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Abstract. In the first part of this Chapter we will introduce a general tempo-
rally enhanced conceptual data model able to represent time varying data, in the
spirit of a temporally enhanced Entity-Relationship data model. In the second part,
we will introduce an object-oriented conceptual data model enriched with schema
change operators, which are able to represent the explicit temporal evolution of
the schema while maintaining a consistent view on the (static) instantiated data.
We will introduce a provably correct encoding of both conceptual data models and
their inference problems in Description Logics. In this way, we study the properties
of both the temporal conceptual data model and the object-oriented data model
with schema change facilities.

1 Introduction

In recent years, data and knowledge base applications have progressively
converged towards integrated technologies that try to overcome the limits
of each single discipline. Research in Knowledge Representation (KR) and
Computational Logic (CL) originally concentrated around formalisms that
are typically tuned to deal with relatively small knowledge bases, but pro-
vide powerful deduction services, and the language to structure information is
highly expressive. In contrast, Database (DB) research mainly dealt with ef-
ficient storage and retrieval with powerful query languages, and with sharing
and displaying large amounts of (multimedia) documents. However, data rep-
resentations were relatively simple and flat, and reasoning over the structure
and the content of the documents played only a minor role.

This distinction between the requirements in Knowledge Representation
and Databases is vanishing rapidly. On the one hand, to be useful in realistic
applications, a modern Knowledge Representation system must be able to
handle large data sets, and to provide expressive query languages. This sug-
gests that techniques developed in the DB area could be useful for knowledge
bases. On the other hand, the information stored on the web, in digital li-
braries, and in data warehouses is now very complex and with deep semantic
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structures, thus requiring more intelligent modelling languages and method-
ologies, and reasoning services on those complex representations to support
design, management, retrieval, and integration. Therefore, a great call for an
integrated view of Knowledge Representation and Databases is emerging.

Description Logics (DL) are a very promising research area in KR and CL
with applications in DBs. The main effort of the research in DL is in provid-
ing both theories and systems for expressing structured knowledge and for
accessing and reasoning with it in a principled way. Recently, basic progress
has been made by establishing the theoretical foundations for the effective use
of DL in DBs [7]. DL offer promising formalisms for solving several problems
concerning conceptual data modelling (see, e.g., [12]), intelligent information
access and query processing (see, e.g., [8,34,9,24]), and information integra-
tion (see, e.g., [14,30,35,25]). This Chapter will focus on conceptual modelling
issues only.

Conceptual modelling deals with the question on how to describe in a
declarative and reusable way the domain information of an application, its
relevant vocabulary, and how to constrain the use the data, by understand-
ing what can be drawn from it. Recently, a number of conceptual modelling
languages has emerged as de-facto standard, in particular we mention Entity-
Relationship (ER) for the relational data model, UML and ODMG for the
object oriented data model, and RDF, DAML+OIL and OWL for the web on-
tology languages. DL can be considered as an unifying formalism, since they
allow the logical reconstruction and the extension of all the above represen-
tational tools (see, e.g., [12,13]). The advantage of using a DL to formalise
a conceptual data model lies basically on the fact that complete logical rea-
soning can be employed using an underlying DL inference engine to verify a
conceptual specification, to infer implicit facts and stricter constraints, and
to manifest any inconsistencies during the conceptual design phase.

In addition, given the high complexity of the modelling task when com-
plex data is involved, there is the demand of more sophisticated and expres-
sive languages than for normal databases. Again, DL research is very active
in providing more expressive languages for conceptual modelling (see, e.g.,
[12,13,21,23]). In the case of conceptual modelling of dynamic information,
which is the main topic of this Chapter, we should distinguish two cases. In
the first one, the dynamics involves the data to be modelled – this is the
case of temporal conceptual modelling for temporal DBs – and in the second
one the dynamics involves the change of the conceptual schema modelling a
static domain – this is the case of conceptual schema evolution. This Chap-
ter summarises the research trends in the application of DL for conceptual
modelling in the context of both temporal DBs and schema evolution, and it
is structured as follows.

After an introductory Section, the Chapter is organised in three parts. In
the first part, the description logic ALCQI and the its temporal extension
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ALCQIUS is introduced. Results on the complexity of the most important
reasoning tasks are summarised.

The second part is on temporal conceptual modelling in the relational
data model. Temporal conceptual modelling constructs for the valid time
representation as appeared in the literature on the Entity-Relationship data
model (see, e.g., [40,26]) are considered. A systematic characterisation (first
introduced in [3]) of the constructs introduced in the majority of temporal
conceptual modelling systems is provided.

The third part is about schema evolution in the object-oriented data
model. A data model supports schema evolution if it allows for explicit
changes in the schema without the loss of extant data. A complete formal
characterisation of the semantics of schema changes in a classical object-
oriented schema evolution framework (first introduced in [22]) will be pro-
vided.

The organisation of both part two and part three of this Chapter is sim-
ilar. We first define the syntax and the semantics of the considered data
model: in part two it is a temporal Entity-Relationship data model— that is
an Entity-Relationship data model extended with constructs to express tem-
poral properties; in part three it is an object-oriented data model extended
with constructs to express the evolution of the schema. Then, we define the
semantics of the reasoning tasks that are relevant for the data model at hand.
Finally, we introduce in both cases a provably correct encoding of the data
model and the reasoning problems in a suitable description logic: the DL
is ALCQIUS for the temporal conceptual data model, and ALCQI for the
object-oriented data model with schema change facilities. The encoding in DL
has the following advantages: an homogeneous framework can be used to en-
code the dynamic aspects in both the relational and the object-oriented data
models (as first introduced in [12] for the non dynamic aspects); upper bounds
to the computational complexity of the original reasoning problems can be
stated; algorithms and practical reasoners from the DL field can be used to
solve the original problems. In particular, we show that reasoning in both
temporal Entity-Relationship diagrams (without snapshot relations, tempo-
ral keys, or temporal cardinalities) and in evolving object-oriented schemas
is in EXPTIME, while we refer to the results in [2] to show that reasoning
in the full temporal Entity-Relationship data model is undecidable.

2 Conceptual Modelling of Dynamic Information

In this Section we first review the common features of temporally extended
conceptual data models developed to abstract the temporal aspects of in-
formation. Without loss of generality, we will specifically refer to a general
temporal ER model, and we will consider it as capturing the relevant common
features of the models introduced by the systems TimeER [27], ERT [42],
MADS [40]. These models cover the full spectrum of temporal constructs
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Fig. 1. A temporal ER diagram.

(cf. [26] for an extensive overview of temporally extended ER models). We re-
fer to ER models because they are the most mature field in temporal concep-
tual modelling. As far as the notation for temporal constructs is concerned,
we use a unifying notation that will capture the commonalities between the
different models.

As a main characteristics, a data model for time-varying information
should support—for all the types of the model—the notion of valid time—
which is the time when a property holds, i.e., it is true in the representation
of the world. Possibly, the data model should support also transaction time—
which records the history of database states rather than the world history,
i.e., it is the time when a fact is current in the database and can be retrieved.

Temporal support is achieved by giving a temporal meaning to each stan-
dard non-temporal conceptual construct, and then adding new temporal con-
structs. The ability to add temporal constructs on top of a temporally implicit
model has the advantage of preserving the non-temporal semantics of conven-
tional (legacy) conceptual schemas when embedded into temporal schemas—
what is called upward compatibility. The possibility of capturing the meaning
of both legacy and temporal schemas is crucial in modelling data warehouses
or federated databases, where sources may be collections of both temporal
and legacy databases. Orthogonality [40] is another desirable principle: tem-
poral constructs should be specified separately and independently for entities,
relationships and attributes. Depending on the application requirements, the
temporal support must be decided by the designer. Furthermore, snapshot

reducibility [39] of a schema says that snapshots of the database described
by a temporal schema are the same as the database described by the same
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Fig. 2. Generation relationships.

schema where all the temporal constructs are eliminated and the schema is
interpreted atemporally.

Temporal marks are usually added to capture the temporal behaviour
of the different components of a conceptual schema. In particular, entities,
relationships and attributes can be either s-marked in what case they are
considered snapshot1 constructs (i.e., each of their instances has a global
lifetime, as in the case they belong to a legacy diagram), vt-marked and
they are considered temporary constructs (i.e., each of their instances has a
temporary existence), or un-marked, i.e. without any temporal mark, in what
case they have temporally unconstrained instances (i.e., their instances can
have either a global or a temporary existence). Participation constraints are
distinguished between snapshot participation constraints—true at each point
in time and represented by a pair of values in parentheses—and lifespan

participation constraints—evaluated during the entire existence of the entity
and represented by a pair of values in square brackets [41,27,40]. Fig. 1 gives
a diagram showing the various temporal constructs, and will form a running
example trough the Chapter.

Dynamic relationships between entities [40] can be either transition or
generation relationships. In a transition relationship the instances of an en-
tity may eventually become instances of another entity. The instances of the
source entity are said to migrate into the target entity and the phenomenon
is called object migration. In the temporal conceptual modelling literature,
two types of transitions have been considered [28,29,40]: dynamic evolution

when objects cease to be instances of the source entity, and dynamic exten-

sion otherwise. In general, type constraints enforce that both the source and
the target entity belong to the same generalisation hierarchy. Fig. 1 shows
an example of dynamic extension between the entities AreaManager and a
TopManager—represented with an arrow from the source to the target entity
with the label dex. Generation relationships involve different instances—
differently from the transition case: an instance (or set of instances) from
a source entity is (are) transformed in an instance (or set of instances) of
the target entity. Fig. 2 shows a generation relationship Generate between
Orange and Juice marked with the label g and an arrow pointing to the
target entity. The lifespan cardinality says that 5 oranges are needed to pro-
duce a single juice, and each orange is, sooner or later, consumed in the
transformation process.

1 See the consensus glossary [31] for the terminology used.
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We have considered so far a temporally enhanced conceptual data model
able to represent time varying data. Now we want to introduce a conceptual
data model enriched with schema change operators, which are able to repre-
sent the explicit evolution of the schema while maintaining a consistent view
on the (static) instantiated data.

