template manually, or automatically using the technique we
describe in the next section. In a nutshell the approach is the following: we collect
sentences which mention two entities which, in the KB, are connected through the
target relation; from the parse trees of these sentences, we extract the most frequent
paths. These paths contain the linguistic information we were looking for.

For example, suppose that we are looking for linguistic information about a relation
R whose id is f i lmdirector . Note, incidentally, that this relation id cannot be

37

successfully handled using the rule-based approach described in the previous
chapter, because the tokenizer cannot cope with it. Suppose also that the KB contains
some couples (a, b) ∈ R , that is to say, the KB contains information about some films
and about their directors. Finally, suppose that for each element of these couples
there is at least one string in the KB which can be used in natural language text to
refer to the element: for example, the title of the film, or the name of the film's
director. We will refer any of these strings as a natural language label (NLL) of the
element.

Our approach consists in the following: for each couple instantiating the relation, we
look into a corpus and collect all the sentences which contain natural language labels
(NLLs) of both the elements of the couple. Using couple of NLLs like [1] we collect
sentences like [2]. We parse the collected sentences using a dependency parser. We
obtain a list of parse trees like [3], also depicted in illustration 10.

[1] (Jogi, Prem)

[2] Jogi (Kannada: ಜೋ��ಗಿ) is a Kannada-language movie, directed by Prem and released on August 22,

2005.†

[3] nsubj(movie-9, Jogi-1)
dep(Jogi-1, Kannada-3)

cop(movie-9, is-6)
det(movie-9, a-7)
amod(movie-9, Kannada-language-8)
dep(movie-9, directed-11)

prep(directed-11, by-12)
pobj(by-12, Prem-13)

cc(directed-11, and-14)
conj(directed-11, released-15)

prep(released-15, on-16)
pobj(on-16, August-17)

num(August-17, 22-18)
num(August-17, 2005-20)

For each parse tree, we discard the branches that do not contain any one of the two
nl ls. We obtain the path connecting the two leaves containing the two NLLs. For
example, from [1] we obtain [4], also depicted in illustration 11. Leaving out the
leaves we eventually get [5].

[4] nsubj(movie-9, Jogi-1)
dep(movie-9, directed-11)

prep(directed-11, by-12)
pobj(by-12, Prem-13)

[5] dep(movie-9, directed-11)
prep(directed-11, by-12)

From [5] we can extract the string movie directed by, which is the linguistic information
we were looking for. This information could be returned to the user to help him
lexicalize a relation whose identifier is obscure, or it could be given as input to the
the rule-based template extractor. However, [5] is one among many the paths
obtained in this process, many of which are useless to our purpose. For example, the
same process applied to sentence [6], leads to the path [7], from which we extract the

† Source: Wikipedia, the Free Encyclopedia, en.wikipedia.org/wiki/Jogi, retrieved on 16-08-2009.

38

3.1 - Data-driven extraction of linguistic information

string a story from, which while still meaningful, does not convey the notion of film
director.

[6] Pithamagan (2003) A story from Bala after the successes of Sethu and Nanda, which starred Vikram

and Surya in respectively.

[7] det(story-4, A-3)
prep(story-4, from-5)

In order to retrieve only the relevant paths, we apply an algorithm to score each
path according to the frequency of some of its features. The whole procedure returns
the best scoring paths, and discards the rest. It happens that [5] is among the worst
scoring paths, according to our algorithm. Instead, among the best scoring ones
appears film directed by, possibly because the British English term is occurring more
often in the retrieved sentences than its American English equivalent.

39

Illustration 11: Dependency path

Jogi

movie

directed

by

Prem

nsubj

prep

dep

pobj

Illustration 10: Dependency parse tree

Jogi is Kannada-language

movie

directed

by

Prem

and released

on

August

a

22 2005

Kannada

nsubj cop

dep

amod

prep

dep

cc

pobj

det

prep

conj

pobj

num num

3.1.1 Algorithm

In the following we describe the whole procedure in greater detail and in a broader
context. This procedure was introduced in [Ittoo & Bouma 2009], as a way to gather
lexicalized syntactic patters instantiating meronymy (part-whole) relations. We
applied the same approach to gather lexicalized syntactic patterns instantiating
arbitrary relations. The algorithm described here is conceptually the same used for
[Ittoo & Bouma 2009], manipulated for a better presentation. The single divergence
from their algorithm is the ranking of paths, which we'll discuss later.

Given a relation R, a corpus C, a knowledge base K, a labelling function nl l (x), and
the result set size N (a natural number), the algorithm returns a list of at most N
strings. The pseudocode shown in text 1 breaks down the algorithm into four major
steps: seed collection (line 2), path collection (line 3), path ranking (line 4) and path
printing (line 5). The seed collection step is the gathering of a list of single-worded
seeds for the target relation. A single-worded seed for a relation R is a couple (n l l (a),
n l l (b)) such that (a, b) ∈ R , nl l (a) ≠ n l l (b) , and both nl l (a) and nl l (b) are strings of
alphanumeric characters without spaces. The pseudocode shown in text 2 shows how
our algorithm collects seeds, given a relation R, a knowledge base K, and a labelling
function nll.

 The function nl l (x) associates every object in the KB with a string named natural
language label (NLL) which can be used to identify the object in a text. Such a
function is to be provided by the software engineer who is configuring the natural
language interface for use with a new KB. Ideally, the associated string is the most
frequent among those which identify uniquely the object. In practice, there is a trade-
off between precision and frequency. For example the 45th president of the U.S.A. may
be referred to using any one of these expressions:

• the 45th president of the United States

• president George W. Bush

• president Bush

• George W. Bush

• the U.S. president

• the president

• he

Except the first one, all of them may be used to refer to people other than him. The
first two NLLs are precise but not frequent in a general-purpose corpus. The last two

40

1 collect (R, C, K, nll, N)
2 seeds := collectSeeds(R, K, nll)
3 paths := collectPaths(seeds, C)
4 ranked_paths := rankPaths(paths)
5 printed_best_paths := printPaths(ranked_paths[1..N])
6 return printed_best_paths

Text 1: Pseudocode for the data-driven linguistic information miner

3.1 - Data-driven extraction of linguistic information

are frequent, but they seldom refer to him. In such a situation, we would recommend
to choose one of the strings in the middle of the list.

However, such a situation is rather unusual. Instead, many of the elements in a KB
have no obvious NLL, or they have a NLL which is seldom used in text. For example
the rooms of a building, computers and other technical equipment, flights, planes,
and trains. While a plane certainly has a NLL used in technical communications
(usually an alphanumeric code), such a label is not found in available general-purpose
corpora. It could be useful if the engineer could provide a corpus which contains
these NLLs. If no useful NLL can be associated with an object of the KB, the object is
useless to our approach.

While in principle our approach could work with any kind of NLL, the solution we
designed requires each NLL used in a seed to consist of only one (alphanumeric)
word. For example, none of the NL proposed for president Bush above is acceptable
by our system (except he). The reason we restricted our attention to single-worded
NLLs is that multi-word NLLs are infrequent: the longer the NLL is, the harder it is to
encounter it in a corpus. Instead, it is more likely that the entity is referred to using
expressions derived from the NLL, such as abbreviations or paraphrases, or simply
using anaphors. We attempted at expanding the set of NLLs for an entity by
generating expressions using words from a single initial multi-word NLL associated
the entity, but it didn't help. We also tried to detect anaphors referring to the entity,
without success. Eventually, we decided to focus on single-worded NLLs. This meant
that the relations our system can process is a fraction of the relations contained in
the KB.

 Once all seeds have been collected, the algorithm proceeds by parsing sentences
containing those seeds, to collect depedency paths. Text 3 shows in pseudocode how
these paths are collected given a list of seeds and a corpus C. For each sentence in
the corpus, for each seed (n l l (a), n l l (b)) , the system checks whether the sentence
contains both nl l (a) and nl l (b) . If that is the case, our system uses the Stanford parser
to parse it (line 7)8. The resulting parse tree is a Stanford typed dependencies
representation [de Marneffe & Manning 2008], such as the ones depicted in
illustration 10 and 11. It consists of a directed tree where each node is labelled with a
word of the sentence, and each arc is labelled with a dependency relation. From this
tree, the algorithm extracts (line 8) the shortest path containing the node labelled
with nl l (a) and the node labelled with nl l (b). The algorithm discards the edge labels,
the direction of the edges of this path (line 8), and the nodes labeled with nl l (a) and

8 For our evaluation experiments we relied on a treebank so we did not need to parse each sentence.

41

1 collectSeeds(R, K, nll)
2 for each (a, b) ∈ R in K
3 if nll(a) != nll(b)
4 and nll(a) is a single-worded seed
5 and nll(b) is a single-worded seed
6 then
7 seeds := seeds + [(a, b)]
8 return seeds

Text 2: pseudocode for seed collection

nl l (b) . Paths of length zero are also discarded. The algorithm appends this path to a
list (line 9), which is eventually returned to the caller (line 10).

The original algorithm used in [Ittoo & Bouma 2009] discarded infrequent paths.
This simple approach was reasonable for their purposes, as they had to filter a single,
large collection of paths. Our situation is different, because for the majority of
relations few paths are collected, if any (see the following subsection, Evaluation).
Therefore, we tried to improve the ranking algorithm to make the best use of the few
available relations. Ranking paths using their frequency has a pitfall, illustrated in
the following example. Suppose that the paths [8], [9] and [10] appear with an
absolute frequency of 5, 4 and 3 respectively. According to frequency ranking, [8] is
better than the other two. However, our intuition is that [10] is a variation of [9], and
we would like the frequency of [10] to contribute to promote the rank of [9] above the
rank of [8].

[8] (album) - (released) -(on) -(label)

[9] (album) - (released) -(by)

[10] (album) - (released) -(by) -(records)

Text 5 is the pseudocode of our ranking algorithm, which differs from the original in
that it addresses this issue. The algorithm takes as input a list of paths, and returns it

42

1 rankPaths(paths)
2 for each path in paths
3 allsubpaths := allsubpaths + extractSubpaths(path)
4 for each path in allsubpaths
5 freq[path] := freq[path] + 1
6 for each path in paths
7 subpaths := extractSubpaths(path)
8 for each subpath in subpaths
9 composite_f[path] := composite_f[path]+ freq[subpath]
10 score[path] := score[path] / size(subpaths)
11 sort(paths, score)
12 return paths

Text 4: pseudocode for path ranking

1 collectPaths(seeds, C)
2 for each sentence in C
3 for each (a, b) in seeds
4 if sentence contains nll(a)
5 and sentence contains nll(b)
6 then
7 tree := StanfordParse(sentence)
8 path := extractPath(tree, nll(a), nll(b))
9 paths := paths + [path]
10 return paths

Text 3: pseudocode for path collection

3.1 - Data-driven extraction of linguistic information

re-ordered. To do so, it first collects all the sub-paths of paths in the input list (line 3),
and it computes the absolute frequency of each such sub-path (line 5). For example, if
the input list contains the three paths listed above, the algorithm produces the set of
sub-paths displayed in table 3 together with their frequencies. Once the frequencies
of individual sub-paths are available, the algorithm assigns to each path a value
called composite frequency, computed as the sum of the frequencies of the path's
sub-paths (line 9), normalized dividing by the number of those sub-paths (line 10).
This composite frequency is used to sort the paths in descending order.

