
Fixing Inconsistent Databases by Updating Numerical Attributes

Leopoldo Bertossi, Loreto Bravo

Carleton University, School of Computer Science, Ottawa, Canada.
{bertossi,lbravo}@scs.carleton.ca

Enrico Franconi, Andrei Lopatenko*
Free University of Bozen–Bolzano, Faculty of Computer Science, Italy.

{franconi,lopatenko}@inf.unibz.it

Abstract

Consistent query answering is the problem of computing

those answers from a database that are consistent with re-

spect to certain integrity constraints that the database as

whole may fail to satisfy. Those answers are character-

ized as invariant under minimal forms of restoring the

consistency of the database. In this context, we study the

problem of fixing databases by updating numerical data at

the attribute under denial constraints.

1. Introduction

Many database applications, like census, demo-
graphic, financial, and experimental data, contain
quantitative data associated to nominal or qualita-
tive data, e.g. number of children associated to a
household identification code; or measurements associ-
ated to a sample identification code. It is common for
this kind of numerical data to contain errors or mis-
takes with respect to certain semantic constraints.
For example, a census form for a particular house-
hold may be considered incorrect if the number of chil-
dren exceeds 20; or if the age of the wife is less than
10. This kind of restrictions can be expressed using de-
nial integrity constraints (ICs), that prevent some at-
tributes from taking certain values. In this kind of
applications, inconsistencies in numerical data are re-
solved by changing individual attribute values, while
values in the key attributes are kept, e.g. with-
out changing the household code, the number of
children is decreased considering the admissible val-
ues.

In this paper we consider the problem of fixing nu-
merical data according to certain constraints while (a)

* Also: University of Manchester, Department of Computer Sci-

ence, UK.

keeping the values associated to the keys of the rela-
tions in the database, and (b) minimizing the quanti-
tative global distance from the modified instance to
the original instance. Since the problem may admit
several global solutions, each of them involving possi-
bly many individual changes, we are particularly inter-
ested in characterizing and computing data and prop-
erties that remain invariant under any of these fixing
processes. We concentrate on linear denial constraints
and conjunctive queries.

Database repairs have been extensively studied in
the context of consistent query answering (CQA), i.e.
the process of obtaining the answers to a query that are
consistent wrt a given set of ICs [1] (c.f. [3] for a sur-
vey). There, consistent data is characterized as invari-
ant under all minimal restorations of consistency, i.e. as
data that is present in all minimally repaired versions
of the original instance (the repairs). In most of the re-
search on CQA, a repair is a new instance that satis-
fies the given ICs, but differs from the original instance
by a minimal set, under set inclusion, of (completely)
deleted or inserted tuples. In that setting, changing the
value of a particular attribute can be modelled as a
deletion followed by an insertion, but this may not cor-
respond to a minimal repair.

In certain applications, like those mentioned above,
it may make more sense to consider correcting (updat-
ing) numerical values as a form of restoring consistency,
which requires a new definition of repair that consid-
ers the quantitative nature of individual changes, the
association of the numerical values to other key val-
ues and a quantitative distance between database in-
stances.

Example 1. A company produces paper rolls and has
a database with a relation Roll containing the Id of the
rolls together with their grade and brightness. The rolls
have grade 0 or 1 and the brightness takes integer val-

ues between 0 and 100. Rolls of grade 0 have brightness
higher or equal to 88 and rolls of grade 1 have bright-
ness higher or equal to 85 but smaller than 88. The fol-
lowing database D, with Id as the key, is inconsistent
wrt this ICs. Under the tuple and set oriented seman-

tics of repairs [1],Roll Id Grade Bright

1 0 90
2 0 86
3 1 85

the only repair cor-
responds to delete
Roll(2, 0, 86). How-
ever, we have two

options that may make more sense than delet-
ing the roll, namely changing the violating tuple to
Roll(2, 1, 86) or to Roll(2, 0, 88). These options sat-
isfy an implicit requirement that the numbers do not
change too much. 2

Update-based fixes for restoring consistency are stud-
ied in [13], however, the peculiarities of changing nu-
merical attributes are not considered, and more impor-
tantly, the distance between databases instances used
is, as in [1], set-theoretic, and not quantitative as in
this paper. Those repaired versions in [13] are called
fixes, and we keep this term (instead of repairs), be-
cause our basic repair actions are also changes of (nu-
merical) attribute values.

In this paper we give a definition of a fix, we present
some of complexity results related to fixing databases,
some tractable cases, and an approximate solution for
some hard cases. The presentation is rather informal,
however rigorous definitions, theorems and proofs can
be found in an extended version [4], where also many
extensions can be found, in particular, aggregation con-
strains and aggregate queries are also considered, which
is natural in this numerical context.

2. Preliminaries

The attributes of a database are called flexible if
they take values in Z and are allowed to be fixed, and
hard otherwise. F denoted the set of flexible attributes.
Each relation in D is assumed to have a primary key
that is satisfied by the initial instance D and by its
fixes. In this sense, the primary key constraints are con-
sidered to be hard constraints. Attributes in a key are
all hard. In addition, there may be a set of flexible ICs
IC that may be violated, and it is the job of a fix to sat-
isfy them again (while still satisfying the keys).

A linear denial constraint has the form ∀x̄¬(A1 ∧
· · · ∧ Am), with Ai a database atom, or a comparison
Xθc, where θ ∈ {=, 6=, <, >, ≤, ≥} (usually we replace
∧ by commas).