The problems of schema evolution becomes relevant in the context of
long-lived database applications, where stored data is considered worth sur-
viving changes in the database schema [37]. One of the fundamental issues
concerning the introduction of schema change operators in a data model is
the semantics of change, which refers to the effects of the change on the
schema itself, and, in particular the checking and maintenance of schema
consistency after changes. In the literature, the problem have been widely
studied in relational and object-oriented database papers. In the relational
field [38,17], the problem is solved by specifying a precise semantics of the
schema changes, for example via algebraic operations on catalogue and base
tables. However, the related consistency problems have not been considered
so far. The correct use of schema changes is completely under the database
designer/administrator’s responsibility, without automatic system aid and
control. In the object-oriented field, two main approaches were followed to
ensure consistency in pursuing the “semantics of change” problem. The first
approach is based on the adoption of invariants and rules, and has been used,
for instance, in the ORION [6] and O2 [20] systems. The second approach,
which was proposed in [36], is based on the introduction of axioms. In the
former approach, the invariants define the consistency of a schema, and def-
inite rules must be followed to maintain the invariants satisfied after each
schema change. Invariants and rules are strictly dependent on the underlying
object model, as they refer to specific model elements. In the latter approach,
a sound and complete set of axioms (provided with an inference mechanism)
formalises the dynamic schema evolution, which is the actual management of
schema changes in a system in operation. The approach is general enough to
capture the behaviour of several different systems and, thus, is useful for their
comparison in a unified framework. The compliance of the available primitive
schema changes with the axioms automatically ensures schema consistency,
without need for explicit checking, as incorrect schema versions cannot actu-
ally be generated.

In the context of dynamic schema evolution, we deal with the “seman-
tics of change” problem, and try to give a general answer to the problem of
deciding the consistency and the consequences of any given sequence of ele-
mentary schema changes. To this end, we will introduce a formal approach
for the specification and management of evolving database schemas [22].
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C,D → A | (primitive concept)

> | (top)

⊥ | (bottom)

¬C | (complement)

C uD | (conjunction)

C tD | (disjunction)

∀R.C | (univ. quantifier)

∃R.C | (exist. quantifier)

(>n R. C) | (min cardinality)

(6n R. C) (max cardinality)

R,S → P | (primitive role)

R− (inverse role)

Fig. 3. Syntax rules for the ALCQI Description Logic

3 Description Logics

In this Section we give a brief introduction to the ALCQI description logic,
which will serve as the basic representation language for the non-temporal
information. With respect to the formal apparatus, we will strictly follow the
concept language formalism presented in [5]. In this perspective, Description
Logics are considered as a structured fragment of predicate logic.

The basic types of ALCQI are concepts and roles. A concept is a de-
scription gathering the common properties among a collection of individuals;
from a logical point of view it is a unary predicate ranging over the domain
of individuals. Inter-relationships between these individuals are represented
by means of roles, which are interpreted as binary relations over the domain
of individuals. According to the syntax rules of Figure 3, ALCQI concepts

(denoted by the letters C and D) are built out of primitive concepts (denoted
by the letter A) and roles (denoted by the letter R,S); roles are built out
of primitive roles (denoted by the letter P ). In the following, the shortcut
(>n R) is used instead of (>n R. >), and similarly for (6n R).

Let us now consider the formal semantics of ALCQI. We define the mean-

ing of concepts as sets of individuals – as for unary predicates – and the
meaning of roles as sets of pairs of individuals – as for binary predicates.
Formally, an interpretation is a pair I = (∆I , ·I) consisting of a set ∆I of
individuals (the domain of I) and a function ·I (the interpretation function

of I) mapping every concept to a subset of ∆I , every role to a subset of
∆I ×∆I , and such that the equations in Figure 4 are satisfied.

For example, we can consider the concept of happy father, defined using
the primitive concepts Man, Doctor, Rich, Famous and the roles CHILD,

FRIEND. The concept happy-father can be expressed in ALCQI with the
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>I = ∆I

⊥I = ∅

(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {i ∈ ∆I | ∀j. RI(i, j) ⇒ CI(j)}

(∃R.C)I = {i ∈ ∆I | ∃j. RI(i, j) ∧ CI(j)}

(>n R. C)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≥ n}

(6n R. C)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≤ n}

(R−)I = {(i, j) ∈ ∆I ×∆I | RI(j, i)}

Fig. 4. The semantics of ALCQI

expression:
Man u (∃CHILD.>)u∀CHILD. (Doctor u ∃FRIEND. (Rich t Famous))
i.e., those men having some child and all of whose children are doctors having
some friend who is rich or famous.

A knowledge base, in this context, is a finite setΣ of terminological axioms;
it can also be called a terminology or TBox. For a primitive concept A, and
concepts C,D, terminological axioms are of the form A

.
= C, A v C and

C v D. An interpretation I satisfies C v D if and only if the interpretation
of C is included in the interpretation ofD, i.e., CI ⊆ DI . The axiom C v D is
a generalisation of the axioms A

.
= C, A v C; for example, an axiom A

.
= C

– where A is a primitive concept – can be reduced to the pair of axioms
(A v C) and (C v A). An interpretation I is a model of a knowledge base Σ
iff every terminological axiom of Σ is satisfied by I. If Σ has a model, then
it is satisfiable; thus, checking for KB satisfiability is deciding whether there
is at least one model for the knowledge base. Σ logically implies an axiom
C v D (written Σ |= C v D) if C v D is satisfied by every model of Σ. We
also say that the concept C is subsumed by a concept D in the knowledge
base Σ. For example, the concept Person u (∃CHILD. Person) denoting the
class parent – i.e., a person having at least a child which is a person –
subsumes the concept
Man u (∃CHILD.>)u ∀CHILD. (Doctor u ∃FRIEND. (Rich t Famous))
denoting the class of happy-fathers, with respect to the following knowl-
edge base Σ:
Doctor

.
= Person u ∃DEGREE. Phd,

Man
.
= Person u ∃sex. Male u (61 sex. >),

i.e., every happy father is also a person having at least one child, given the
background knowledge that men are male persons, and that doctors are per-
sons. A concept C is satisfiable, given a knowledge base Σ, if there exists a
model I of Σ such that CI 6= ∅. For example, given the above knowledge
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base Σ, the concept (∃CHILD. Man) u (∀CHILD. (∃sex.¬Male)) is unsatisfiable.
In fact, an individual whose children are not male cannot have a child being
a man.

Both concept and knowledge base satisfiability problems are reducible to
logical implication. Indeed, a concept C is satisfiable in Σ iff Σ 6|= C

.
= ⊥; a

knowledge base Σ is satisfiable iff Σ 6|= > v ⊥. On the other hand, logical
implication can be reduced to a satisfiability problem since Σ |= C v D iff
(C u ¬D) is unsatisfiable in Σ. Reasoning in ALCQI (i.e., deciding knowl-
edge base and concept satisfiability, deciding concept subsumption and logical
implication) is decidable, and it is an EXPTIME-complete problem [18].

3.1 Adding Tense Logic

The tense-logical extension of the non-temporal description logic ALCQI is
able to describe the time-varying properties of objects. Let ALCQIUS be the
extension of ALCQI with the temporal operators U (Until) and S (Since).
We add the following rules to the syntax presented in figure 3:

C → 3
+C | 3

−C | 3
∗C | 2

+C | 2
−C | 2

∗C | ⊕C | 	C | C U D | C S D

R → 3
+R | 3

−R | 3
∗R | 2

+R | 2
−R | 2

∗R | ⊕R | 	R | R U S | R S S

The tense operators for concepts 3
+ (sometime in the future), 3

− (sometime
in the past), 2

+ (always in the future), 2
− (always in the past), ⊕ (at

the next point in time), and 	 (at the previous point in time) are derived
operators from the basic S (since) and U (until) operators: 3

+,3−,⊕ are
defined as 3

+C
.
= >UC, 3

−C
.
= >SC, ⊕C

.
= ⊥UC, while 2

+,2−,	
are their duals. The tense operators 3

∗ (at some moment) and its dual 2
∗

(at all moments) can be defined as 3
∗C

.
= C t 3

+C t 3
−C and 2

∗C
.
=

C u2
+C u2

−C, respectively. We call ALCQI−
US the tense-logical extension

of ALCQI only at the level of concepts – i.e., no temporal operators are
allowed in role expressions.

ALCQIUS semantics naturally extends with time the non-temporal se-
mantics presented in the previous Section. A temporal structure T = (Tp, <)
is assumed, where Tp is a set of time points and < is a strict linear order on
Tp; T is assumed to be isomorphic to (Z, <). The assumption of the flow of
time being isomorphic to the integer numbers Z is necessary if we want to
model abstract temporal databases that extend both in the past and in the fu-
ture; the results in this Chapter are based on this assumption. An ALCQIUS

temporal interpretation over T is a pair M
.
= 〈T , I〉, where I is a function

associating to each t ∈ Tp a standard non-temporal ALCQI interpretation,

I(t)
.
= 〈∆I , R

I(t)
0 , . . . , C

I(t)
0 , . . .〉, such that it satisfies the equations in fig-

ure 4 plus the equations in figure 5.
An interpretation M over a temporal structure T = (Tp, <) satisfies a termi-
nological axiom C v D if CI(t) ⊆ DI(t) for every t ∈ Tp. A knowledge base Σ
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(C U D)I(t) = { i ∈ ∆I | ∃v > t. (i ∈ DI(v) ∧ ∀w(t < w < v). i ∈ CI(w))}

(C S D)I(t) = { i ∈ ∆I | ∃v < t. (i ∈ DI(v) ∧ ∀w(v < w < t). i ∈ CI(w))}

(R U S)I(t) = { (i, j) ∈ ∆I ×∆I |
∃v > t. ((i, j) ∈ SI(v) ∧ ∀w(t < w < v). (i, j) ∈ RI(w))}

(R S S)I(t) = { (i, j) ∈ ∆I ×∆I |
∃v < t. ((i, j) ∈ SI(v) ∧ ∀w(v < w < t). (i, j) ∈ RI(w))}

(3+R)I(t) = {(i, j) ∈ ∆I ×∆I | ∃v > t. (i, j) ∈ RI(v)}

(⊕R)I(t) = {(i, j) ∈ ∆I ×∆I | (i, j) ∈ RI(t+1)}

(3−R)I(t) = {(i, j) ∈ ∆I ×∆I | ∃v < t. (i, j) ∈ RI(v)}

(	R)I(t) = {(i, j) ∈ ∆I ×∆I | (i, j) ∈ RI(t−1)}

Fig. 5. The semantics of the temporal extension of ALCQI

is satisfiable in the temporal structure T if there is a temporal interpretation
M over T which satisfies every axiom in Σ; in this case M is called a model

over T of Σ. Σ logically implies an axiom C v D in the temporal structure
T (written Σ |= C v D) if C v D is satisfied by every model over T of
Σ. In this latter case, the concept C is said to be subsumed by the concept
D in the knowledge base Σ and the temporal structure T . A concept C is
satisfiable, given a knowledge base Σ, if there exists a model M

.
= 〈T , I〉 of

Σ such that CI(t) 6= ∅ for some t ∈ T , i.e. Σ 6|= C
.
= ⊥.