For example, this algorithm assigns the following composite frequencies to the three
paths above:

[11] (3+3+1+1+3+1+1+1+1+1) / 10 = 1.6 for [8]

[12] (3+3+2+3+2+1) / 6 = 2.33 for [9]

[13] (3+3+2+1+3+2+1 +2+1+1) / 10 = 1.9 for [10]

The ranking obtained is therefore [9], [10], [8]. In the evaluation part, we will refer
to this method of ranking the paths as “the method based on composite frequency”.
We will compare this method against using one similar to the one used in [Ittoo &

43

Subpath Absolute Frequency

(album) 3

(released) 3

(on) 1

(label) 1

(album) -(released) 3

(released) -(on) 1

(on) -(label) 1

(album) - (released) -(on) 1

(released) -(on) -(label) 1

(album) - (released) -(on) -(label) 1

(by) 2

(released) -(by) 2

(album) - (released) -(by) 2

(records) 1

(by) - (records) 1

(released) - (by) - (records) 1

(album) -(released) - (by) - (records) 1

Table 3: Subpaths and their frequency

Bouma 2009]. We will refer to this second method method as “the method based on
simple frequency”.

The last step of the procedure (line 5 in text 1) transforms the first N of the ranked
paths into strings, by concatenating the content of the nodes, interleaving them with
spaces. This list of strings is the output of the whole procedure.

3.1.2 Evaluation

The goal of our approach is to retrieve a small set of strings that the software
engineer can use to fill in a relation template, or, in alternative, that our rule-based
template extractor can process. In the following, we will refer to each such string as
a textual representation of the relation. At the very core, for each input relation, our
procedure is successful when among the retrieved expressions there is one that
describes the relation correctly. The first metric of evaluation is therefore the
frequency of relations for which our approach produces a list of strings which
contains a feasible one.

This measure gives an overall idea of our achievement, but it does not give hints
about what are the most problematic tasks, which parts of the solution can be
improved, and which parts can't. Therefore we also evaluate our system on partial
solutions: the relation between the number of couples and the number of retrieved
paths, the relation between the number of retrieved paths and success, the relation
between number of couples and success, the precision and recall of the filtering
procedure.

We evaluated the system using a portion of Wikipedia as our corpus, and the
Wikipedia infoboxes as our KB. The
Wikipedia infoboxes is a collection of semi-
structured data originating from the
infoboxes of Wikipedia articles. This
experiment owes much to [Wu & Weld
2008], who first employed data contained
in wikipedia infoboxes to find patterns in
the text using this data. In Wikipedia, the
infobox of an article is a frame containing
schematic information about the subject of
the article, presented as labeled strings or
hyperlinks. Illustration 12 showcases an
infobox. These frames are inserted as
simple text by Wikipedia editors, possibly
borrowing them from similar articles, and
possibly customizing them for the subject
of the article. In this sense, they are
loosely structured. Each infobox has a
template name, not rendered in the page,
but accessible in the source, that
categorizes the subject as a person, film,
city, actor, or similar. For our purposes,
each value in an infobox represents the
instance of a relation in the KB. For
example, the infobox of the Indian film
Jogi contains the value Prem under the

44

Illustration 12: The infobox of
a Wikipedia article

3.1 - Data-driven extraction of linguistic information

label directed_by. This translates into the couple (a, b) ∈ R , where a is the movie titled
Jogi, b is the person named Prem, and R is the relation represented by the label
directed_by . Since the label with the same name may appear for in the templates of
different kinds of articles, to identify a single relation we take the label together with
the name of the template, which in this case is f i lm.

We restricted our attention to couples (a,
b) such that for each element of the
couple there exists an article in Wikipedia
with the same name. In other words, the
elements of our KB are Wikipedia
articles, and our nl l function returns the
title of the article. We did so in order to
avoid considering relations which link
object to data. Our expectation is that for
most data values, like 137 mins (the running
time of Jogi), there is no corresponding
Wikipedia article, whereas most
Wikipedia articles correspond to entities
that would be represented as objects in a
KB. While this is the case for most
articles, there are exceptions: for
example, dates in Wikipedia have a
corresponding article (e.g. the release
date of Jogi).

The full infoboxes dataset contains more
than seven millions couples, instantiating
altogether more than 61 000 relations.
Filtering out couples that contain an
element without an associated article in
Wikipedia left us with 1 868 784 instances
for 19 617 relations. Moreover, since the
solution we adopted is limited to handle
only single-word seeds, the number of
useful instances decreases to 127 644, for
2454 relations. These figures mean that
our approach is limited to handle 12.6%

of the 9 617 relations in our KB. For the remaining relations, the system will not
retrieve any textual representation. Illustration 13 shows the frequency distribution
of the number of seeds of a relation in the 127 644-seeds dataset, rounded down to a
power of two. More than half of the relations have only one, two or three seeds, and
more than two thirds of the relations have less than 8 seeds.

To save computational time, we retrieved textual representations for 1324 of the
2454 relations. Our target corpus was a portion of Wikipedia containing around 16
millions lines of text. For each of these relations, our system mined the corpus to find
sentences containing both the words of a seed of the relation, finding 337 416
sentences in total.

45

Illustration 13: Frequency distribution of the
number of the seeds of a relation

1
2

4
8

16
32

64
128

256
512

1024
2048

4096
8192

0

100

200

300

400

500

600

700

800

900

1000

Number of seeds

F
re

q
u

e
n

cy

Illustration 14 shows (in blue) the frequency distribution of the number of sentences
retrieved for a relation, rounded down to a power of two. For 725 (55%) relations, no
sentences containing a seed were found. For each of the 1324 relations, our system
extracted a list of dependency paths from the sentences collected for that relation,
collecting in total 38 746 paths. The figure is smaller than the number of sentences,
as different sentences may contain the same path. Illustration 14 shows (in red) the
frequency distribution of the number of paths collected for a relation. The graph
shows (on the left) that most frequently, no sentences and no paths were found for
the relation. On the right, a for a small number of relations (less than twenty) more
than one thousands sentences were found, but these sentences often contained the
same path.

46

Illustration 14: Frequency distribution of the number of sentences and paths for a relation

0
1

2
4

8
16

32
64

128
256

512
1024

2048
4096

8192

1

10

100

1000

sentences

paths

Number of sentences or number of paths

F
re

q
u

e
n

cy
 (

lo
g

a
ri

th
m

ic
 s

ca
le

)

Illustration 15: Relations scattered on the real plane according to the number of their seeds and
the number of their sentences and paths

1 10 100 1000 10000

0,1

1

10

100

1000

10000

Number of seeds

N
u

m
b

e
r

o
f

p
a

th
s

1 10 100 1000 10000

0,1

1

10

100

1000

10000

100000

Number of seeds

N
u

m
b

e
r

o
f

se
n

te
n

ce
s

3.1 - Data-driven extraction of linguistic information

Illustration 15 gives an impression of the relation between the number of seeds for a
relation and the number of sentences and paths for a relation: every relation is
represented by a dot. In the picture, the dots have been scattered with noise in order
to avoid overlapping: this allows to visualize the frequency of the data in certain
zones of the plane according to the density of the dots. The graphs display also a
linear regression of the data. In our dataset, the number of sentences (and paths) is
on average greater than the number of seeds used to collect them. For many relations
however, no sentences (or paths) were collected, regardless of the number of seeds
available.

We evaluated the path filtering algorithm on a sample of 77 relations for which a
sentence was collected. We inspected the paths collected for each of these relations,
to identify all those paths that our system should retrieve (the positive paths). Of
these 77 relations, 21 have been left out from the sample because it was impossible
for us to determine whether a positive path existed. This happened because for these
relations, both the name and the available seeds were not expressive enough for
understand the meaning of the relation. Of the remaining 56, 34 relations (61%) had
a positive path. Illustration 16 shows how the number of positive paths grows with
respect to the total number of paths (positive and negative). The graph does not
include the paths for which no positive was found or identified.

We evaluated our approach based on composite frequency against two baselines,
using three metrics: precision, recall, and a custom metric called score. We measured
these values using only the relations for which a positive path existed. By their
definition, precision and recall cannot be calculated taking into consideration
relations for which no positive path existed. The score of a result set is zero when the
result set contains no positive path. The score is one otherwise. This metric aims at
measuring how often the user will find at least one suitable textual representation
among those proposed by our system. The first baseline system orders the paths
randomly, the second one using simple frequency. Illustration 17 shows the precision
and recall of both systems for result sets of size ranging from one to eleven. The
greater the result set, the greater the recall. Illustration 18 shows the mean score.

47

Illustration 16: Relations scattered on the real plane according to the number of their positive
paths and the total number of their paths.

1 10 100 1000 10000

1

10

100

Total paths

P
os

iti
ve

 p
at

hs

We can recap the results of the evaluation taking into accout the limitations we
assumed so far. We limited our scope all the relations for which at least one single-
word seed was collected. These amount to 12.6% of the relations in our corpus. We
considered a sample of 2454 relations. For 599 (45%) of them, at least one sentence
containing a seed was collected. We considered a sample of 77 of the 599 relations.
We limited our attention on the 56 relations we could understand, and we found out
that for 34 (61%) of them, one or more of the collected sentences contained a positive
path. When asked to retrieve five paths representing one of these 34 relations, in
80% of the cases, our ranking algorithm returns one or more of these positive paths.

These figures suggest that:

• in 22% (0.45 * 0.61 * 0.80 = 0.22) of the cases, our system will return a list of at
most five expressions, one or more of them being useful;

• in 55% of the cases, it will return no suggestions;

48

Illustration 17: Mean precision and recall on all the relation ids with a positive path

Illustration 18: Mean score on all the relation ids with a positive path

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,2

0,25

0,3

0,35

0,4

0,45

0,5

Random

Simple frequency

Composite Frequency

Recall

P
re

ci
si

o
n

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Random

Simple frequency

Composite Frequency

Dimension of the result set

S
co

re

3.1 - Data-driven extraction of linguistic information

• in the remaining 27% (0.45 * (0.61 * 0.20 + 0.39) = 0.22) of the cases, it will
return a list of at most five useless expressions.

Let us recall here that the relations targeted by our system are the relations R for
which the KB contains a couple (a, b) ∈ R where nl l (a) and nl l (b) are single words,
which in our dataset consist of 12.6% of the relations.

3.2 Rule-based template extraction

The second approach we experimented with draws from Chris Mellish and Xiantang
Sun's Triple-Text NLG system [Sun & Mellish 2007]. The idea is based on the
observation that KBs already contain linguistic information. In real-world ontologies,
every concept, and every relation, has a unique identifier (ID), and most of the times
it is not just an arbitrary string, but a mnemonic chosen by the knowledge engineer
to describe the intended meaning of the identified concept or relation. These IDs
possibly contain all the information needed to generate natural language descriptions
of the identified elements [Mellish & Sun 2005]. Xiantang Sun's proposed dissertation
[Sun 2009] discusses a procedure to extract syntactically rich templates from relation
IDs. We adapted this procedure to better fit our data, but the underlying idea is the
same: tokenize the relation ID, tag it with a part-of-speech tagger, and apply pattern-
based rules to transform the tokenized, tagged relation ID into a relation template. In
our approach, each relation ID is first tokenized according to an algorithm which
takes advantage of the naming conventions used by ontology engineers. Second, the
tokenized ID is fed to a custom part-of-speech tagger built around QTAG ([Tufis &
Mason 1998], as cited in [Sun 2009]). The tagged tokenized ID is then lightly
preprocessed and finally fed to a transformation rule, chosen among thirteen
different rules, that produces a relation template.

relation ID Sample generated sentence

alt i tude9 Its altitude should be a negative number.

communicat ionDecl ined It should have declined an official communication.

connectedAtContact It should be connected at something.

constantRenamed It should have been renamed with a Polish name

numberOfLevels Its number of levels should be a number greater than ten.

parent_face Its parent face should be a yellow face.

re lat ion_Has_Domain Its domain should be an abstract class.

tastes It should taste bitter.

wnDerivedFromAdject ive It should derive from an adjective of time.