As an example of a concept using temporal operators, consider the defi-
nition of a mortal. The class of mortals denotes all the individuals which are
currently living beings and live in some place, and will maintain this essence
until they will stop to be living beings forever:

Mortal
.
= LivingBeing u ∀LIVES-IN. Place u

(LivingBeing U 2
+¬LivingBeing)

The tense-logical extensions of ALCQI have been thoroughly studied
in [43,4]. It has been proved that reasoning in ALCQIUS (i.e., deciding
knowledge base and concept satisfiability, deciding concept subsumption, and
deciding logical implication) is undecidable, while it is EXPTIME-complete
in its fragment ALCQI−

US . Even pure ALC with just the 2
+ operator at

the level of roles is enough to get undecidability. Reasoning in ALCQI−
US

with complex terminological axioms – obtained by arbitrarily combining ter-
minological axioms with boolean and temporal operators, i.e., if ϕ and ψ are
ALCQI−

US axioms, then so are ¬ϕ,ϕ∧ψ,ϕUψ,ϕSψ – becomes EXPSPACE-
complete.
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4 ERVT : A Formal Temporal Conceptual Model

In this Section a temporal ER model (ERVT ) is introduced in agreement with
the general principles devised in Section 2. ERVT supports valid time for en-
tities, attributes and relationships in the line of TimeER [27] and ERT [42],
while supporting dynamic relationships as presented in MADS [40]. The
motivation behind the development of ERVT is twofold: (1) the need for a
formally specified temporal ER language with a model theoretic semantics
associated to each (temporal) construct; (2) the possibility to perform auto-
matic deductions on ERVT schemas as the result of mapping ERVT schemas
to knowledge bases expressed in the temporal description logic ALCQIUS .

The proposed formalisation is based on a linear syntax and an associated
model-theoretic semantics as presented in [13] for the non-temporal EER
model2, which is here extended to take into account both the time dimension
and the temporal constructs. This will give both a formal characterisation of
the most important temporal conceptual modelling constructs (for the valid
time representation) appeared in the literature, and the formal background
to develop the correspondence to the temporal description logic ALCQIUS

in order to reason over temporal schemas.
Presenting the ERVT syntax we adopt the following notation: given two

sets X,Y a X-labelled tuple over Y is a function from X to Y ; the labelled
tuple T that maps the set {x1, . . . , xn} ⊆ X to the set {y1, . . . , yn} ⊆ Y is
denoted by 〈x1 : y1, . . . , xn : yn〉, while T [xi] = yi.

Definition 1 (ERVT Syntax). An ERVT schema is a tuple:
Σ = (L,rel,att,card,cardL, isa,disj,cover, s,t,key,dex,dev,gen),
where:

• L a finite alphabet partitioned into

– a set E of entity symbols,
– a set A of attribute symbols,
– a set R of relationship symbols,
– a set U of role symbols,
– and a set D of domain symbols.

We will call the tuple (E ,A,R,U ,D) the signature of the schema Σ.
• E is partitioned into

– a set ES of snapshot entities (the s-marked entities, in the graphical
representation of Fig. 1);

– a set EI of Implicitly temporal entities (the un-marked entities);
– and a set ET of temporary entities (the vt-marked entities).

• A similar partition applies to the set R.

2 EER is the standard entity-relationship data model, enriched with isa links (solid
directed lines), generalised hierarchies with disjoint (circle with a ‘d’ inside) and
covering (double directed lines) constraints, and full cardinality constraints [19].
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• att is a function that maps an entity symbol in E to an A-labelled tuple
over D,

att(E) = 〈A1 : D1, . . . , Ah : Dh〉.

• rel is a function that maps a relationship symbol in R to an U-labelled
tuple over E ,

rel(R) = 〈U1 : E1, . . . , Uk : Ek〉,

and k is the arity of R.
• card, and cardL are functions

E ×R× U 7→ N × (N ∪ {∞})

denoting snapshot and lifespan cardinality constraints, respectively.
They are such that if rel(R) = 〈U1 : E1, . . . , Uk : Ek〉 then both
card(E,R,U) and cardL(E,R,U) are defined only if U = Ui and
E = Ei, for some i ∈ {1, . . . , k}. We denote with cmin(E,R,U) and
cmax(E,R,U) (cminL(E,R,U) and cmaxL(E,R,U)) the first and sec-
ond component of card (cardL). If not stated otherwise, cmin and
cminL are assumed to be 0 while cmax and cmaxL are assumed to be
∞.

• isa is a binary relationship

isa ⊆ (E × E) ∪ (R×R).

isa between relationships is restricted to relationships with the same
arity3.

• disj,cover are binary relations over 2E ×E , describing disjointness and
covering partitions, respectively.

• s,t are binary relations over E ×A containing, respectively, the snapshot
and temporary attributes of an entity. Furthermore, if 〈E,A〉 ∈ s,t then
A is between the attributes in att(E).

• key is a function that maps entity symbols in E to their key attributes,
key(E) = A. Furthermore, if key(E) = A then A is between the at-
tributes in att(E).

• Both dex and dev are binary relations over E×E describing the evolution
of entities.

• gen is a unary relation over R describing generation relationships. If
R ∈ gen then R is a binary relationship such that
rel(R) = 〈source : Es, target : Et〉.

The model-theoretic semantics associated to the ERVT modelling lan-
guage adopts the snapshot representation of abstract temporal databases and
temporal conceptual models (see e.g. [16]). Following this paradigm, given a

3 For isa relations we use the notation E1 isaE2 instead of 〈E1, E2〉 ∈ isa. Similarly
for disj,cover,dev,dex.
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flow of time T = 〈Tp, <〉 – where Tp is a set of time points (or chronons)
isomorphic to 〈Z, <〉, and < a binary precedence relation on Tp – a tempo-
ral database can be regarded as a mapping from time points in T to stan-
dard relational databases, with the same interpretation of constants and the
same domain along time. In alternative to the snapshot model, the timestamp

model is defined by adding temporal attributes to a relation. The timestamp
model is used in the bitemporal conceptual data model (BCDM) [33,32] where
each tuple in a bitemporal relation is associated with a bitemporal times-
tamp value recording both the valid and the transaction time of the tuple.
The snapshot model is in correspondence with the timestamp model. Indeed,
both snapshot databases and the projection over valid time of timestamp
databases represent the same class of temporal databases [16]. The following
model theoretic semantics for ERVT is in accordance with a snapshot repre-
sentation of valid time temporal databases. Examples will follow immediately
after the definition.

Definition 2 (ERVT Semantics). Let Σ be an ERVT schema, and BD =⋃
Di∈D BDi be a set of basic domains such that BDi ∩ BDj = ∅ for i 6= j.

B = (T ,∆B∪∆B
D, ·

B(t)) is a Temporal Database State for the schema Σ where:

• ∆B is a non-empty set disjoint from ∆B
D.

• ∆B
D =

⋃
Di∈D∆

B
Di

is the set of basic domain values used in the schema

Σ such that ∆B
Di

⊆ BDi – we call ∆B
Di

active domain.

• ·B(t) is a function that for each t ∈ T maps:

– Every domain symbol Di ∈ D to the corresponding active domain

D
B(t)
i = ∆B

Di
– then D

B(t)
i does not depend from the time t of evalu-

ation.
– Every entity E ∈ E to a set EB(t) ⊆ ∆B.
– Every relationship R ∈ R to a set RB(t) of U-labelled tuples over ∆B.
– Every attribute A ∈ A to a set AB(t) ⊆ ∆B ×∆B

D.

B is a legal temporal database state if it satisfies all the integrity constraints
expressed in the schema:

(c1) For each E1, E2 ∈ E , if E1 isa E2 then, E
B(t)
1 ⊆ E

B(t)
2 .

(c2) For each R1, R2 ∈ R, if R1 isaR2, then, R
B(t)
1 ⊆ R

B(t)
2 .

(c3) For each E ∈ E , if att(E) = 〈A1 : D1, . . . , Ah : Dh〉, then, e ∈ EB(t) →

(∀i ∈ {1, . . . , h},∃!ai. 〈e, ai〉 ∈ A
B(t)
i ∧ ∀ai. 〈e, ai〉 ∈ A

B(t)
i → ai ∈ ∆B

Di
).

We consider, for simplicity, only single-valued attributes.
(c4) For each R ∈ R, if rel(R) = 〈U1 : E1, . . . , Uk : Ek〉, then, r ∈ RB(t) →

(r = 〈U1 : e1, . . . , Uk : ek〉 ∧ ∀i ∈ {1, . . . , k}. ei ∈ E
B(t)
i ). In the following

we adopt the convention: 〈U1 : e1, . . . , Uk : ek〉 ≡ 〈e1, . . . , ek〉, and r[Ui] ≡
r[i] to denote the Ui/i-component of r – i.e., the naming and the positional

notation for tuples are two equivalent notations.
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(c5) For each cardinality constraint card(E,R,U), then, e ∈ EB(t) →
cmin(E,R,U) ≤ #{r ∈ RB(t) | r[U ] = e} ≤ cmax(E,R,U).

(c6) For each lifespan cardinality constraint cardL(E,R,U), then,
e ∈ EB(t) → cminL(E,R,U) ≤ #

⋃
t′∈T {r∈R

B(t′) | r[U ]=e} ≤
cmaxL(E,R,U).

(c7) For each snapshot entity E ∈ ES , then, e∈EB(t) → ∀t′∈T . e∈EB(t′).
(c8) For each temporary entity E ∈ ET , then, e∈EB(t) → ∃t′ 6= t. e 6∈EB(t′).
(c9) For each snapshot relationship R∈RS , then, r ∈RB(t) → ∀t′ ∈T . r∈

RB(t′).
(c10) For each temporary relationship R∈RT , then, r∈RB(t) → ∃t′ 6= t. r 6∈

RB(t′).
(c11) For each entity E ∈ E , if att(E) = 〈A1 : D1, . . . , Ah : Dh〉, and

〈E,Ai〉 ∈ s then, (e ∈ EB(t) ∧ 〈e, ai〉 ∈ A
B(t)
i ) → ∀t′ ∈ T . 〈e, ai〉 ∈ A

B(t′)
i .

(c12) For each entity E ∈ E , if att(E) = 〈A1 : D1, . . . , Ah : Dh〉, and

〈E,Ai〉 ∈ t then, (e ∈ EB(t) ∧ 〈e, ai〉 ∈ A
B(t)
i ) → ∃t′ 6= t. 〈e, ai〉 6∈ A

B(t′)
i .

(c13) For E,E1, . . . , En ∈ E , if {E1, . . . , En} disj E then,

∀i ∈ {1, . . . , n}. Ei isa E ∧ ∀j ∈ {1, . . . , n}, j 6= i. E
B(t)
i ∩ E

B(t)
j = ∅.

(c14) For E,E1, . . . , En ∈ E , if {E1, . . . , En} cover E then,

∀i ∈ {1, . . . , n}. Ei isa E ∧ EB(t) =
⋃n

i=1E
B(t)
i .

(c15) For each E ∈ E , A ∈ A such that key(E) = A, then the same semantic
equation of c11 is true – i.e., a key is a snapshot attribute – and ∀a ∈
∆B

D. #{e ∈ EB(t) | 〈e, a〉 ∈ AB(t)} ≤ 1.
(c16) For each Es, Et ∈ E , then:

1. If Es dex Et, then, e ∈ E
B(t)
t → ∃t1 < t. e ∈ E

B(t1)
s ;

2. If Es dev Et, then, e ∈ E
B(t)
t → (e 6∈ E

B(t)
s ∧ ∃t1 < t. e ∈ E

B(t1)
s ).

(c17) For each R ∈ gen with rel(R) = 〈source : Es, target : Et〉, then,

〈es, et〉 ∈ RB(t) → (es ∈ E
B(t)
s ∧∀t1 > t. es 6∈ E

B(t1)
s )∧ (et ∈ E

B(t)
t ∧∀t2 <

t. et 6∈ E
B(t2)
t ).

Example 1. The various components of a schema are now illustrated with
respect to the schema of Fig. 1. We start by showing the alphabet of the
example schema. The sets of snapshot entities and relationships are:

ES = {Employee, Department, OrganisationalUnit},
RS = {Resp-for}

The sets of temporary entities and relationships are:

ET = {Manager}, RT = {Works-for}

The set of un-marked entities and relationships are:

EI ={AreaManager, TopManager, OrganisationalUnit, InterestGroup}
RI ={Manages}

The meaning of temporary entities and relationships is such that instances
of temporary entities and relationships always have a limited lifespan. On
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the other hand, the set of instances of snapshot entities and relationships
never change along time. For un-marked entities and relationships no tem-
poral constraint holds – i.e., the set of instances of un-marked entities and
relationships can contain either instances with a limited lifespan or instances
with unlimited lifespan (both in the past and in the future). It has to be
noted that, in order to capture the semantics of a legacy diagram each of its
elements should be necessarily snapshot marked. This pre-processing step is
necessary to enforce the upward compatibility in ERVT when legacy diagrams
are included in a temporal model.

The function att describes the attributes of an entity, together with their
types, e.g.:

att(Employee) = 〈PaySlipNumber : Integer, Salary : Integer,
Name : String〉

The function rel associates a name or, alternatively, a position number
– in both cases called role – to each argument of a relationship, and for each
role an entity describing its type, e.g.:

rel(Manages) = 〈man : TopManager, prj : Project〉

describes Manages as a binary relationships where a TopManager manages a
Project.

ERVT distinguishes between snapshot participation constraints (card,
true at each point in time) and lifespan participation constraints (cardL,
evaluated during the entire existence of the entity), e.g.:

card(TopManager, Manages, man) = 〈1, 1〉
cardL(TopManager, Manages, man) = 〈1, 5〉

state that a TopManager should manage at most 5 different projects in his
entire existence while still being constrained in managing exactly one project
at a time. Notice that, since for snapshot relationships the set of instances
does not change in time, there is no difference between snapshot and lifespan
participation constraints.

isa, cover and disj are used for representing generalised hierarchies.
isa models the sub-entity relationship, e.g., Manager isa Employee says that
manager is a sub-entity of employee. cover models the fact that a set of
sub-entities may have common instances but each instance of the super-entity
belongs to at least one of those sub-entities, e.g.:

{AreaManager, TopManager} cover Manager

disj models disjoint hierarchies, e.g.:

{Department, InterestGroup} disj OrganisationalUnit

says that department is disjoint from interest group and both are sub-entities
of organisational units. By using both relations we can model disjoint and
covering hierarchies, e.g.:
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{Department, InterestGroup} disj OrganisationalUnit

{Department, InterestGroup} cover OrganisationalUnit.

At different points in time, an entity may have different values for the
same attribute. The relations s,t model snapshot and temporary attributes,
respectively, e.g.:

〈Employee, Name〉 ∈ s, 〈Employee, Salary〉 ∈ t

state that whenever an employee has a name this value will globally persist
over time. On the other hand, a salary will (hopefully) change over time.
In ERVT the timestamp for an entity is independent from the timestamp of
its attributes respecting the orthogonality principle. Indeed, it is consistent
to have both snapshot attributes of a temporary entity, and temporary at-
tributes of a snapshot entity. In the former case, the ERVT semantics says
that during the (limited) lifespan of an entity the value of a snapshot attribute
never changes. In the latter one, the meaning is that each instance always be-
longs to the snapshot entity, but the value of the temporary attribute changes
during its existence. In our running example, where Employee is a snapshot
entity, Salary is modelled as a temporary attribute – i.e., the salary of an
employee will change – while its Name persists over time and is represented as
a snapshot attribute. Furthermore, the temporal behaviour of an attribute is
only specified locally to an entity, i.e., the same attribute associated to two
different entities can have a different temporal behaviour – e.g., the phone
number of a department is not supposed to change over time and should be
modelled as a snapshot attribute, while the phone number of an employee
can change and should be modelled as a temporary attribute.

The function key captures keys for entities, e.g., the fact that the pay
slip number is a key for an employee is captured by:

key(Employee) = PaySlipNumber

ERVT models keys as snapshot attributes that uniquely identifies instances
of an entity.

ERVT can model transition relationships between entities whose instances
may migrate from one entity to the other; this is called object migration from
a source to a target entity. Both dynamic evolution – when an object ceases
to be an instance of a source entity – and dynamic extension – when an
object continues to belong to the source – can be represented in ERVT . That
a top manager was an area manager sometime in the past is captured by the
dynamic extension:

AreaManager dex TopManager

ERVT is also able to capture generation relationships that generate new
instances in the target entity starting from instances that are in the source
entity. That oranges are transformed into orange juice – as in the diagram of
Fig. 2 – is modelled by:
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rel(Generate) = 〈source : Orange, target : Juice〉
Generate ∈ gen.

Lifespan cardinality constraints associated to generation relationships are
expressed trough cardL.

4.1 Reasoning Problems

Reasoning tasks over a temporal conceptual model include verifying whether
an entity, relationship or a schema are satisfiable, or checking whether a new
schema property is logically implied by a given schema. The model theoretic
semantics associated to ERVT allow us to formally define these reasoning
tasks. This Chapter not only presents the first complete formalisation of a
temporal extended ER data model, but it introduces for the first time a
formal characterisation of all the various inferences on diagrams expressed in
such a data model.

Definition 3 (Reasoning in ERVT ). Let Σ an ERVT schema, E ∈ E an
entity and R ∈ R a relationship. The following are the reasoning tasks over
Σ:

1. E (R) is satisfiable if there exists a legal temporal database state B for
Σ such that EB(t) 6= ∅ (RB(t) 6= ∅), for some t ∈ T ;

2. E (R) is liveness satisfiable if there exists a legal temporal database state
B for Σ such that ∀t ∈ T . ∃t′ > t. EB(t′) 6= ∅ (RB(t′) 6= ∅), i.e., E (R) is
satisfiable infinitely often;

3. E (R) is globally satisfiable if there exists a legal temporal database state
B for Σ such that EB(t) 6= ∅ (RB(t) 6= ∅), for all t ∈ T ;

4. Σ is satisfiable if there exists a legal temporal database state B for Σ4;
5. A schema Σ′ is logically implied by a schema Σ over the same signature if

every legal temporal database state forΣ is also a legal temporal database
state for Σ′.

Please note that the above definition of logical implication accounts for
checking properties of a schema whenever they are expressible in the ERVT

schema language (see Definition 1). In particular, checking whether an entity
E is satisfiable can be reduced to logical implication. Indeed, by choosing
Σ′ = {E isaA,E isaB, {A,B} disjC}, with A,B,C arbitrary entities, then
E is satisfiable iff Σ 6|= Σ′. Furthermore, given two entities (relationships)
E1, E2 (R1, R2), checking for sub-entity (sub-relationship) can be reduced to
logical implication by choosing Σ′ = {E1 isa E2} (Σ′ = {R1 isaR2}).

4 For a schema to be satisfiable the constraints expressed by the schema should hold
true at all points in time—as from the definition of legal temporal database state.
Therefore, there is no distinction between satisfiability, liveness satisfiability or
global satisfiability for schemas.
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The following ‘classical’ desirable features found in the literature in tem-
poral conceptual modelling come as almost trivial logical implications in our
framework.