Table 4: Sample of templates extracted from relation IDs

In order to design an effective method following this idea, we built a corpus of
almost 200 ontologies, collecting several of those freely available on the Web. We

9 In this chapter, unless otherwise specified, relation IDs are taken from our corpus.

49

collected only ontologies which contained English words in the relation IDs.
Ontologies which systematically assign arbitrary sequences of letters and digits to
relation IDs were discarded. From these ontologies we extracted more than 12000
unique relation IDs.

Table 4 shows a sample of relation IDs from our corpus along with a sentence the
Query Tool natural language interface should generate on the basis of the template
we would like to programmatically associate to the identified relations. We anticipate
that the rule-based template extraction system can actually handle most of the
relation IDs displayed in the table, and extract templates contributing clauses similar
to those displayed in the table. One notable exception is the target template for the
constantRenamed : the target clause for this relation contains a preposition, with, that
cannot be extracted from the relation ID. In this chapter, we explain how our
extraction process works, following in parallel, and contrasting with, Sun's approach
to the same task.

3.2.1 Tokenization

The first step in the process from a raw relation ID to a relation template, is the
tokenization, that is, the transformation of the input relation ID into a sequence of
alphanumeric strings. The task is relatively easy because ontology IDs usually contain
only alphanumeric characters, possibly underscore, and no punctuation: ontology
languages usually restrict the alphabet available for use in concept and relation IDs.
Our tokenizer splits the input string at each non-alphanumeric character (e.g.
f i lm_di rector), after a letter following a digit (e.g. 40weeks), after a digit following a
letter (e.g. Rambo2), after an upper-case letter following a lower-case letter (e.g.
movieDirector). Moreover, the input string is split after an upper-case letter following
an upper-case letter when the former is preceding a lower-case letter (e.g.
USSenator , POSTagger).

The pseudo-code of our tokenizer is shown in text 5. Our approach is rather simple,
and it is easy to see that it fails to handle correctly strings with digits mixed with
letters, like 3D or 22nd . Moreover, hyphenated words like e-mail or brother-in-law will

50

13 tokenize(a string S of length N)
14 for i in [0..N-1]
15 if S[i] is not a letter nor a digit
16 split between S[i-1] and S[i+1] and discard S[i]
17 else if S[i] is a digit, i > 0 and S[i-1] is not a digit
18 split between S[i-1] and S[i]
19 else if S[i] is not a digit, i > 0 and S[i-1] is a digit
20 split between S[i-1] and S[i]
21 else if S[i] is an upper-case letter, i>0 and S[i-1] is

not an upper-case letter
22 split between S[i-1] and S[i]
23 else if S[i] is an upper-case letter, 0 < i < N-1, S[i-1]

is an upper-case letter and S[i+1] is a lower-case letter
24 split between S[i-1] and S[i]

Text 5: Pseudo-code for our tokenizer

3.2 - Rule-based template extraction

be transformed in sequences of unrelated words. However, we believe that this
limitation does not impact our solution substantially. Table 5 shows a sample of
relation IDs, selected from our corpus, and the corresponding tokenized relations IDs
according to our tokenizer.

relation ID Tokenized relation ID

communicat ionDecl ined communication Declined

re lat ion_Has_Domain relation Has Domain

topicPattern_Ir re levant topic Pattern Irrelevant

Table 5: Sample input and output of our tokenizer

3.2.2 Part-of-Speech Tagger

After the relation ID has been tokenized, the next step in the process is to assign a
part-of-speech tag to each token. To this purpose, we rely on QTAG as Sun did,
preprocessing the input to improve the accuracy on the particular kind of input we
are interested in. QTAG is a PoS tagger trained on the Penn treebank, and it performs
worse on our data than it would on traditional text. Our data consists of sequences of
words without determiners and with traces of English syntax: they resemble noun or
verb phrases, but they usually miss some elements to be grammatical. [Sun 2009]
discusses in detail the pre- and post- processing of the input and output of QTAG to
improve its precision for this class of input.

Sun's corpus of relation IDs differs substantially from ours: in his corpus, half
(49.5%) of the relation IDs start either with has or with is. In our corpus, these
relations make up less than 3% of the total. We suspected that our particular dataset
demanded for a different customization of QTAG. We worked on Sun's customizations
to handle some specific issues we encountered in a small sample of our dataset. To
design these specific customizations, we selected a random sample of 200 relation
IDs from our dataset and we hand-tagged it. After that, we compared the output of
QTAG, and the output of our implementation of Sun's customization of QTAG, with
our hand-crafted tags, in order to get directions on how to improve the tagger. These
observations led the development of the customizations we are going to describe.

Our custom PoS tagger incrementally transforms the tokenized string depending on
the feedback of QTAG. The algorithm starts by invoking QTAG to tag the initial
tokenized string, and it proceeds applying the four following rules, one by one, in
order. After every application, QTAG is invoked to tag the transformed tokenized
string, and the result is the input for the next step. After the four rules have been
applied, the final tag assignment is returned.

• If the tagged string contains tokens which are tagged as unk 1 0, those tokens are
replaced with an unambiguous common noun (e.g. story). This is a temporary
replacement that should help disambiguate the subsequent tokens; the unk tags
will be restored in the final output tags. Unknown tags are frequently assigned to
our data because the relation IDs often contain abbreviations and terminology
which is highly domain dependent, as most of the ontologies represent the

10 QTAG uses the tag ??? to mark unknown words. We modified the tagset of QTAG replacing ??? with unk . In
this document, all tag are written in lower case, using a sans-serif font.

51

formalized, shared, expert's knowledge on a narrow, specialistic domain. We
follow Sun's suggestion in treating these unknown words as nouns.

• If the tagged string contains a nns tag T, followed by one of [nn, nns, np, nps, cd,
in, to] , T is tested to find whether it could be tagged vbz, by inserting it into a
test context (It T). If the test reveals that the token can be tagged as vbz, the
token is replaced with an unambiguous third-person-singular present tense verb
(e.g. brings). This test aims at recovering third-person-singular present tense verbs
that QTAG wrongly classifies as plural nouns. The rule relies on our intuition that
composite nouns involve nouns in their singular form more often than in their
plural form.

• If the tagged string contains tokens tagged as vbd , those tokens are replaced
with unambiguous past participle verbs (e.g. forgotten). This rule relies on the
observation that ontologies rarely model events within their historical dimension:
rather, they are used to model timeless states of affairs. This is especially true
with databases, which usually model a snapshot of the current state of affairs
rather than a history of the world (e.g. Bob is marr ied to Al ice versus Tom has
marr ied Al ice). Under this assumption, past participle forms are more likely to
occur than past tenses.

• If the tagged string contains a token tagged as vbn preceded by a token tagged
as j j , j js, j j r, od11, those tokens are replaced with an unambiguous adjective (e.g.
yellow). This rule relies on the fact that in such situations the past participle is
used as an adjective, and the template extractor does not need to distinguish
between participial and non-participial adjectives, while it useful for our
purposes to distinguish between adjectival and non-adjectival participles.

Tokenized relation ID Tagged relation ID

communication Declined communication:nn Declined:vbn

relation Has Domain relation:nn Has:hvz Domain:nn

topic Pattern Irrelevant topic:nn Pattern:nn Irrelevant: j j

Table 6: Sample input and output of the PoS tagger

Table 6 shows a sample of tokenized relation IDs and the tagged tokenized relation
IDs obtained from them. In the rest of this chapter we will refer to tokenized, tagged
relation IDs as TT-IDs. When representing TT-IDs in text, the PoS tag assigned to each
token will be displayed right after the token, preceded by a colon.

To evaluate the taggers, we hand-tagged two further samples of a hundred and two
hundred relation IDs, randomly selected from our corpus. We evaluated three PoS
taggers on these samples: the basic QTAG, our implementation of Sun's customized
QTAG, and our variation of Sun's customization. For the purpose of this evaluation,
any unk tags output by the taggers was replaced with a nn tag. Table 7 shows the
precision of these taggers on two samples of relation IDs randomly selected from our
corpus.

11 od is a QTAG tag for ordinal number

52

3.2 - Rule-based template extraction

QTAG Sun's custom QTAG
(our implementation)

Our custom
QTAG

Sample 1 (100 relation IDs) 0.8 0.77 0,83

Sample 2 (200 relation IDs) 0.89 0.9 0,93

Table 7: Precision of different PoS taggers

3.2.3 Partitioning the set of relation IDs

The rule-based template extractor takes as input a TT-ID and returns a relation
template filled with strings extracted from the input. The idea behind this extractor is
the same idea behind Sun's approach: relation IDs may be not grammatically correct
with respect to an English grammar, but certain syntactic patterns occur more
frequently than others. For example, [Sun & Mellish 2007] report that, in their
corpus, 5% of all the relation IDs consist of a verb followed by a preposition. For
some syntactic patterns occurring in his corpus, [Sun 2009] designed a rule to
transform each relation matching the pattern into a template for the generation. The
algorithm to extract templates from tagged relation IDs consists simply of applying
the rule associated with the syntactic pattern instantiated by the relation ID. relation
IDs that do not instantiate any of the syntactic patterns covered by the
transformation rules are handled by a default rule.

This simple idea works as long as relation IDs with similar syntactic patterns can be
transformed in a similar way: designing a transformation rule for a pattern means
giving an interpretation to all the relation IDs instantiating that specific pattern. For
some syntactic patterns, it may be the case that different relation IDs matching the
pattern need to be transformed in radically different ways. For example, while all
relations consisting of a single noun can probably be transformed in the same way
(e.g. mother, director, birthday, sister, branch, customer), the same is not true for all relations
ending with a preposition (e.g. towards, produced by, belongs to, director of, can access to). In order
to design an effective solution following this approach, we must partition the set of
relation IDs into classes of relations can be transformed in the same way. Moreover,
each class of relation IDs must be defined in terms of syntactic patterns.

53

relation class by syntactic
pattern

Sun's corpus Our corpus

Starting with has 37.2% 2.4%

Starting with is 12.3% 0.2%

Ending with a preposition 11.3% 9%

Only one word 18% 5%

Only two words 12.5% 21%

All the rest 8.3% 61%

Table 8: Frequency distribution of the classes
of the first level of Sun's partition of relation IDs by syntactic pattern

Table 8 shows the six pairwise-disjoint12 top-level classes defined by Sun for use in
his system, along with the relative size of those classes in his corpus and in our
corpus. Sun refines these top-level classes into 16 pairwise-disjoint subclasses,
shown in table 9. These classes do not correspond directly to a rule, as Sun defines
twenty-two rules (plus one fall-back rule). As table 9 shows, the second-level partition
of syntactic patterns defined by Sun captures a small fraction (22%) of our corpus.

This observation, plus the fact that Sun's rules are not documented in [Sun 2009],
led us to define a different set of rules, and hence a different partition of the input
set, based on different syntactic patterns. We defined thirteen pairwise-disjoint
classes of relation IDs, corresponding to thirteen rules, described in the rest of this
chapter. Table 10 shows the frequency distribution of these classes in our corpus.
Some of the classes we defined generalize some of Sun's second level classes. For
example, our BEZ classes subsumes all Sun's “is+..”classes. Similarly, Our HVZ
classes subsume all Sun's “has+..”classes.

12 Note that the classes are: for example, relation IDs ending with a proposition are actually relation IDs not starting
with “has”, not starting with “is”, and ending with a proposition.

54

relation class by syntactic
pattern

Sun's corpus Our corpus

is + ... + preposition 11.58% 0.01%

is + ... + adjective 0.33% 0.05%

is + ... + noun 0.74% 0.16%

is + to + verb 0.08% 0.0%

has + ... + noun 36.45% 2.16%

has + ... + preposition 0.57% 0.18%

has + ... + adjective 0.16% 0.05%

NP + ... + prep 5.83% 0%

adj + prep 0.82% 0.4%

adj 0.99% 0.4%

noun 14.2% 3.82%

verb 1.15% 0.68%

prep+noun 0.33% 0.41%

noun+noun 9.77% 10.40%

verb+noun 0.9% 2.48%

past participle+prop 0.49% 0.5%

all the rest 15.6% 78%

Table 9: Frequency distribution of the classes
of the second level of Sun's partition of relation IDs by syntactic pattern

3.2 - Rule-based template extraction

Table 10 already shows the names of the transformation rules, but before we can
present the rules one by one in detail, we need to introduce some preliminary,
general information about them. Each of our transformation rules is a function with
an input, a guard condition, and an output. The input of a rule is a tokenized, tagged
and preprocessed relation ID. The guard condition is a condition on the input which
must be met for the rule to be applied. The output is a relation template, as we
defined it in §2.4.2. In the following sections we will first discuss in detail the input of
the rules, in particular the preprocessing operations that come right after the PoS
tagging stage and right before the input is fed to the transformation rules. Then, we
will briefly explain the pattern matching language we use to describe the guard
condition. Next, we will characterize the output of the transformation rules. Finally,
we will present the rules one by one.

3.2.4 Input preprocessing

Before a TT-ID can be fed to a rule, it must be preprocessed by assessing some
general admission requirements and performing two preliminary transformations.
The preprocessing stages are the following, in this sequence:

• discard long input

• discard input with unsupported tags

• remove dangling adverbs

• remove range information

55

relation class by rule name Cumulative
Frequency

Mean Frequency

BEZ 0,31% 3,35%

BEZ Passive 0,04% 0,19%

HVZ Range 3,09% 40,73%

HVZ 0,46% 0,67%

VBZ 5,56% 3,55%

VB 0,53% 0,36%

VBN be 3,58% 2,05%

VBN have 6,78% 0,79%

VBG 1,05% 0,06%

No verbs, no nouns 2,43% 3,64%

Simple NP 38,75% 30,27%

Composite NP 20,95% 7,88%

Dangling adjective 0,75% 0,03%

All the rest 15,72% 6,43%

Table 10: Frequency distribution, in our corpus, of the classes of our partition

Discarding input

As the length of TT-IDs increases, the syntactic structure becomes more complex,
and our approach tends to fail. Instead of returning a useless relation template, we
chose to discard long input altogether, to avoid producing useless templates that the
knowledge engineers, when they inspect the generated templates, will have to
remove nevertheless. Accepted TT-IDs consist of at most eight tagged tokens.

For the same reason, we discard any input TT-ID containing a tag which is not
among the supported ones. The set of supported tags is [1]. In the following parts, we
will also refer to specific families of tags, namely verbs (elements of [2]),
prepositions (elements of [3]), nouns (elements of [4]), adjectives (elements of [5]),
and adverbs (elements of [6]).

[1] Tags := {bez, hvz, vbd, vbz, vb, vbn, vbg, to, in, nn, nns, np, nps, cd, unk,
j j , j js , j j r , od, rb}

[2] Verbs := {bez, hvz, vbd, vbz, vb, vbn, vbg}

[3] Preposit ions := { to, in}

[4] Nouns := {nn, nns, np, nps, cd, unk}

[5] Adject ives := { j j , j js , j j r , od}

[6] Adverbs := {rb}

Removing dangling adverbs

When the input TT-ID fulfils the admission criteria, the first preprocessing operation
to apply on it is to remove adverb tokens which are not attached to any noun. For
example, we want to transform [7] into [8].

[7] manages:vbz Region:nn Directly: rb

[8] manages:vbz Region:nn

 In our system, we assume that this kind of adverbs are to be attached to the main
verb of the clause contributed by the relation. To this end, these tokens have to be
included in the relation template: more precisely, they should be appended at the
beginning of the body of the template, so that they come right after the verb. Later
on in the detailed description of each of the transformation rules we will use the
function adverbs() to retrieve the list of adverbs removed in this way.

The method we designed to collect dangling adverbs is a simple pattern matching on
the tagged tokens. An token tagged rb is not a dangling adverb when it is followed by
a token tagged nn, nns, np, nps, cd or unk. Between the two tokens, any number of
tokens tagged rb or j j may appear.

Removing range information

Many relation IDs contain information about the range of the relation, i.e.
information regarding the kind of objects appearing on the right side of the
connections instantiating the relation13. For example, [9] specifies that the range of
the relation is an organization.

[9] governor:nn for: in organization:nn

13 We assume that each connection instantiating a relation is directed from left to right.

56

3.2 - Rule-based template extraction

Information about the range of a relation may be useful to knowledge engineers to
distinguish relations which would otherwise have the same name. For our purposes
this information is useless (in most cases), and it should be removed: we want to
transform [9] into [10].

[10] governor:nn for: in

The transformation we designed to this end simply removes all the tagged tokens
appearing after the last preposition token or verb token, whichever comes last. This
approach is simple and certainly not perfect. Sometimes it may remove a part of the
TT-ID which should not be removed. For example, in [11] the whole noun phrase
represents the relation, but our transformation turns it in [12], losing the original
meaning. Sometimes the transformation may remove only a part of the TT-ID which
should be removed. For example, in [13] the noun phrase body of water is characterizing
the range of the relation. The purpose of the relation is to model the relation between
a region and a body of water the region is the drainage basin of. Our transformation
turns it in [14], obfuscating the original meaning.

[11] Country:nn Of: in Nationality:nn

[12] Country:nn Of: in

[13] basin:nn Of: in Body:nn Of: in Water:nn

[14] basin:nn Of: in Body:nn Of: in

As it was the case for the dangling adverbs, the tokens removed as range
information are stored for later use, and they are available to the transformation
rules through the function range().

As an aside, many relation IDs contain information about the domain of the relation,
i.e. information regarding the kind of objects appearing on the left side of the
connections instantiating the relation. For example in [15], the domain of the relation
is the set of all the warrants, while the range is the set of persons.

[15] warrant:nn Is:bez For: in The:det Arrest:nn Of:nn

In our design, it is up to the transformation rules to detect and discard this kind of
information.

3.2.5 Pattern matching on TT-IDs

The description of our transformation rules that will follow relies on pattern
matching to describe the guard condition of the rule, as well as to refer to specific
tokens or sub-sequences of the input TT-ID to produce the output. Note that these
patterns are simply a design tool: the system implementation does not use any
dedicated pattern matching language to realize the transformation rules. The syntax
of our patterns uses the syntax introduced in §3.1.2 to represent tagged tokens, plus
a specific syntax to represent lists. A list of elements is represented using square
brackets, with elements separated with commas. The + symbol represents the
concatenation operator.

The patterns we used in these rules are similar in functionality to regular
expressions. Any TT-ID is classified by the pattern as matching or not. If the TT-ID
matches the pattern, portions of the TT-ID matching variables in the pattern are
accessible using the name of the variable as a handle. The equivalent service in
regular expressions is provided by groups defined by parentheses.

57

The simplest pattern on a TT-ID is a single (list-) variable, like [16]: any TT-ID
matches it, and the whole TT-ID will be stored in the only variable Foo . All variable
names, and only variable names, start with an upper-case letter.

[16] Foo

The purpose of our patterns is matching TT-IDs that contain tokens with specific tags
in specific position. The next pattern, [17] matches all TT-IDs which start with a
plural common noun (nns). The token itself will be stored in the (token-) variable Foo ,
while the rest of the TT-ID (i.e. the original TT-ID minus the first token) will be stored
in the variable Bar.

[17] [Foo:nns] + Bar

The next pattern, [18], is matching TT-IDs that contain a token tagged as a
comparative adjective (j j r) followed by a plural common noun (nns). The tokens may
appear anywhere in the TT-ID, including at the beginning or at the end. The variables
Foo and Bar may match the empty list. In case the matching TT-ID contains more than
a couple of contiguous tokens tagged j j r and nns, the variables Adj and Noun will store
the elements of the couple whose elements occur in the list before the elements of
the other couples.

[18] Foo + [Adj: j j r , Noun:nns] + Bar

Patterns may specify that an element in a list is optional. [19] matches all the TT-IDs
that start with a token tagged nns, and in this sense it is equivalent to [17]. However,
if the second token is tagged in , it will be stored in the variable Baz. Otherwise, Baz
will be undefined.

[19] [Foo:nns, Baz: in?] + Bar

The examples presented so far cover all the details needed to understand the
patterns used in the guard conditions of the transformation rules.

3.2.6 Output of the transformation rules

Before we move to present the transformation rules, a note on their output is
necessary. Each rule must ultimately transform a TT-ID into a relation template. We
introduced relation templates in §2.4.2, where we represented them using tables. In
the following, we will use a more compact syntax to describe them. A verb-based
relation template will be presented as in [20]: there, each variable represents a
lexeme (Verb and Proposit ion), or an agreement value (Voice , Tense and Aspect), or a
string (Body). For example, the verb-based relation template described in table 1 of
section §2.4.2 will be represented as [21], where ϵ is the symbol for the empty string.
References to specific lexemes will be represented with using an underlined font (e.g.
be, have). In case the optional preposition is omitted, we will signal this fact using the
symbol ∅.

[20] should Verb Voice:Tense:Aspect Body Preposit ion

[21] should live act ive:present:progressive ϵ with

We will use a similar syntax for noun-based relation templates, with the difference
that the noun lexeme is surrounded by a more evocative context, which gives an idea
of the structure of the clause contributed by the template. A noun-based relation
template will be presented as in [22]: there, the variable Noun contains a lexeme and
the variable Number contains an agreement value.

58

3.2 - Rule-based template extraction

[22] The Noun Number of the … should be

The transformation rules always assume that the relation is functional. This
translates to the fact that the subject of the clause contributed by the template will
always be introduced by a definite article, the. In principle it could be possible to
retrieve information about the functionality of the relation from the ontology where
the relations originate from, but we left this feature aside as an open issue.

3.2.7 Transformation rules

For a rule to be used, its guard condition must be satisfied. The guard conditions are
designed to guarantee that no TT-ID will satisfy the guard conditions of two different
rules at the same time. Therefore, the template extraction algorithm just considers
each of the transformation rules, in their order: if the input TT-ID satisfies the guard
condition of a rule, the algorithm applies the rule, and returns the output relation
template.

In the following, we describe each of the thirteen transformation rules. For each
rule, we will describe its purpose informally using examples, and we will
schematically describe the guard condition and the output relation template. The
guard condition is represented as a list of distinct constraints, all of which must hold
at the same time for the guard condition to be met.