Proposition 1. In every ERVT schema the following temporal properties

hold:

1. Sub-entities of temporary entities are also temporary.

2. Sub-entities of snapshot entities, and super-entities of temporary or un-

marked entities can be either snapshot, temporary or un-marked entities.

3. A schema is inconsistent if exactly one of a whole set of snapshot parti-

tioning sub-entities is temporary.

4. Participants of snapshot relations are either snapshot or un-marked en-

tities. They are snapshot when they participate at least once in the rela-

tionship.

5. Participants of temporary or un-marked relations can be either snapshot,

temporary or un-marked entities.

6. A relationship is temporary if one of the participating entities is tempo-

rary.

7. The temporal behaviour for an entity is independent from that of its at-

tributes.

Points 1 and 2 are true also for relationships.

Example 2. From the ERVT diagram in Fig. 1 the following logical implica-
tions hold:

1. Since Manager is a temporary entity then both sub-entities AreaManager
and TopManager are temporary entities, constraining either AreaManager
or TopManager as snapshot entities would lead to a contradiction.

2. Even if Employee is a snapshot entity it is consistent to have Manager –
a temporary entity – as a sub-entity of Employee.

3. The fact that InterestGroup is a snapshot entity follows logically from
our theory.

4. Since Project participates at least once in the snapshot relationship
Resp-For it must be a snapshot entity.

5. The un-marked relationship Manages is consistent even if the snapshot
entity Project participates in the relationship.

6. The fact that Manages is a temporary relationship follows logically from
our theory since the temporary entity TopManager participates in the
relationship.

4.2 Encoding in Description Logics

In this Section we show how the temporal description logic ALCQIUS is able
to capture temporal conceptual schemas expressed in ERVT . This character-
isation allows us to support the reasoning on temporal conceptual models
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as in Definition 3 by using the reasoning services of ALCQIUS . The corre-
spondence is based on a mapping function Φ – extending the one introduced
by [12,13] for non-temporal ER models – from ERVT schemas to ALCQIUS

knowledge bases.
Informally, the encoding works as follows. Both entity and relationship

symbols in the ERVT diagram are mapped into ALCQIUS concept names
(i.e., relationships are reified). Domain symbols are mapped into additional
concept names, pairwise disjoint. Both attributes of entities and roles of re-
lationships are mapped to role names in ALCQIUS with number restrictions
stating the single-valuedness5. isa links between entities or between relation-
ships are mapped using terminological axioms. Generalised hierarchies with
disjointness and covering constraints can be captured using the Boolean con-
nectives. Cardinality constraints are mapped using the number restriction
quantifiers in ALCQIUS . Temporal properties in ERVT are mapped using
the temporal operators in ALCQIUS .

Definition 4 (Mapping ERVT into ALCQIUS). Let Σ = (L, rel, att,
card, cardL, isa, disj, cover,s,t, key, dex, dev, gen) be an ERVT

schema. The ALCQIUS knowledge base Φ(Σ) = (CN,RN,Γ ) is defined as
follows. The set CN of concept names is such that:

• For each domain symbol D ∈ D then Φ(D) ∈ CN ;
• For each entity symbol E ∈ E then Φ(E) ∈ CN .
• For each relationship R ∈ R then Φ(R) ∈ CN ;

The set RN of atomic roles is such that:

• For each attribute A ∈ A then Φ(A) ∈ RN .
• For each role symbol U ∈ U then Φ(U) ∈ RN ;

Φ is functional over D ∪ E ∪ R ∪ U ∪ A. The set Γ contains the following
ALCQIUS axioms – i.e., temporal integrity constraints.

(ax1) For each Di ∈ D:
Φ(Di) v (2+Φ(Di)) u (2−Φ(Di)) – i.e., Φ(Di)

.
= 2

∗Φ(Di).
(ax2) For each relationship R∈R such that rel(R) = 〈U1 :E1, . . . , Uk :Ek〉:

Φ(R) v ∀Φ(U1). Φ(E1) u . . . u ∀Φ(Uk). Φ(Ek) u
(=1 Φ(U1)) u . . . u (=1 Φ(Uk))

(ax3) For each entity E ∈ E such that att(E) = 〈A1 : D1, . . . , Ah : Dh〉:
Φ(E) v ∀Φ(A1). Φ(D1) u . . . u ∀Φ(Ah). Φ(Dh) u

(=1 Φ(A1)) u . . . u (=1 Φ(Ah))
(ax4) For each role symbol Ui ∈ U between R ∈ R and E ∈ E :

a. If m = cmin(E,R,Ui) 6= 0 : Φ(E) v (>m (Φ(Ui))
−. Φ(R));

b. If n = cmax(E,R,Ui) 6= ∞ : Φ(E) v (6n (Φ(Ui))
−. Φ(R)).

5 Multi-valued attributes can be easily captured by eliminating such cardinality
constraint.
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(ax5) For each role symbol Ui ∈ U between R ∈ R and E ∈ E :
a. If m = cminL(E,R,Ui) 6= 0 : Φ(E) v (>m (Φ(Ui))

−. 3
∗Φ(R));

b. If n = cmaxL(E,R,Ui) 6= ∞ : Φ(E) v (6n (Φ(Ui))
−. 3

∗Φ(R)).

(ax6) For each pair of entities (relationships) E1, E2 ∈ E (R1, R2 ∈ R) such
that E1 isa E2 (R1 isaR2):

a. Φ(E1) v Φ(E2);
b. Φ(R1) v Φ(R2).

(ax7) For each snapshot entity E ∈ ES :
Φ(E) v (2+Φ(E)) u (2−Φ(E)) – i.e., Φ(E)

.
= 2

∗Φ(E).
(ax8) For each snapshot relationship R ∈ RS :

Φ(R) v (2+Φ(R)) u (2−Φ(R)) – i.e., Φ(R)
.
= 2

∗Φ(R);
Φ(R) v (=1 2

∗Φ(U1)) u . . . u (=1 2
∗Φ(Uk)).

(ax9) For each snapshot attribute Ai with 〈E,Ai〉 ∈ s:
Φ(E) v (=1 2

∗Φ(Ai)).
(ax10) For each temporary entity E ∈ ET :

Φ(E) v (3+¬Φ(E)) t (3−¬Φ(E)).
(ax11) For each temporary relationship R ∈ RT :

Φ(R) v (3+¬Φ(R))t(3−¬Φ(R))t¬((=1 2
∗Φ(U1))u. . .u(=1 2

∗Φ(Uk))).
(ax12) For each temporary attribute Ai with 〈E,Ai〉 ∈ t:

Φ(E)〉 v ¬(=1 2
∗Φ(Ai)).

(ax13) For each pair of symbols X1,X2 such that one of the following is
true:

1. X1 ∈ D, X2 ∈ E ∪ D, X1 6= X2;
2. X1 ∈ R, X2 ∈ E ∪ R, X1,X2 with different arity.

Φ(X1) v ¬Φ(X2).
(ax14) For E,E1, . . . , En ∈ E , if {E1, . . . , En} disj E:

E1 v E u ¬E2 u . . . u ¬En

E2 v E u ¬E3 u . . . u ¬En

. . .
En v E.

(ax15) For E,E1, . . . , En ∈ E , if {E1, . . . , En} cover E:
E1 v E
. . .
En v E
E v E1 t . . . t En.

(ax16) For each key attribute A with key(E) = A:
Φ(E) v (=1 2

∗Φ(A))
> v (61 (Φ(A))−. Φ(E)).

(ax17) For each Es, Et ∈ E if Es dex Et then:
Et v 3

−Es.
(ax18) For each Es, Et ∈ E if Es dev Et then:

Et v ¬Es u 3
−Es.

(ax19) For each R ∈ gen, then:
R v ∀source. (Es u 2

+¬Es) u ∀target. (Et u 2
−¬Et).
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To prove that reasoning on ERVT schemas can be done by reasoning on
their ALCQIUS translation we need to prove the correctness of the encoding.
The encoding that makes use of the DLRUS description logic – a DL with
n-ary relations – has been proven correct in [2] by establishing a precise
correspondence between legal database states of ERVT schemas and models
of the corresponding DLRUS theories. The same result holds true for the
ALCQIUS mapping.

Proposition 2 (Correctness of the encoding). Let the schema Σ be

an ERVT schema. Then, Σ admits a legal database state if and only if the

corresponding ALCQIUS knowledge base Φ(Σ) has a model.

The following theorem that reduces reasoning over ERVT schemas to rea-
soning over ALCQIUS knowledge bases is a direct consequence of the propo-
sition 2.

Theorem 1 (Reasoning over ERVT schemas). Let the schema Σ be

an ERVT schema, E ∈ E an entity, R ∈ R a relationship, and Φ(Σ) the

ALCQIUS knowledge base corresponding to Σ. The following holds:

1. E or R is satisfiable iff, respectively

Φ(Σ) 6|= Φ(E) v ⊥;

Φ(Σ) 6|= Φ(R) v ⊥;

2. Σ is satisfiable iff Φ(Σ) is satisfiable, i.e., Φ(Σ) 6|= > v ⊥;

3. A schema Σ′ is logically implied by a schema Σ over the same signature

iff Φ(Σ) |=
∧
Φ(Σ′); where

∧
Φ(Σ′) stands for the conjunction of all

axioms in Φ(Σ′).

The above theorem reduces both satisfiability and logical implication in ERVT

to logical implication in ALCQIUS . On the other hand, neither global nor
liveness satisfiability can be captured by ALCQIUS axioms as presented in
this Chapter. Indeeed, a more expressive axiom language is required to cap-
ture these reasoning tasks, i.e., a language where complex axioms can be
formed using full boolean and tempoaral operators (see [2,4]).