The output relation templates, noun-based or verb-based, contain a reference to a
lexical entry, respectively a noun or a verb. These lexical entries are selected, among
the ones available in the lexicon, to match a specific token (or list of tokens) of the
input TT-ID, designated by the transformation rule. When no lexical entry matches
the designated token (or list of tokens), a new lexical entry is automatically created.
The new lexical entry, be it a noun or a verb, is built using the token (or list of tokens)
itself and its tag (or list of tags). Noun entries created in this way will contain
information only about the singular form of the noun, or only about the plural form,
depending on whether the token (or list of tokens) is tagged as a plural (nns, nps) or
not (nn, np , cd, unk) (in case of a list, the last token is considered). Verb entries
created in this way are canned text decorated with inflection information, or, in other
words, partially specified lexical entries which can be used to produce only a single
inflected form of the verb, as explained in section §2.3.3. A reference to a previously-
existing or to a newly-created lexical entry, matching a specific token, will be
represented in the output as shown in [23], where NounToken is a variable referring
to the token (or list of tokens) used to create the lexical entry through the function
lex.

[23] The lex(NounToken) Number of the … should be

As most TT-IDs contain noun phrases without articles, the transformation rules may
use a function, named det , to append a definite article at the beginning of an input
string, when the string represents a noun phase. [24] shows an application of this
function. If the function is applied to a string which does not represent a noun phrase
(e.g. a single adjective, or the empty string), it returns the input string unchanged.

[24] should give act ive:present:progressive det(DirectObject) to

Sometimes it will be necessary to extract a number value (singular or plural) from a
list of tokens representing a noun phrase. To this purpose, we will use the function
number(X) , which, depending on the tag of the last noun token in the input list X,
returns plural when the tag is (nns, nps) or singular when it is (nn, np, cd, unk).

59

BEZ rule

The BEZ rule is designed to handle TT-IDs where the verb to be is not used as an
auxiliary. [25, 26] are sample preprocessed TT-IDs of this kind.

[25] gene:nn product:nn is:bez physical: j j part:nn of: in

[26] is:bez adjacent: j j to: to

The BEZ rule, fed with [25, 26], produces verb-based relation templates contributing
clauses like [27, 28].

[27] It should be the physical part of ..

[28] It should be adjacent to ..

The implementation of this rule, given in table 11, specifies as a guard condition that
no other token may be tagged with a verb tag, except vbn . Tokens tagged vbn are
allowed everywhere except right after the is:bez token, and they are considered
adjectives. The guard condition also specifies that a preposition should occur at the
end of the preprocessed input. The role of this preposition is to introduce the noun
phrase associated with the node the edge is entering. The rule assumes that the part
before the main verb is information about the domain of the relation, as it occurs to
be in [25]. The article of the noun phrase following the verb is always definite, but in
principle it should be definite only when the relation is functional. The observations
we made in section §3.2.6 about the article in noun-based relation templates apply to
this rule: if the rule could be informed that the relation is not functional, it could
introduce an indefinite article instead of the definite one. For example, instead of [27]
we would have [29].

[29] It should be a physical part of ..

Assuming that the previous stages of the elaboration didn't introduce errors, the
BEZ rule fails when one of its unchecked assumptions is not met, that is:

• when the content of Tai l is not suitable for direct insertion in the target context;

• when the content of Head is not information about the domain;

• when the relation is not functional (e.g. [25]).

60

Guard condition The input matches either the pattern Head + [X:bez, Y:P] or the
pattern Head + [X:bez, Z:Q] + Tai l + [Y:P]

Q is not vbn

P is a preposition tag

Head and Tai l do not contain any token tagged with a verb tag
different from vbn.

Output should be act ive:present:s imple
adverbs() + det([Z:Q] + Tai l) lex([Y:P])

Table 11: Guard and output of the BEZ rule

3.2 - Rule-based template extraction

BEZ Passive rule

The BEZ Passive rule is designed to handle TT-IDs where the verb to be is an auxiliary
in a passive verb. [30, 31] are sample preprocessed TT-IDs of this kind.

[30] is:bez composed:vbn of: in

[31] meat:nn type:nn is:bez made:vbn from: in

The BEZ Passive rule, fed with [30, 31], produces verb-based relation templates
contributing clauses like [32, 33]

[32] It should be composed of ..

[33] It should be made from ..

The BEZ Passive rule accepts preprocessed TT-IDs that contain the token is:bez,
followed by a token tagged vbn , and ending with a preposition. The implementation of
the rule is very similar to the previous one, only the verb is processed differently. Like
BEZ, this rule assumes that the part before the first verb is information about the
domain of the relation, as it occurs to be in [31]. The article added to the tail is
always definite, but there is no guarantee that this choice is the correct one.
Assuming that the previous stages of the elaboration didn't introduce errors, the BEZ
Passive rule fails when one of its unchecked assumptions is not met, that is:

• when the content of Tai l is not suitable for direct insertion in the target context;

• when the content of Head is not information about the domain.

HVZ-Range rule

The HVZ-Range rule is designed to handle TT-IDs where the object of the verb to have

is a characterization of the role of the range in the relation. [34, 35] are sample non-
preprocessed TT-IDs of this kind. We show non-preprocessed TT-IDs because to
produce the relation template, the HVZ-Range rule uses the range information, which
is removed in the preprocessing stage.

[34] has:hvz author:nn

[35] airport:nn has:hvz IATA:unk code:nn

61

Guard condition The input matches the pattern

Head + [X:bez, W:vbn] + Tai l + [Y:P]

P is a preposition tag

Head and Tai l do not contain any token tagged with a verb tag
different from vbn

Output should lex([W:vbn]) passive:present:s imple
adverbs() + det(Tai l) lex([Y:P])

Table 12: Guard and output of the BEZ-passive rule

The HVZ-Range rule, fed with [34, 35], produces noun-based relation templates
contributing clauses like [36, 37].

[36] Its author should be ..

[37] Its IATA code should be ..

For this kind of input, we want to produce noun-based relation templates using the
range information. In [34, 35] the noun phrase following the verb has does not contain
prepositions. This is not always the case: there are some non-preprocessed IDs where
the information about the range after the token has:hvz is a complex noun phrase
containing one or more prepositions. This is the case for example in [38]. However,
there is another class of TT-IDs similar in syntax to [38] where the noun phrase
following has does not contain only information about the range but also information
characterizing the relation itself. [39] is a non-preprocessed example of this kind. The
range information in [39] is organization:nn , and [39] should contribute a clause
structure like [40].

[38] has:hvz number:nn of: in columns:nns

[39] has:hvz voting:nn rights:nns in: in organization:nn

[40] It should have voting rights in ..

Unfortunately, the syntactic structure of [41] is the same of [40], and therefore we
have no way to distinguish the two. If we transformed them both in the same way, in
the way we treated [36, 37], we would transform [41] in [43], which is plain wrong.

[41] Its voting rights in organization should be ..

Ideally, the last three tokens of [38] would have been removed at the last stage of
preprocessing, when the information about the range is removed. In practice, our
range removal algorithm is very simple, and it proceeds backwards, removing tokens
until a verb or a preposition is found. Therefore, it will handle [38] and [39] in the
same way. Since there is no way to distinguish [38] from [39] using the information
we possess, and since TT-IDs like [39] are more frequent in our corpus than TT-IDs
like [38], we chose to forget about TT-IDs like [38]. To do so, we specify in the guard
condition of the HVZ-Range rule that the input preprocessed TT-ID contains the verb
in last position. This is equivalent to specify that the tokens following the verb do not
contain any preposition, and therefore they are removed during preprocessing, as
range information. Like BEZ, this rule assumes that the part before the main verb is
information about the domain of the relation, as it occurs to be in [35].

Assuming that the previous stages of the elaboration didn't introduce errors, the
HVZ-Range rule fails when one of its unchecked assumptions is not met, that is:

62

Guard condition The input matches the pattern Head + [X:hvz]

Head does not contain any token tagged with a verb tag
different from vbn

range() is not empty

Output The lex(range()) number(range()) of the … should be

Table 13: Guard and output of the HVZ-Range rule

3.2 - Rule-based template extraction

• when the content of range() is not suitable for direct insertion in the target
context;

• when the relation is not functional (e.g. [42]);

• when the content of Head is not information about the domain.

[42] family:nn has:hvz member:nn

HVZ rule

The HVZ rule is designed to handle TT-IDs where the verb to have is not used as an
auxiliary, and its object, if any, does not characterize the role of the range in the
relation. [43, 44] are sample non-preprocessed TT-IDs of this kind. We show non-
preprocessed TT-IDs because we want to highlight that, unlike the HVZ-Range rule,
the HVZ rule discards range information.

[43] has:hvz voting:nn rights:nns in: in organization:nn

[44] has:hvz access:nn to: in account:nn

The HVZ rule, fed with [43, 44], produces verb-based relation templates contributing
clauses like [45, 46].

[45] It should have voting rights in ..

[46] It should have access to ..

For this kind of input, we want to discard range information and keep the rest as
either the direct object or a complement to a form of the verb to have. The
implementation of this rule assumes that the range information has been already
removed during preprocessing, and therefore that the tokens appearing after the
has:hvz token are not range information. The rule therefore specifies, in the guard
condition, that there should be a preposition at the end of the last token of the input.
This preposition is used to introduce the noun phrase associated with the node the
edge is entering. We have already seen that our range extraction method is not
reliable, and this causes this rule to process incorrectly input like [38]; however we
accepted this limitation. Like BEZ, this rule assumes that the part before the main
verb is information about the domain of the relation.

Assuming that the previous stages of the elaboration didn't introduce errors, the
HVZ rule fails when one of its unchecked assumptions is not met, that is:

• when the content of Tai l is not suitable for direct insertion in the target context;

• when the content of Head is not information about the domain.

63

Guard condition The input matches the pattern Head + [X:hvz] + Tai l + [Y:P]

P is a preposition tag

Head and Tai l do not contain any token tagged with a verb tag
different from vbn

Output should have act ive:present:s imple adverbs() + Tai l lex([Y:P])

Table 14: Guard and output of the HVZ rule

VBZ rule

The VBZ rule is designed to handle TT-IDs that contain a simple present, third
person singular active verb. [47, 48, 49] are sample preprocessed TT-IDs of this kind.

[47] drug:nn interacts:vbz with: in

[48] flows:vbz into: in

[49] graph:nn depicts:vbz

The VBZ rule, fed with [47, 48, 49], produces verb-based relation templates
contributing clauses like [50, 51, 52].

[50] It should interact with ..

[51] It should flow into ..

[52] It should depict ..

We want to process this input in the same way the HVZ rule processes its input. The
VBZ rule accepts preprocessed TT-IDs that contain exactly one token tagged vbz. The
tokens following the verb are used as the body of the output relation template,
possibly with a definite article in front of it. Like BEZ, this rule assumes that the part
before the main verb is information about the domain of the relation.

Assuming that the previous stages of the elaboration didn't introduce errors, the
HVZ rule fails when one of its unchecked assumptions is not met, that is:

• when the content of Tai l is not grammatical for our purposes, e.g. [53];

• when the article introduced in the tail is the wrong one, e.g. [54] which becomes
[55];

• when the content of Head is not information about the domain.

[53] Holds:vbz underspecified: j j

[54] possesses:vbz copy:nn of: in

[55] it should possess the copy of ..

VB rule

The VB rule is designed to handle TT-IDs that contain a simple present, non-third
person singular verb used transitively. [56] is a sample preprocessed TT-ID of this
kind.

[56] generate:vb phrase:nn

64

Guard condition The input matches the pattern Head + [X:vbz] + Tai l + [Y:P?]

If P is defined, P is a preposition tag

Head and Tai l do not contain any token tagged with a verb tag
different from vbn

Output should lex([X:vbz]) act ive:present:s imple
adverbs() + det(Tai l) lex([Y:P])

Table 15: Guard and output of the VBZ rule

3.2 - Rule-based template extraction

The VB rule, fed with [56], produces verb-based relation templates contributing
clauses like [57].

[57] It should generate ..

The implementation of the VB rule discards all TT-IDs which, after preprocessing,
contain something besides the verb. Assuming that the previous stages of the
elaboration didn't introduce errors, the VB rule will not fail.

VBN-Be rule

The VBN-Be rule is designed to handle TT-IDs that contain a past participle which
can be interpreted as a fragment of a passive verb form. [58, 59] are sample
preprocessed TT-IDs of this kind.

[58] ordered:vbn by: in

[59] intended:vbn for: in consumption:nn by: in

The VBN-Be rule, fed with [58, 59], produces verb-based relation templates
contributing clauses like [60, 61].

[60] It should be ordered by ..

[61] It should be intended for consumption by ..

Unfortunately, there is another class of TT-IDs that contain a token tagged vbn which
cannot be interpreted in this way, e.g. [62] (not preprocessed). [62] should be
transformed into a verb-based relation template to contribute a clause like [63].

[62] targeted:vbn industry:nn

[63] It should have targeted ..

In order to capture only the occurrences of tokens tagged vbn which are part of a
passive verb form, we require that a preposition follows the vbn token immediately.
Passive verb forms do not take direct objects, therefore TT-IDs like [62] are not
accepted by the rule. However, this does not exclude the case that the past participle
is an abbreviation of an active past verb form. For example [64], cannot be
considered a passive form because the verb is intransitive. Verbs which can be used
both in transitive and intransitive form like [65] may also be problematic in that the
knowledge engineer may have intended them as active instead of passive. So, while
[64] must eventually contribute a clause like [66], [65] is ambiguous, and may
contribute [67] or [68].

[64] travelled:vbn to: in

[65] killed:vbn with: in

[66] It should have travelled to ..

[67] It should have killed with a knife

[68] It should be killed with a knife

65

Guard condition The input matches the pattern [(X:vb)]

Output should lex(X:vb) act ive:present:s imple adverbs() ϵ ∅

Table 16: Guard and output of the VB rule

Regarding input like [64], we must say that in principle it would be possible to look
up linguistic resources to find whether a verb can only be used intransitively.
However, while in our corpus such TT-IDs do appear, they are much less frequent
than TT-IDs which can be interpreted as fragments of passive verb forms. For what
concerns [65], even if we had information about the transitivity of the verb in
general, that information would not be enough to solve the ambiguity. Our decision
regarding this issue is: we interpret all of them as fragments of passive verb forms,
and accept the fact that the rule will fail on certain input.

The VBN-Be rule accepts preprocessed TT-IDs that contain exactly one token tagged
vbn , followed by a token tagged with a preposition tag. Like BEZ, this rule assumes
that the part before the main verb is information about the domain of the relation.
This information is always discarded. The output we want to produce for this input is
similar to the one produced by the BEZ-Passive rule.

Assuming that the previous stages of the elaboration didn't introduce errors, the
VBN-Be rule fails when one of its unchecked assumptions is not met, that is:

• when the content of Tai l is not suitable for direct insertion in the target context,
e.g. [69];

• when the content of Head is not information about the domain;

• when the verb is intransitive or when it was intended as used intransitively, e.g.
[64, 65].

[69] connected:vbn along: in inside: in

VBN-Have rule

The VBN-Have rule is designed to handle TT-IDs that contain a past participle which
can be interpreted as a fragment of an active verb form. [70, 71, 72] are sample non-
preprocessed TT-IDs of this kind. We show non-preprocessed TT-IDs because the
preprocessed versions of these TT-IDs are harder to understand out of context.

[70] lock:nn requested:vbn

[71] supervised:vbn action:nn

[72] sent:vbn text:nn message:nn to: in

The VBN-Have rule, fed with [70, 71, 72], produces verb-based relation templates
contributing clauses like [73, 74, 75].

[73] It should have requested ..

[74] It should have supervised ..

[75] It should have sent a message to ..

66

Guard condition The input matches the pattern Head + [X:vbn, Y:P] + Tai l

P is a preposition tag

Head and Tai l do not contain any token tagged with a verb tag

Output should lex([X:vbn]) passive:present:s imple
Tai l + adverbs() lex([P:Y])

Table 17: Guard and output of the VBN-Be rule

3.2 - Rule-based template extraction

We implemented the VBN-Have rule following the observations we reported in the
description of the VBN-Be rule. While some TT-IDs of this class are being incorrectly
captured by the VBN-Be rule, e.g. [64, 65], the VBN-Have rule handles all the
remaining TT-IDs. These are all the TT-IDs containing a single verb token, tagged vbn ,
such that the token following it, if any, is not a preposition. Unlike BEZ and many
other rules, this rule assumes that the part before the main verb is information about
the range of the relation, but only when range() is empty. Range information is
discarded, as usual.

Assuming that the previous stages of the elaboration didn't introduce errors, the
VBN-Have rule fails when one of its unchecked assumptions is not met, that is:

• when the content of Tai l is not suitable for direct insertion in the target context,
e.g. [76];

• when the content of Head is not information about the domain;

• when the verb is not a part of an active verb form but a simple verbal adjective,
e.g. [77].

[76] connected:vbn along: in inside: in

[77] correlated:vbn structures:nns

VBG rule

The VBG rule is designed to handle TT-IDs that contain a present participle which
can be interpreted as a fragment of a present progressive verb. [78, 79] are sample
non-preprocessed TT-IDs of this kind. We show non-preprocessed TT-IDs because to
produce the relation template, the VBG rule uses the range information, which is
removed in the preprocessing stage.

[78] process:nn running:vbg on: in

[79] communicating:vbg by: in means:nn of: in

The VBG rule, fed with [78, 79], produces verb-based relation templates contributing
clauses like [80, 81].

[80] It should be running on ..

[81] It should be communicating by means of ..

The VBG rule accepts preprocessed TT-IDs that contain exactly one token tagged vbg
which is not followed by any noun. The condition is set to prevent interpreting
adjectival participles like [82] as incomplete verbs, yielding [83], which would be
wrong. This comes at the cost of losing TT-IDs like [84], which has the same structure
as [82] but which can still be handled in the same way [78, 79] are handled.

67

Guard condition The input matches the pattern Head + [X:vbn, Y:P?] + Tai l

If P is defined, P is not a preposition tag

Head and Tai l do not contain any token tagged with a verb tag

Output should lex([X:vbn]) act ive:past :s imple
adverbs() + det([Y:P] + Tai l) ∅

Table 18: Guard and output of the VBN-Have rule

[82] founding:vbg member:nn

[83] It should be founding ..

[84] using:vbg program:nn

The guard condition reported in table 19 forbids a token tagged as noun to follow
the token tagged vbg . The guard is complicated because it also forbids that a noun in
the range follows the vbg token the end of the preprocessed TT-ID. Unlike BEZ, this
rule assumes that the part before the main verb is information either about the
domain or the range of the relation. This information is always discarded.

Assuming that the previous stages of the elaboration didn't introduce errors, the
VBG rule fails when one of its unchecked assumptions is not met, that is:

• when the content of Tai l is not suitable for direct insertion in the target context;

• when the content of Head is not information about the domain, e.g. [85];

[85] attempt:nn at: in performing:vbg

No verbs, no nouns rule

The No-Verbs-No-Nouns rule is designed to handle TT-IDs which do not contain verbs
or nouns. [86, 87] are sample preprocessed TT-IDs of this kind.

[86] adjacent: j j to: in

[87] before: in

The No-Verbs-No-Nouns rule, fed with [86, 87], produces verb-based relation
templates contributing clauses like [88, 89].

[88] It should be adjacent to ..

[89] It should be before ..

In preprocessed TT-IDs like [86, 87] the contribution of the relation we plan to
extract is either a preposition or an adjective. Among the TT-IDs in this class, only
those which end with a preposition token can be used to build a sentence. This token
should be a preposition for the same reason explained in the BEZ rule: to introduce
the noun phrase associated with the node the edge is entering. Our rule further
constrains the tokens which have been removed during preprocessing.

68

Guard condition The input matches the pattern Head + [X:vbg, Y:G] + Tai l +
[Z:P?] or the pattern Head + [X:vbg, Z:P?]

If the input matches the second pattern and P is undefined,
either range() is empty or it matches [W:G] + Rest

G is not a noun tag, nor it is unk

If P is defined, P is a preposition tag

Head and Tai l do not contain any token tagged with a verb tag

Output should lex([X:vbg]) act ive:present:progressive
adverbs() + det([Y:G] + Tai l) lex([Z:P])

Table 19: Guard and output of the VBG rule

3.2 - Rule-based template extraction

Assuming that the previous stages of the elaboration didn't introduce errors, the No-
Verbs-No-Nouns rule may fail when an adjective in the input referred to a noun which
was removed during preprocessing.

Simple NP rule

The Simple-NP rule is designed to handle TT-IDs which consist of a characterization
of the role of the range in the relation. [90, 91] are sample preprocessed TT-IDs of
this kind.

[90] scientific: j j name:nn

[91] uml:unk specification:nn

The Simple-NP rule, fed with [90, 91], produces noun-based relation templates
contributing clauses like [92, 93].

[92] Its scientific name should be ..

[93] Its UML specification should be ..

The implementation of this rule simply accepts input all TT-IDs which contain a
noun, no verbs and no prepositions to produce a noun-based relation template. If the
input contains a dangling adjective, the input is discarded. A dangling adjective is a
token tagged with an adjective tag which is not followed by any token tagged with a
noun tag. Between the adjective and the noun any number of adjectives and adverbs
may appear.

Assuming that the previous stages of the elaboration didn't introduce errors, the
Simple-NP rule fails when the relation is not functional, e.g. [94].

[94] brother:nn

69

Guard condition The input matches the pattern Head + [Y:P]

P is a preposition tag

Head does not contain any token tagged with a verb or noun tag

Output should be act ive:present:s imple
det(Head) + adverbs() lex([X:P])

Table 20: Guard and output of the No-Verbs-No-Nouns rule

Guard condition The input matches the patterns Head + [X:N] + Tai l

N is a noun tag

Head and Tai l do not contain any token tagged with a verb tag
or with a preposition tag, and they do not contain dangling
adjectives

Output The lex(Head + [X:N] + Tai l) number(Head + [X:N] + Tai l) of the …
should be

Table 21: Guard and output of the Simple-NP rule

Composite NP rule

The Composite-NP rule is designed to handle TT-IDs which consist of a
characterization of the role of the domain in the relation. [95, 96] are sample
preprocessed TT-IDs of this kind.

[95] product:nn of: in

[96] coastal: j j zone:nn of:nn

The Composite-NP rule, fed with [95, 96], produces verb-based relation templates
contributing clauses like [97, 98].

[97] It should be the product of ..

[98] It should be the coastal zone of ..

The implementation of this rule simply accepts input all TT-IDs which contain no
verbs but contain a noun and a preposition, and uses this input as the predicate
nominal of a verb-based relation template. If the input contains a dangling adjective,
the input is discarded. As explained earlier, a dangling adjective is a token tagged
with an adjective tag which is not followed by any token tagged with a noun tag.