Important complexity results can be proved if we consider the fragment
of ERVT that can be encoded in ALCQI−

US , namely the fragment without
snapshot relations and attributes, temporal keys, and lifespan cardinalities.
In [4] an EXPTIME upper bound was proved for ALCQI−

US : therefore, we can
conclude that the same complexity upper bounds holds for ERVT . Moreover,
in [10] an EXPTIME complexity lower bound was proved for reasoning in
non-temporal UML/ER diagrams, which are expressible in the non-temporal
part of ERVT ; therefore, we can conclude that reasoning in this fragment of
ERVT is then EXPTIME-complete. We conjecture in [2] that the fragment of
ERVT including the standard non-temporal EER data model, and temporally
enhanced with the capability to express temporal behaviour for both entities
and relationships, and dynamic constraints is still undecidable.
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Example 3. We now show how the schema of the running example of Fig. 1
is translated. Let Σex be the schema associated to the diagram of Fig. 1 as
illustrated in Example 1, and Φ(Σex) = (CNex, RNex, Γ ex) be its ALCQIUS

translation. The alphabet of Φ(Σex) is such that:

CNex = {Employee, Manager, AreaManager, TopManager, Department,
OrganisationalUnit, InterestGroup, Project, Integer, String}

RNex = {Manages, Works-for, Resp-for, PaySlipNumber, Salary, Name,
ProjectCode, emp, act, prj, man, org}

ALCQI – the non temporal fragment of ALCQIUS – is enough to translate
entities, relationships, attributes, generalised hierarchies and snapshot cardi-
nality constraints. Entities together with their attributes in Σex give rise to
the following terminological axioms:

Employee v ∀PaySlipNumber. Integer u (=1 PaySlipNumber) u
∀Salary. Integer u (=1 Salary) u
∀Name. String u (=1 Name)

Project v ∀ProjectCode. String u (=1 ProjectCode).

Relationships in Σex give rise to the following axioms:

Works-for v ∀emp. Employee u (=1 emp) u ∀act. Project u (=1 act)
Manages v ∀man. TopManager u (=1 man) u ∀prj. Project u (=1 prj)
Resp-for v ∀prj. Project u (=1 prj) u

∀org. OrganisationalUnit u (=1 org)

Notice that for the mapping to be correct the appropriate disjointness axioms
(ax13) have to be considered.

Generalised hierarchies in Σex give rise to the following axioms:
Manager v Employee u (AreaManager t TopManager)

AreaManager v Manager

TopManager v Manager

OrganisationalUnit v Department t InterestGroup

Department v OrganisationalUnit u ¬InterestGroup
InterestGroup v OrganisationalUnit

Snapshot cardinality constraints in Σex give rise to the following axioms:

Project v (>1 act−. Works-for) u (>1 prj−. Resp-for) u
(=1 prj−. Manages)

TopManager v (=1 man−. Manages)

Let’s illustrate now the mapping of the temporal constructs. ALCQIUS ax-
ioms can enforce either that entities (relationships) cannot last forever, or
that their extension never changes in time. Snapshot entities and relation-
ships in Σex give rise to the following axioms:

Employee v (2+Employee) u (2−Employee)
Department v (2+Department) u (2−Department)

Resp-for v (2+Resp-for) u (2−Resp-for)
Resp-for v (=1 2

∗prj) u (=1 2
∗org)
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Temporary entities and relationships inΣex gives rise to the following axioms:

Manager v (3+¬Manager) t (3−¬Manager)
Works-for v (3+¬Works-for) t (3−¬Works-for) t

¬((=1 2
∗emp) u (=1 2

∗act))

Let’s now show how the temporal properties of attributes in Σex are trans-
lated. The following axioms:

Employee v (=1 2
∗Name)

Employee v ¬(=1 2
∗Salary)

state that the name of an employee does not change – it is a snapshot attribute
– while its salary is a temporary attribute.

Key constraints in Σex give rise to the following axioms:

Employee v (=1 2
∗PaySlipNumber)

> v (61 PaySlipNumber−. Employee)
Project v (=1 2

∗ProjectCode)
> v (61 ProjectCode−. Project)

Notice that in our approach only single-attribute keys are captured. The case
of full key dependencies in the a-temporal ALCQI language as been recently
solved [11] and its temporal extension has to be investigated yet.

Lifespan cardinality constraints in Σex give rise to the following axiom:

TopManager v (>1 man−. 3
∗Manages) u (65 man−. 3

∗Manages)

i.e., a top manager should manage at least 1 and at most 5 different projects
in his entire existence as a top manager.

We conclude by showing how ALCQIUS captures dynamic relationships be-
tween the entities of the schema. The dynamic extension between being an
area manager and a top manager gives rise to the following axiom:

TopManager v 3
−AreaManager

The generation relationships as in Fig. 2 gives rise to the following axiom:

Generate v ∀source. (Orange u 2
+¬Orange)u

∀target. (Juice u 2
−¬Juice)

Furthermore, to fully capture Fig. 2 the lifespan cardinality constraints need
to be mapped:

Orange v (=1 source−. 3
∗Generate)

Juice v (=5 target−. 3
∗Generate)
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5 An Object-Oriented Data Model for Evolving
Schemas

As anticipated in the introduction, the conceptual data model for evolving
schemas we propose is based on a formal framework consisting of:

• an extended object-oriented model which supports a standard notion of
evolving schemas (equipped with all the usually adopted schema change
operators) for which a semantics is provided;

• a collection of interesting reasoning tasks, in order to support the design
and the management of an evolving schema;

• an encoding, which has been proved correct, in the description logic
ALCQI, which can then be used to solve the tasks defined for the schema
evolution.

The object-oriented model we propose allows for the representation of
multiple schema versions. It is based on an expressive version of the “snap-
shot” – i.e., single-schema – object-oriented model introduced by [1] and
further extended and elaborated in its relationships with Description Logics
by [12,13]. The language embodies the features of the static parts of UML
and ODMG and, therefore, it does not take into account those aspects related
to the definition of methods.

The definition of an evolving schema S is based on a set of class and
attribute names (CS and AS respectively) and includes a partially ordered
set of schema versions. The initial schema version of S contains a set of class
definitions having one of the following forms:

Class C is-a C1,. . . ,Ch disjoint Ch+1,. . . ,Ck not-is-a Ck+1,. . . ,Cn type-is T .

View-class C type-is T .

A class definition introduces just necessary conditions regarding the type of
the class – this is the standard case in object-oriented data models – while
views are defined by means of both necessary and sufficient conditions. The
symbol T denotes a type expression built according to the following syntax:

T → C |
Union T1,. . . ,Tk End | (union type)
Set-of [m,n] T | (set type)
Record A1:T1,. . . ,Ak:Tk End . (record type)

where C ∈ CS , Ai ∈ AS , and [m,n] denotes an optional cardinality constraint.

A schema version in S is defined by the application of a sequence of
schema changes to a previous schema version. The schema change taxonomy
is built by combining the model elements which are subject to change with
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the elementary modifications, add, drop and change, they undergo. We intro-
duce only a basic set of elementary schema change operators including the
standard ones found in the literature6, see, e.g., [6]:

Add-attribute C, A, T
Drop-attribute C, A
Change-attr-name C, A, A’
Change-attr-type C, A, T ’
Add-class C, T
Drop-class C
Change-class-name C, C’
Change-class-type C, T ’
Add-is-a C, C’
Drop-is-a C, C’

We are now ready to define the syntax of our object-oriented data model
for evolving schemas:

Definition 5 (Evolving Schema). An evolving object-oriented schema is
a tuple S = (CS ,AS ,SV0,MS), where:

• CS is a finite set of class names;
• AS is a finite set of attribute names;
• SV0 is the initial schema version, which includes class and view definitions

for some C ∈ CS ;
• MS is a set of modifications Mij , where i, j denote a pair of version co-

ordinates, inducing a tree partial order ≤S over a finite and discrete set
of schema versions SV with minimal element SV0 (i.e., every non-initial
schema version has exactly one immediate predecessor in the partial or-
der). Each modification is a finite sequence of elementary schema changes.

Notice that we omit the definition of a schema version coordinate mech-
anism and simply reference distinct schema versions by means of different
subscripts. Any kind of versioning dimension usually considered in the liter-
ature could actually be employed – such as transaction time, valid time and
symbolic labels – provided that a suitable mapping between version coordi-
nates and index values is defined.

According to the above definition, SV0 precedes every other schema ver-
sion, and a schema version SVj represents the outcome of the application of
Mij to SVi. S is called elementary if every Mij in MS contains only one
elementary modification; in the following we will consider only elementary
evolving schemas.

Definition 6. Let S be schema, we introduce the following notation:

6 It is not difficult to consider the complete set of operators with respect to the
constructs of the data model.
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• The linear sequence of modifications MSi↓j
which leads to the schema

version SVj starting from SVi, is the smallest sequence satisfying the
following inductive definition:

– MSi↓i
= ∅,

– MSi↓j
= MSi↓k

,Mkj , j > i, and Mkj ∈ MS .

• The j-th schema version SVj is constituted by the initial set of class
definitions SV0 and the sequence of schema modifications MS0↓j

(in the
following MS↓j

). Notice that, given Definition 5, MS↓j
is uniquely defined

for each schema version SVj .

Let us now introduce the meaning of an evolving object-oriented schema
S. Informally, the semantics is given by assigning to each schema version (a)
a set of initial legal states – i.e., legal instances of the initial schema version –
conforming to the class definitions in the initial schema version, and (b) the
sequence of schema changes further constraining the legal instances of the
schema version itself. For example, it may happen that, given an arbitrary
legal state for an initial schema, different sequences of schema changes applied
to the schema lead to the same final legal state: a notion of equivalence among
schema modifications could be grounded on this semantic observation.

The semantics is based on the dualism between objects and values: a finite
set OI of object identifiers is defined and a set of values VOI is constructed by
induction as the smallest set including the union of OI with all possible “sets”
of values and with all possible “records” of values over the given alphabet of
attributes. A unique value is associated to each object; sets of objects form
classes, while sets of values form types.

We first introduce the notion of version instance I for a schema version
in S. Formally, I is a tuple (OI , ρI , πI , ·I), including a non-empty finite set
of objects OI , a function ρI : OI 7→ VOI giving a value to object identifiers,

a total function πI : CS 7→ 2O
I

, giving the set of object identifiers in the
extension of each class C ∈ CS , and the interpretation function ·I : T 7→ 2VOI

mapping type expressions to sets of values. Although the set VOI is infinite,
we consider the finite set VI of active values, which is the subset of VOI

formed by the union of OI and the set of values assigned by ρI [12].