Assuming that the previous stages of the elaboration didn't introduce errors, the
Composite-NP rule fails when the relation is not functional, e.g. [99].

[99] biography:nn of: in

For this kind of TT-ID the range removal method is subject of the same sort of errors
that we encountered in HVZ-Range, that is, it may remove only part of the range. For
example, from [100] the preprocessing stages produce [101] which the Composite-NP
transforms into a verb-based template that contributes the clause [102], which does
not convey the original meaning of the relation.

[100] point:nn of: in sale:nn

[101] point:nn of: in

[102] It should be the point of ..

Dangling Adjective rule

The Dangling-Adjective rule is designed to handle TT-IDs that contain a noun and a
dangling adjective. [103, 104] are sample non-preprocessed TT-IDs of this kind. We
show non-preprocessed TT-IDs because the preprocessed versions of these TT-IDs are
harder interpret out of context.

70

Guard condition The input matches the patterns Head + [X:N] + Tai l + [Y:P]

Head and Tai l do not contain any token tagged with a verb tag,
and they do not contain dangling adjectives

N is a noun tag

P is a preposition tag

Output should be act ive:present:s imple det(Head + [X:N] + Tai l)+adverbs()
lex([Y:P])

Table 22: Guard and output of the Composite-NP rule

3.2 - Rule-based template extraction

[103] background:nn relevant: j j to: in conclusion:nn

[104] vulnerable: j j to: in attack:nn with: in type:nn

The aim of the rule is to use the adjective and anything following it to build a
predicate nominal. The tokens before the adjective are always considered information
about the domain of the relation, like in [105]. The Dangling-Adjective rule, fed with
[103, 104], produces verb-based relation templates contributing clauses like [105,
106].

[105] It should be relevant to ..

[106] It should be vulnerable to attack with ..

The implementation of this rule simply accepts all preprocessed TT-IDs containing a
noun and a dangling adjective and ending with a preposition. The preposition is
required for the same reason explained in the BEZ rule: to introduce the noun phrase
associated with the node the edge is entering. TT-IDs containing dangling adjectives
but not containing nouns are handled by the No-Verbs-No-Nouns rule.

Assuming that the previous stages of the elaboration didn't introduce errors, the
Dangling-Adjective rule fails when one of its unchecked assumptions is not met, that
is:

• when the content of Tai l is not suitable for direct insertion in the target context;

• when the content of Head is not information about the domain.

3.2.8 Evaluation

In order to evaluate the system, we collected some relation identifiers from a few
ontologies that were not included in our corpus, we ran our system and we assessed
how many of the generated templates would be suitable for direct use in the Query
Tool NLI. Evaluating whether a template matches the intended meaning of the
relation is in general a hard task. While several templates can be easily classified as
correct or wrong models of the textual representation of a relation, in many other
situations it is not straightforward to do so, especially when the relation ID contains
abbreviations and unknown words, or anyhow when the meaning of the relation is not
clear to the evaluator. A small number of specialistic terms and abbreviations may be
reasonable in the textual representation of highly domain-specific relations. However,
with no further information available, it is hard to evaluate whether a domain expert
would find the generated text acceptable. The following examples, taken from our

71

Guard condition The input matches the pattern Head + [X:J] + Tai l + [Z:P]

P is a preposition tag

Head contains a token tagged with a noun tag

J is an adjective tag, and X is a dangling adjective – i.e. Tai l
does not contain any token tagged with a noun tag

Head and Tai l do not contain any token tagged with a verb tag

Output should be act ive:present:s imple be [X:J] + Tai l lex([Z:P])

Table 23: Guard and output of the Dangling-Adjective rule

corpus, illustrate this point. While [107-110] are reasonable representations of the
corresponding relations (not shown here), [111] and [112] are probably not.

[107] Its address text nc should be ..

[108] It should be an agreement feature for ..

[109] Its airline iata carrier code should be ..

[110] It should be a host db name for ..

[111] Its altitude angle predicate fn nad 83 should be ..

[112] Its launch afld afsd should be ..

In order to avoid this problem, we chose the relations to use for evaluation from
ontologies dealing with relatively simple domains: more precisely, we used some of
the ontologies developed by OrdnanceSurvey, the national mapping agency of Great
Britain, plus the ontology of the Pizza Tutorial by Manchester University. These
ontologies in total contribute 64 unique relations.

The evaluation procedure was the following: since some relation IDs contained an
additional namespace encoded right before the relation, we preprocessed the
relations to remove this information. Next, we automatically generated relation
templates from these relation IDs. Finally we inspected the generated templates to
evaluate whether they would be usable to generate text or whether they need some
further care. Each template was given a positive or negative mark. The result of this
evaluation is that for 48 out of 64 relations (75%) the generated template is suitable
for direct use with the Query Tool NLI. Table 24 shows the 64 relation IDs together
with a sample text generated using the templates produced by our system.

This specific test sample highlights that the syntactic structure of the relation IDs is
quite simple, but the part of speech tagging task is challenging. For example, flows,
gushes, feeds are interpreted as nouns instead of verbs. Another kind of frequent error is
the misinterpretation of a relation as functional. For example, isPartOf is represented
by the system with [115], whereas [116] would be the correct way. The same happens
for hasStorey , is IngredientOf , hasTopping .

[113] It should be the part of ..

[114] It should be a part of ..

Another notable error is the failed representation of hasCountryOfOrig in , where the
preprocessing wrongly interpreted origin as range information, a problem that we
described in §3.2.4. In two instances the procedure failed to produce any template
because the part of speech tagger assigned a tag which our approach does not
handle (rp , for particle). This evaluation did not produce exciting results, but the
errors reported are encouraging in that they hint at the areas in need of an
improvement.

Relation ID Realized template Evaluation

by It should be by .. +

contains It should contain .. +

direct lyContains It should contain directly .. +

drains One of its drains should be .. -

72

3.2 - Rule-based template extraction

emits One of its emits should be .. -

enables It should enable .. +

feeds One of its feeds should be .. -

f lows It should be flows .. -

f lowsDuring It should flow during .. +

f lowsFrom It should flow from .. +

f lowsIn It should flow in .. +

f lowsInto It should flow into .. +

f lowsOver It should flow over .. +

f lowsUnder It should flow under .. +

for template generat ion fa i led -

f rom It should be from .. +

gushes Its gushes should be .. -

hasAddress Its address should be .. +

hasBase Its base should be .. +

hasCNSCode Its cns code should be .. +

hasCUKCode Its cuk code should be .. +

hasCircularCurrent Its circular current should be .. +

hasCountryOfOrig in It should have country of .. -

hasCurrent Its current should be .. +

hasFlow Its flow should be .. +

hasFootpr int Its footprint should be .. +

hasGORCode Its gor code should be .. +

hasHistor icInterest Its historic interest should be .. +

hasHistor icPurpose Its historic purpose should be .. +

hasIngredient Its ingredient should be .. -

hasLinearForm Its linear form should be .. +

hasName Its name should be .. +

hasPart Its part should be .. -

hasPurpose Its purpose should be .. +

hasQUACode Its qua code should be .. +

hasSpiciness Its spiciness should be .. +

hasStorey Its storey should be .. -

hasTopping Its topping should be .. -

isAdjacentTo It should be adjacent to .. +

73

isBaseOf It should be the base of .. +

isCarr iedOutBy template generat ion fa i led -

isConnectedTo It should be connected to .. +

isContainedIn It should be connected in .. +

isControl ledBy It should be controlled by .. +

isEdgeOf It should be the edge of .. +

isFedBy It should be fed by .. +

isIngredientOf It should be the ingredient of .. -

isLedBy It should be led by .. +

isLocatedAt It should be located at .. +

isLocatedBehind It should be located behind +

isLocatedIn It should be located in .. +

isLocatedNear It should be located near .. +

isLocatedOn It should be located on .. +

isLocatedUnder It should be located under .. +

isOperatedBy It should be operated by .. +

isOwnedBy It should be owned by .. +

isPartOf It should be the part of .. -

isSaturatedBy It should be saturated by .. +

isSubjectTo It should be the subject to .. -

isToppingOf It should be the topping of .. +

of It should be of .. +

operatesDuring It should operate during .. +

requires It should require .. +

spans Its spans should be .. -

Table 24: Evaluation data

74

4 - Conclusion

4 Conclusion

In this thesis, we have been discussing the development of a natural language
interface to knowledge bases on NLG techniques. We have presented Query Tool, a
query interface framework relying on description logics reasoners. The Query Tool
interaction model prevents the user from building unsatisfiable queries and at the
same time allows the users to explore the content and the capabilities of the KB.

We described the development of the natural language interface of Query Tool, which
relies on a NLG system to produce the textual representation of the query. Our
system uses NLG to represent the whole query, along with all the elements which the
user can use to refine it, as English text. The generated text is enriched with links
that connect it to the underlying logical form of the query. This allows the user to
operate on the query simply by editing English text.

Before discussing the design of the interface itself, we reviewed the requirements
and we compared our requirements with related work in the literature. Then, we
presented the design of the syntax of the generation language. We selected the
syntactic features of the language on the basis of the data available in corpus of
relation ID. Our goal was to keep the system simple while still being expressive
enough to allow the representation in natural language of most of the relations in the
corpus.

Next, we discussed the templates mechanism. Our generator is not tailored to any
specific knowledge domain. On one hand, this means that it can be used to interface
any KB. On the other hand, this also means that it is simple enough to be useful in
any context, and it does not come with all the resources needed to generate text out-
of-the-box. To use it with a specific KB, the system must be provided with a lexicon
and a template map. The lexicon contains the words to be used in the generated text.
The template map is the bridge between the natural language and the knowledge
representation language: it associates each atomic concept and each relation with a
generation template. Each such template contains the syntactic and lexical
information necessary to generate a fragment of text representing the associated
concept or relation. System engineers deploying the Query Tool NLI must craft both
the lexicon and the template, and this task with an understanding of the target KB
and of basic notions of linguistics such as verb tenses, noun genders and countability.
In order to ease the burden of developing these resources, we experimented with a
rule-based technique to have the system generate them automatically. In addition, we
experimented with a data-based approach to gather additional linguistic information
regarding a relation. This information can be fed to the system based on the previous
technique when the relation ID is not informative or however not useful.

The first technique mines a corpus for linguistic expressions that describe a given
relation. To this purpose, the it requires some initial data regarding the elements
which are connected by this relation. The retrieved expressions can either be
suggested to the user, which will likely find an appropriate pick to hand-craft a new
template, or used to feed the next technique. This solution is especially useful when
the second technique fails to process the relation ID.

75

The second technique allows to produce the resources necessary to configure our
NLI for use with new relations of a KB, using as a source of data the relation IDs of
KB's ontology. However, the process is not completely reliable, and therefore systems
engineers must review the result and make the necessary corrections. We described
the technique to handle relation IDs, but the technique in principle could be adapted
to handle concept IDs as well.

We evaluated this second technique against 64 unique relations collected from real
ontologies, with the result that for 48 out of 64 relations (75%) the technique
generates a template suitable for direct use with the Query Tool NLI. This evaluation
suggests that while the generation of the template map is far from being reliable, it
can speed up the work of systems engineers, who do not need to create the whole
map from scratch, but only have to review the generated map and repair any error.
This improves the portability of the Query Tool NLI, as it is faster to configure to
work with a new KB. Our evaluation suggests that, when used to retrieve a linguistic
expressions for a target relation among those our system can handle, in 22% of the
cases, our system will return one or more correct results, out of five. In 55% of the
cases, it will return no expressions, and in the remaining 27% of the cases, it will
return a list of useless expressions. While the scope of our experiment was limited to
a certain subset of relations, our evaluation suggests that this techniques can, in a
limited way, support the process of configuration of the Query Tool NLI.

4.1 Open issues and future work

In general, this work has suggested that recent advances in description logics allow
for more intelligent menu-based natural language interfaces. Moreover, our
experiments have shown that there are untapped resources which can be used to
improve the ease of deployment of natural language interfaces to databases.

An interesting but challenging open question which this experiment indirectly
suggests is whether the same ideas could be applied to a controlled natural language
editor: in particular, whether it could be possible to introduce reasoning capabilities
to controlled natural language editors, which by norm use syntax to restrict the
possible completions of sentences and queries. Also, it would be interesting to know
whether the techniques that we designed to improve the portability of our system
could be applied to improve the portability of a system based on a controlled natural
language.

4.1.1 Natural Language Generator

A missing feature of the NLG system is the lack of support for adjectives in nominal
predicates. This leads to sentences like [1] in place of [2].

[1] The tea is a black thing.

[2] The tea is black.

Another elegant addition would be a better support for pronouns, to realize
sentences like [3] in place of [4].

[3] I am looking for something black.

[4] I am looking for a black thing.

76

4.1 - Open issues and future work

Late in the design stage, a problem arose regarding certain sentences which appear
as a result of the addition of a new node to a query. The problem involves the concept
selected as label of the new node, and the relation used as label of the edge. When
the concept happens to be the natural range of the relation, i.e. the concept which
describes exactly all the elements that can take part to the relation, the generator
will produce sentences like [5] and [6]. Both these sentences are not informative, in
that they do not convey meaning when interpreted literally. This is strikingly obvious
in [6]. The role of these sentences in the Query Tool interaction model is on one hand
to allow the user to specify, in a later stage, further information about the new node
inserted, and on the other hand, to state that the element represented by the node
actually exists. For example, omitting [6] in a query specification may eventually
retrieve cars which do not have any engine, if such cars were represented in the KB.

[5] The mother of the girl should be a person.

[6] The engine of the car should be an engine.

Last but not least, while not necessarily an issue, the referring expressions
generator is rather naïve, and there is certainly room for improvement.

4.1.2 Template generator

The only issue with the rule-based template generator we plan to address involves
the distinction of functional relations when generating noun-based templates.
Information regarding functionality of relations is not available to the rule-based
technique, but it may be possible to obtain it. Currently, the technique assumes that
all relations are functional, and therefore the article produced for noun-based
templates is always definite even in situations where it should not be, e.g. in [7].

[7] The parent of the boy should be a doctor.

An area of improvement could be an effort to modify the generator to reuse existing
lexical resources.

77

Acknowledgements

I would like to thank all the people who contributed to this work with ideas,
criticisms, experience, support, encouragement, and trust: my supervisors Gertjan
van Noord and Enrico Franconi, but also Gosse Bouma, Xiantang Sun, Chris Mellish,
Sergio Tessaris, Paolo Dongilli, Paolo Guagliardo, Laura Perez, and to the participants
of the CNL 2009 workshop. A special thanks to Richard Power for giving the talk
which eventually led me to join to this project – even if he doesn't know that.

I would like to thank the EM-LCT team, in particular Gisela Redeker and Raffaella
Bernardi, and with them the University of Groningen and the University of Bolzano.
They took care of all the details and arranged everything to make all this not only
possible but even pleasurable.

Finally, I would like to thank my family, my girlfriend and my friends. It is because
they took care of me that I could spend my time in working on what I like.

Thank you!

lxxviii

Appendix 1: Graphical User Interface

As part of a different project ([Trevisan 2009]), we developed a Web-based graphical
user interface for Query Tool that showcases the NLI we described in this thesis.
Illustration 19 shows a screenshot of the software. The shot was taken while a menu
containing compatibles and properties which are available for addition. The
underlying ontology was developed internally by a different team, and the linguistic
resources have been automatically generated from the ontology using the techniques
discussed in this thesis. One may notice that the template generator failed to pick the
appropriate indefinite article for used car.

lxxix

Illustration 19: Screenshot of the graphical user interface of Query Tool

References

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural language
interfaces to databases - An introduction. Journal of Natural
Language Engineering, 1, 29-81.

Bernstein, A. & Kaufmann E. (2006). GINO - A guided input natural language
ontology editor. In proceedings of ISWC 2006: The 5th
International Semantic Web Conference, 144-157.

Bernstein, A., Kaufmann, E., Göhring, A., & Kiefer. C. (2005). Querying ontologies: A
controlled English interface for end-users. In proceedings of
ISWC 2005: The 4th International Semantic Web Conference,
112-126.

Dongilli, P. (2008). Natural language rendering of a conjunctive query. (KRDB
Research Centre Technical Report No. KRDB08-3). Bozen, IT:
Free University of Bozen-Bolzano.

Dongilli, P., Franconi, E., & Tessaris, S. (2004). Semantics driven support for query
formulation. In proceedings of DL 2004: The 2004 International
Workshop on Description Logics, 112-122.

Guagliardo, P. (2008). An ontology based visual tool for query formulation support:
theoretical foundations. (KRDB Research Centre Technical
Report). Bozen, IT: Free University of Bozen-Bolzano.

Guagliardo, P. (2009). Theoretical foundations of an ontology-based visual tool for
query formulation support. (KRDB Research Centre Technical
Report No. KRDB09-5). Bozen, IT: Free University of Bozen-
Bolzano.

Hallett, C., Scott, D., & Power, R. (2007). Composing questions through conceptual
authoring. Computational Linguistics, 33 (1), 105-133.

Ittoo, A, & Bouma, G. (2009) Semantic selectional restrictions for disambiguating
meronymy relations. In proceedings of CLIN09: The 19th
Computational Linguistics in the Netherlands meeting, to appear.

Kuhn, T. (2009). How controlled English can improve semantic wikis. In proceedings
of SemWiki2009: The Fourth Workshop on Semantic Wikis.
Retrieved from http://ceur-ws.org/Vol-464/paper-03.pdf.

Lin, D. & Pantel, P. (2001). Discovery of inference rules for question answering.
Natural Language Engineering, 7 (4), 343-360.

de Marneffe, M. & Manning, C. D. (2008) The Stanford typed dependencies
representation. In proceedings of Coling 2008: The workshop on
Cross-framework and Cross-domain Parser Evaluation, 1-8.

Mellish, C. & Sun, X. (2005). The Semantic Web as a linguistic resource:
opportunities for natural language generation. Knowledge Based
Systems 19 (5), 298–303.

Mueckstein, E. M. (1985). Controlled natural language interfaces (extended
abstract): the best of three worlds. In proceedings of: The 1985

lxxx

ACM thirteenth annual conference on Computer Science, 176-
178.

Nguyen, D. P. T., Matsuo, Y., & Ishizuka, M. (2007). Relation extraction from
wikipedia using subtree mining. In proceedings of AAAI-07: The
Twenty-Second Conference on Artificial Intelligence, 22 (2),
1414-1420.

Perez, L. H. (2009). Intelligent query interface: adding natural language support.
(KRDB Research Centre Technical Report). Bozen, IT: Free
University of Bozen-Bolzano.

Power, R., Scott, D., & Evans, R. (1998). What you see is what you meant: direct
knowledge editing with natural language feedback. In
proceedings of ECAI 98: the 13th Biennial European Conference
on Artificial Intelligence, 675-681.

Ranta, A. (2004). Grammatical Framework: A type-theoretical grammar formalism.
Journal of Functional Programming, 14 (2), 145-189.

Reiter, E., & Dale, R. (1997). Building Applied Natural Language Generation
Systems. Journal of Natural Language Engineering

Reiter, E., & Dale, R. (2000). Building Natural Language Generation Systems.
Cambridge University Press.

Sun, X. (2009). Unpublished doctoral dissertation draft. University of Aberdeen.

Sun, X., & Mellish C. (2007). Domain independent sentence generation from RDF
representations for the Semantic Web. In proceedings of
ECAI'06: Proceedings of the Eleventh European Workshop on
Natural Language Generation, 105-108.

Thompson, C. W., Pazandak, P., & Tennant, H. R. (2005). Talk to your semantic web.
IEEE Internet Computing, 9 (6), 75-78.

Trevisan, M. (2008). A natural language generator for QueryTool. (KRDB Research
Centre Technical Report). Bozen, IT: Free University of Bozen-
Bolzano.

Trevisan, M. (2009). A natural language interface for QueryTool. (KRDB Research
Centre Technical Report No. KRDB09-6). Bozen, IT: Free
University of Bozen-Bolzano.

Tennant, H. R., Ross, K. M., Saenz, R. M., Thompson, C. W., & Miller, J. R. (1983).
Menu-based natural language understanding. In proceedings of:
the 21st annual meeting of the Association for Computational
Linguistics, 151-158.

Tufis, D. & Mason O. (1998). Tagging romanian texts: a case study for QTAG, a
language independent probabilistic tagger. In proceedings of
LREC'98: The First International Conference on Language
Resources & Evaluation, 589-596.

Wu, F., & Weld, D. S. (2008). Automatically refining the wikipedia infobox ontology.
Proceeding of WWW2008: The 17th international conference on
World Wide Web, 635-644.

lxxxi

	1 Introduction
	1.1 Query Tool
	1.1.1 The query language of Query Tool
	1.1.2 The query model of Query Tool
	1.1.3 Operations of the query model

	2 Natural Language Interface
	2.1 Requirements
	2.2 Previous Art
	2.3 Language
	2.3.1 Design goals
	Introducing the query
	Representing a query
	Representing relations
	Representing concepts
	Readability

	2.3.2 Syntax
	2.3.3 Lexicon
	Verbs
	Nouns
	Adjectives

	2.4 Templates
	2.4.1 Concept templates
	2.4.2 Relation templates
	2.4.3 Template maps

	2.5 Generation
	2.5.1 Document Planning
	2.5.2 Microplanning
	2.5.3 Lexicalization
	Template instantiation
	Lexicalizing a node
	Lexicalizing the tree
	Semanticization

	2.5.4 Aggregation
	2.5.5 Referring Expressions Generation
	2.5.6 Surface Realization

	3 Knowledge domain portability
	3.1 Data-driven extraction of linguistic information
	3.1.1 Algorithm
	3.1.2 Evaluation

	3.2 Rule-based template extraction
	3.2.1 Tokenization
	3.2.2 Part-of-Speech Tagger
	3.2.3 Partitioning the set of relation IDs
	3.2.4 Input preprocessing
	Discarding input
	Removing dangling adverbs
	Removing range information

	3.2.5 Pattern matching on TT-IDs
	3.2.6 Output of the transformation rules
	3.2.7 Transformation rules
	BEZ rule
	BEZ Passive rule
	HVZ-Range rule
	HVZ rule
	VBZ rule
	VB rule
	VBN-Be rule
	VBN-Have rule
	VBG rule
	No verbs, no nouns rule
	Simple NP rule
	Composite NP rule
	Dangling Adjective rule

	3.2.8 Evaluation

	4 Conclusion
	4.1 Open issues and future work
	4.1.1 Natural Language Generator
	4.1.2 Template generator