Schema versions are defined in an incremental fashion. At semantic level
this means that each schema version SVj adds a new constraint with respect
to its immediate predecessor. Therefore, in order to be considered legal for
a schema version SVj , a version instance I should satisfy the constraints
imposed by SV0 and by the sequence of schema modifications MS↓j

. The
semantics of schema modifications, shown in Tab. 6, is given by associating
to each schema modification a constraint on the extension of the involved
class C. For instance, the add-attribute semantics states that the objects
instances of the class C should contain a value associated with the added
attribute A; or the change-class-name semantics states that the extension of
the class with the new name C’ should coincide with that of the old name C.
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Add-attribute C, A, T πI(C) ⊆ {o ∈ OI |∃v. ρI(o) = [[ . . . , A : v, . . .]] ∧ v ∈ T
I}

Drop-attribute C, A πI(C) ⊆ {o ∈ OI |∃v. ρI(o) 6= [[ . . . , A : v, . . .]]}

Change-attr-name C, A, A
′ πI(C) ⊆ {o ∈ OI |∃v. ρI(o) = [[ . . . , A : v, . . . , A′ : v, . . .]]}

Change-attr-type C, A, T πI(C) ⊆ {o ∈ OI |∃v. ρI(o) = [[ . . . , A : v, . . .]] ∧ v ∈ T
I}

Add-class C πI(C) ⊆ OI

Drop-class C πI(C) = ∅

Change-class-name C, C
′ πI(C) = πI(C′)

Change-class-type C, T πI(C) ⊆ {o ∈ OI |ρI(o) ∈ T
I}

Add-is-a C,C′ πI(C) ⊆ πI(C′)

Drop-is-a C, C
′ πI(C) 6⊆ πI(C′)

Fig. 6. Semantics of elementary schema changes

The constraint associated to the drop of an attribute enforces the instances
of the class not to contain a value associated to the dropped attribute.

Definition 7 (Semantics). Let S be a schema and SVj ∈ SV one of its
schema versions. A version instance I = (OI , ρI , πI , ·I) is said to be legal
for a schema version SVj if

• ·I satisfies the following:
CI = πI(C)

(UnionT1, . . . , Tk End)I = T I
1 ∪ . . . ∪ T I

k

(Set-of[m,n]T )I = {{| v1, . . . , vk |} |
for some k such that m ≤ k ≤ n,
there exists v1, . . . , vk such that
vi ∈ T I for i ∈ {1, . . . , k}}

(RecordA1 : T1, . . . , Ak : Tk End)I = {[[A1 : v1, . . . , Ak : vk, . . . , Ah : vh]] |
for some h ≥ k,
there exists v1, . . . , vh such that
vi ∈ T I

i for i ∈ {1, . . . , k},
vi ∈ VOI for i ∈ {k + 1, . . . , h}}

• for each class definition in the initial version SV0

Class C is-a C1,. . . ,Ch disjoint Ch+1,. . . ,Ck not-is-a Ck+1,. . . ,Cn

type-is T
,

it holds that:
CI ⊆ CI

i for each i ∈ {1, . . . , h},
CI ∩ CI

i = ∅ for each i ∈ {h+ 1, . . . , k},
CI 6⊆ CI

i for each i ∈ {k + 1, . . . , n},
{ρI(o) | o ∈ πI(C)} ⊆ T I ;

• for each view definition in the initial version SV0

View-class C type-is T
it holds that:
{ρI(o) | o ∈ πI(C)} = T I ,
{o | ρI(o) ∈ T I} = πI(C);

• for each schema modification in MS↓j
, the functions πI and ρI satisfy

the equations of the corresponding schema change type at the right hand
side of Tab. 6.
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/Senior /Junior

/Anystaff

Worker
Secretary

telephone:Integer

has-staff:{}

Manager

level:Integer

Employee

Executive

{complete}

{disjoint,complete}

{disjoint}

0..1

I has-staff

2..?

I has-staff

Fig. 7. The Employee initial schema version in UML-like notation.

Given a schema S, with Īj we denote the set of all possible legal version
instances of the schema version SVj .

From the above definition it turns out that an open semantics for records
has been adopted (called *-interpretation in [1]) in order to give the right
semantics to inheritance. Please note also that we consider the finite set of
object identifiers OI as a constant domain which is independent from each
version instance.

Example 4. Let us consider an evolving schema S describing the employees
of a company. The schema includes an initial schema version SV0 defined as
follows:

Class Employee type-is Union Manager,Secretary,Worker End;
Class Manager is-a Employee disjoint Secretary, Worker type-is

Record level: Integer End;
Class Secretary is-a Employee disjoint Worker type-is

Record telephone: Integer, has-staff: Set-of [0,0] Worker End;
Class Worker is-a Employee;
View-class Senior type-is Record has-staff: Set-of [2,n] Worker End;
View-class Junior type-is Record has-staff: Set-of [0,1] Worker End;
Class Executive disjoint Secretary, Worker;
View-class Anystaff type-is Union Senior, Junior End;

Figure 7 shows the UML-like representation induced by the initial schema
SV0; note that classes with names prefixed by a slash represent the views.
The evolving schema S includes a set of schema modifications MS defined
as follows:
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(M01) Add-is-a Secretary, Manager;
(M12) Drop-is-a Secretary, Anystaff;
(M03) Drop-is-a Secretary, Employee;
(M04) Add-is-a Executive, Employee;
(M45) Add-attribute Manager, IdNum, Number;
(M56) Change-attr-type Manager, IdNum, Integer;
(M67) Change-attr-type Executive, IdNum, String;
(M68) Drop-class Worker;

5.1 Reasoning Problems

According to the semantic definitions given in the previous section, several
reasoning problems can be introduced, in order to support the design and
the management of an evolving schema.

Definition 8 (Reasoning). Given an evolving schema S we introduce the
following reasoning problems:

a. Local/global Schema Inconsistency: a schema version SVi of S is locally
inconsistent if it does not admit any legal version instance, i.e., Īi = ∅;
an evolving schema S is globally inconsistent if each any schema version
SVi does not admit any legal version instance.

b. Local/global Class Inconsistency: a class C is locally inconsistent in the
version SVi if for every legal version instance I ∈ Īi its extension is
empty, i.e., πI(C) = ∅; a class C is globally inconsistent if it is locally
inconsistent for all SVi ∈ SV, i.e.,
∀SVi ∈ SV. ∀I ∈ Īi. π

I(C) = ∅.
c. Local/global Disjoint Classes: two classes C,D are locally disjoint in the

version SVi if for every legal instance I ∈ Īi their extensions are disjoint,
i.e., πI(C) ∩ πI(D) = ∅; two classes C,D are globally disjoint if they
are locally disjoint for all SVi ∈ SV, i.e., ∀SVi ∈ SV. ∀I ∈ Īi. π

I(C) ∩
πI(D) = ∅.

d. Local/global Class Subsumption: a class D locally subsumes (i.e., it is a
superclass of) a class C in the version SVi if for every legal instance I ∈ Īi

the extension of C is included in the extension of D, i.e., πI(C) ⊆ πI(D);
a class D globally subsumes a class C if D locally subsumes C for all
SVi ∈ SV, i.e., ∀SVi ∈ SV. ∀I ∈ Īi. π

I(C) ⊆ πI(D).
e. Local/global Class Equivalence: two classes C,D are locally / globally

equivalent if C locally / globally subsumes D and vice-versa.

Please note that the classical subtyping problem – i.e., finding the explicit
representation of the partial order induced on a set of type expressions by the
containment between their extensions – is a special case of class subsumption,
if we restrict our attention to view definitions. In fact, in order to check
whether a type T1 is locally a subtype of a type T2 in the version SVi, defined
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as ∀I ∈ Īi. T
I
1 ⊆ T I

2 , it is enough to check whether the view (View-class C1

type-is T1) is locally subsumed in the version SVi by the view (View-class
C2 type-is T2). The global subtyping problem is reduced in a similar way to
a global subsumption problem.

We will try to explain the application of the reasoning problems through
an example.

Example 5. Let us analyse the effect of each schema change Mij by consid-
ering the schema version SVj it produces.

In the initial schema version it can be deduced that the Junior and
Senior classes are globally disjoint classes, and that the class Secretary is
a global subclass of both the Anystaff and Junior classes. The Junior and
Senior view classes are complementary with respect to the record type with
set values for the has-staff attribute. Moreover, any object in the Anystaff
class is a record with any set value for has-staff. The class Secretary

becomes automatically a subclass of both the Junior and Anystaff classes,
since it has an empty valued set for the has-staff attribute.

Secretary is inconsistent in SV1 since Secretary and Manager are dis-
joint: its extension is included in the Manager extension only if it is empty
(for each version instance I ∈ Ī1, Secretary

I = ∅). Therefore, Secretary is
locally inconsistent, as it is inconsistent in SV1 but not in SV0.

The whole schema version SV2 is locally inconsistent because the (in-
consistent) Secretary class is necessarily a subclass of any class, including
Anystaff. In this case, no legal version instance can exist satisfying both an
isa and a not-isa constraint. SV3 is locally inconsistent for a similar reason:
in this case there was an attempt to drop an explicitly existing isa link.

In SV4, it can be derived that Executive is locally subsumed by Manager,
since it is a subclass of Employee disjoint from Secretary and Worker

(Manager, Secretary and Worker form a partition of Employee).
The schema version SV5 exemplifies a case of attribute inheritance. The

attribute IdNum which has been added to the Manager class is inherited by the
Executive class together with the level attribute. This means that every

legal instance of SV5 should be such that every object in the Executive class
has a record value with an attribute IdNum of type Number and an attribute
level of type Integer, i.e., for all I ∈ Ī5 π

I(Executive) ⊆ {o | ρI(o) ∈
[[IdNum : Number, level : Integer]]I}. Of course, there is no restriction on the
way classes are related via subsumption, and multiple inheritance is allowed
even if it may sometimes cause an inconsistency – which can be easily spotted
in this formalism.

The Change-attr-type elementary schema change allows for the modifi-
cation of the type of an attribute with the proviso that the new type is not
incompatible with the old one, like in M56. In fact, the semantics of elemen-
tary schema changes as defined in Tab. 6 is based on the assumption that
we maintain one single data pool (i.e. ρI) where each object is associated
with one value and where version instances can be thought as views over the
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data pool which should coexist with the starting data. Indeed, the sequence
of schema versions can be seen as an increasing set of constraints; every el-
ementary schema change introduces new constraints over a vocabulary pos-
sibly augmented by new classes or attributes in the new version. Therefore,
if an object changes its value, then its object identifier should change, too.
Notice that, for this reason, M67 leads to an inconsistent Executive class
SV7 if Number and String are defined to be non-empty disjoint classes.

The deletion of the class Worker in SV8 leads to a locally inconsistent
version of the class Senior but not Junior because of the different cardinality
constraints. In fact, given that the class Worker is necessarily empty, then
no object can exist in the class Senior, since it is required for them to have
at least two workers as fillers of the set-valued attribute has-staff. On the
other hand, in SV8 objects in the Junior can exist, with the proviso that
they have no fillers of the attribute has-staff. Notice the elegance of this
approach, differently from a classical object model where the class hierarchy
is explicitly based on a DAG, and the deletion of a non-isolated class would
require a restructuring of the DAG itself (e.g. to get rid of dangling edges).

5.2 Encoding in Description Logics

In this section we establish a relationship between the proposed model for
evolving schemas and the ALCQI description logic. To this end, we provide
an encoding from an evolving schema into an ALCQI knowledge base Σ,
such that the reasoning problems mentioned in the previous section can be
reduced to corresponding description logics reasoning problems, for which
extensive theories and well founded and efficient implemented systems exist.
The encoding is grounded on the fact that there is a correspondence between
the models of the knowledge base and the legal instances of the evolving
schema. The reason for using a non-temporal DL lies on the incremental
nature of the constraints representing an evolving schema: the non-temporal
DL can represent the initial schema and the constraints associated to the
schema changes.

In [12], the encoding of a snapshot object-oriented schema in an ALCQI
knowledge base is based on the reification of type expressions – i.e., explicit
individuals exist to denote values of complex types. We introduce the concept
AbstractClass to represent the classes, the concepts RecType, SetType to repre-
sent types, the role value to model the association between classes and types,
and the role member to specify the type of the elements of a set. In particular,
a record is represented as an individual connected by means of (functional)
roles – corresponding to attributes – to the fillers of its attributes.

Our encoding is based on the mapping function ψ which translates a
schema version in a knowledge base. With respect to the encoding of snapshot
schemas [12], ψ extends it with set cardinalities and views.

Definition 9 (Mapping into ALCQI).
Given a schema S = (CS ,AS ,SV0,MS) and SVj ∈ SV, the ALCQI knowl-



32 A. Artale, E. Franconi, and F. Mandreoli

edge base ψ(SVj) corresponding to the schema version SVj is based on the
following symbols:

• Concepts: {AbstractClass,RecType,SetType} ∪ CS ,
• Roles: {member} ∪ AS ;

with ψ defined as follows:

ψ(C) = C
ψ(Union T1,. . . ,Tk End) = ψ(T1) t . . . t ψ(Tk)

ψ(Set-of [m,n] T ) = SetType u ∀member. ψ(T )u
(>m member. >) u (6n member. >)

ψ(Record A1:T1,. . . ,Ak:Tk End) = RecType u ∃A1. ψ(T1) u . . . u ∃Ak. ψ(Tk)

and it is composed by the following axioms:

• Axioms on basic types:
AbstractClass v ∃value.> u (61 value. >)

RecType v ∀value.⊥
SetType v ∀value.⊥ u ¬RecType

• For each attribute A ∈ AS :
∃A.> v (61 A. >)

• For each class definition in SV0

Class C is-a C1,. . . ,Ch disjoint Ch+1,. . . ,Ck not-is-a Ck+1,. . . ,Cn type-is
T :
ψ(C) v AbstractClass u ψ(C1) u . . . u ψ(Ch) u ∀value. ψ(T )
ψ(C) u ψ(Cj) = ∅ for each j ∈ {h+ 1, . . . , k}
ψ(C) 6v ψ(Ci) for each i ∈ {1, . . . , h}

• For each view definition in SV0

View-class C type-is T :

ψ(C) ≡ ∀value. ψ(T )
• For each schema modification in MS↓j

, a corresponding axiom from
Tab. 8.

The knowledge base encoding an evolving schema consists of the union
of all the knowledge bases of its schema versions. In the following, we will
adopt subscripts in order to distinguish knowledge bases of different schema
versions: given a schema version SVj , the corresponding knowledge base Σj

is ψ(SVj) where each concept is subscripted with j.

Definition 10. The ALCQI knowledge base Σ = ψ(S) corresponding to
the object-oriented evolving schema S = (CS ,AS ,SV0,MS) consists of the
knowledge bases Σj = ψ(SVj), for each SVj ∈ SV.

Based on the results of [13], now we prove that the encoding is correct, in
the sense that there is a correspondence between the models of the knowledge
base and the legal instances of the evolving schema.
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Add-attribute C, A, T ψ(C) v ∀value. (RecType u ∃A. ψ(T))

Drop-attribute C, A ψ(C) 6v ∀value. (RecType u ∃A.>)

Change-attr-name C, A, A′ ψ(C) v ∀value. (RecType u ∃A.> u ∃A′.>)

Change-attr-type C, A, T′ ψ(C) v ∀value. (RecType u ∃A. ψ(T′))

Add-class C, T ψ(C) v AbstractClass

Drop-class C ψ(C) ≡ ⊥

Change-class-name C, C′ ψ(C) ≡ ψ(C′)

Change-class-type C, T′ ψ(C) v ∀value. ψ(T′)

Add-is-a C, C′ ψ(C) v ψ(C′)

Drop-is-a C, C′ ψ(C) 6v ψ(C′)

Fig. 8. The axioms induced by the schema changes.

Lemma 1. For each object-oriented evolving schema S of depth m and each

schema version SVj ∈ SV, the following mappings exist:

1. αSV from version instances into finite interpretations and αV from active

values of version instances into domain elements of the finite interpreta-

tion such that:

For each legal version instance I ∈ Īj of SVj, αSV(I) is a finite model

of ψ(SVj), and for each type expression T of S and each v ∈ VI , v ∈ T I

iff αV(v) ∈ (ψ(T ))αSV (I).

2. βSV from finite interpretations of ψ(SVj) into version instances, and βV
from domain elements of the m-unfolded versions of finite interpretations

into active values of version instances, such that:

For each finite model I of ψ(SVj), βSV(I) is a legal instance of SVj, and

for each concept ψ(T ), which is the translation of a type expression T of S
with respect to the schema version SVj, and each d ∈ ∆I|m , d ∈ ψ(T )I|m

if and only if βV(d) ∈ T βSV(I).

We can now prove that the set of legal instances of the evolving schema
S corresponds to the set of possible finite models of ψ(S).

Proposition 3 (Correctness of the encoding). For each object-oriented

evolving schema S of depth m, the following mappings exist:

1. αS from instances of a schema into finite interpretations of ψ(S) such

that for each legal instance I of S, αS(I) is a finite model of ψ(S).
2. βS from finite interpretations of ψ(S) into instances of S such that for

each finite model I of ψ(S), βS(I) is a legal instance of S.

The semantic correspondence is exploited to devise a correspondence be-
tween reasoning problems at the level of evolving schemas and reasoning
problems at the level of the description logic [22].
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Theorem 2 (Reasoning with evolving schemas). Given an evolving

schema S, the reasoning problems defined in the previous section are all de-

cidable in EXPTIME with a PSPACE lower bound and EXPTIME complete

with full booleans in type expressions. The reasoning problems can be reduced

to corresponding satisfiability problems in the ALCQI Description Logic.

Example 6. In this Section we provide the complete encoding in ALCQI of
the example introduced in Section 5.1. The following are the axioms induced
by SV0:

Employee v AbstractClass u ∀value. (Manager t Secretary t Worker)
Manager v AbstractClass u Employee u ∀value.(RecType u ∃level.Integer)
Manager u Secretary = ∅
Manager u Worker = ∅
Secretary v AbstractClass u Employee u

∀value.(RecType u ∃telephone.Integer u
∃has staff.(SetType u ∀member. Worker u (>0 member. >) u

(60 member. >)))
Secretary u Worker = ∅
Worker v Employee

Senior ≡ AbstractClass u
∀value.(RecType u

∃has staff.(SetType u ∀member. Worker u (>2 member. >) u
(6n member. >)))

Junior ≡ AbstractClass u
∀value.(RecType u

∃has staff.(SetType u ∀member. Worker u (>0 member. >) u
(61 member. >)))

Executive v AbstractClass

Executive u Secretary = ∅
Executive u Worker = ∅

Anystaff ≡ AbstractClass u ∀value. (Senior t Junior)

whereas the following are the axioms induced by the applied schema modifi-
cations:

(M01) Secretary v Manager

(M12) Secretary 6v Anystaff

(M03) Secretary 6v Employee

(M04) Executive v Employee

(M45) Manager v ∀value. (RecType u ∃IdNum. Number)
(M56) Manager v ∀value. (RecType u ∃IdNum. Integer)
(M67) Executive v ∀value. (RecType u ∃IdNum. String)
(M68) Employee ≡ ⊥

The knowledge base Σ corresponding to ψ(S) is made up of the knowl-
edge bases Σ0, . . . , Σ8 corresponding to the schema versions SV0, . . . ,SV8.
In particular the axioms having concepts and roles subscripted with 0 define
Σ0 = ψ(SV0) whereas Σi = ψ(SVi) with i ≥ 1 is constituted by the axioms
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induced by SV0 and of a subset of the axioms corresponding to the sequence
of schema modifications MS↓i

where each concept and role is subscripted
with i.

6 Conclusions

We have shown in this Chapter how Description Logics are useful to encode
not only conceptual data models of static information, but also conceptual
data models of dynamic information. This includes both the case of dynamic
data and the case of dynamic schemas. The encoding in Description Logics
was useful to prove computational properties of the data models, and to al-
low for an implementation of the reasoning by exploiting existing inference
engines. Moreover, this Chapter presents the first systematic formalisation
of the constructs provided in the majority of temporally enhanced EER con-
ceptual modelling systems.
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