Example 2. The constraints of example 1 can be ex-
pressed as linear denial constraints as follows: ∀Id , G,B

¬(Roll(Id , G,B), G > 1), ∀Id , G,B ¬(Roll(Id , G, B),
G < 0), ∀Id , G,B ¬(Roll(Id , G, B), B < 0), ∀Id , G,B
¬(Roll(Id , G, B), B > 100), ∀Id , G,B ¬(Roll(Id , G,
B), G = 0, B < 88), ∀Id , G,B ¬(Roll(Id , G, B),
G = 1, B ≥ 88), ∀Id , G,B ¬(Roll(Id , G,B), G = 1,
B < 85). If the roll database also had a table Fr with
the percentage of fiber in a roll, a constraint enforcing
that rolls with grade 1 have a concentration of fiber
≥ 20 would be written: ∀Id , G,B, F ¬(Roll(Id , G, B),
F r(Id , F), G = 1, F < 20). 2

3. Least Squares Fixes

When numerical values are updated to restore con-
sistency, it is desirable to make the smallest overall vari-
ation wrt the original values while considering the rel-
ative relevance of the attributes. Since the original in-
stance and fixes share key values, we can use them to
compute numerical variations. For a tuple t̄D in D , t̄D′

denotes the corresponding tuple in database D ′ that
has the same key values as t̄D . To each attribute A ∈ F
a numerical weight α

A
is assigned.

The square distance between databases D and D ′

sharing the same schema and the same set of key val-
ues, is defined by ∆ᾱ(D ,D ′) =

∑
t̄∈D,A∈F

αA(πA(t̄D)−

πA(t̄D′))2, where πA is the projection on A and ᾱ
=(αA)A∈F . Accordingly, a least squares fix (LS-fix) for
D wrt IC is defined as an instance D′ such that (a) D′

has the same schema and domain as D; (b) D′ has the
same values as D in the hard attributes (c) D′ satis-
fies the key constraints and IC ; and (d) minimizes the
square distance ∆ᾱ(D,D′) over all the instances that
satisfy (a) - (c).

Example 3. (example 1 continued) Given
F = {Grade, Bright} and ᾱ = (1, 1/8). Candi-
date fixes are D1 = {(1, 0, 90), (2, 1, 86), (3, 1, 85)}
and D2 = {(1, 0, 90), (2, 0, 88), (3, 1, 85)}, with
∆ᾱ(D,D1) = 1× 12, and ∆ᾱ(D,D2) = 1/8× 22 = 0.5.
Then, D2 is the only LS-fix. 2

The coefficients αA can be chosen in many ways, de-
pending on their relevance, on the actual distribution
of the data, or to compensate different scales of mea-
surement. In this paper we will assume, for simplicity,
that αA=1 for all A ∈ F , and ∆ᾱ(D ,D ′) is simply de-
noted by ∆(D ,D ′).

Example 4. A database D has tables Client(Id ,
A,M), with key Id , attributes A for age and M for
money; and Buy(Id , I ,P), with key {Id , I}, I for items,
and P for prices. IC1 : ∀ Id , P, A, M ¬(Buy (Id , I,
P), Client(Id , A,M), A < 18, P > 25) and IC2 : ∀Id ,
A, M ¬(Client(Id , A, M), A < 18, M > 50), requir-
ing that people younger than 18 cannot spend more

2

than 25 dollars on an item nor spend more than 50
dollars in the store. The following table is the incon-
sistent database D where the extra column is used to
denote tuples.

Client

Id A M

1 15 52 t1

2 16 51 t2

3 60 90 t3

Buy

Id I P

1 CD 27 t4

1 TV 26 t5

3 TV 40 t6

IC1 is violated by {t1,t4} and {t1, t5}; and IC2 by {t1}
and {t2}. There are two LS-fixes (the modified version
of tuple t1 is t′

1
, etc.), with ∆(D,D′) = 22 + 12 + 22 +

12 = 10, and ∆(D,D′′) = 32 + 12 = 10.

D′: D′′:Client’

Id A M

1 15 50 t
′

1

2 16 50 t
′

2

3 60 90 t3

Buy’

Id I P

1 CD 25 t
′

4

1 TV 25 t
′

5

3 TV 40 t6

Client”

Id A M

1 18 52 t
′′

1

2 16 50 t
′′

2

3 60 90 t3

Buy”

Id I P

1 CD 27 t4

1 TV 26 t5

3 TV 40 t6

Note that an LS-fix is not necessarily the result of ap-
plying “local” minimal fixes to tuples. 2

The built-in atoms in linear denials determine an
intersection of semi-spaces where the LS-fixes live. As
shown in the previous example, they take values in the
“borders” of the solution space [4]. It is not difficult
to construct examples where an exponential number of
fixes exists for a database. On the other side, for the
kind of fixes and ICs we are considering, it is possi-
ble that no fix exists, in contrast to [1], where, if the
set of ICs is logically consistent, a fix always exists.

Example 5. Relation R(X,Y) has numerical at-
tributes, X the key and Y flexible, and IC:
∀X1X2Y ¬(R(X1, Y), R(X2, Y), X1 = 1, X2 = 2),
∀X1X2Y ¬(R(X1, Y), R(X2, Y), X1 = 1, X2 = 3),
∀X1X2Y ¬(R(X1, Y), R(X2, Y), X1 = 2, X2 = 3),
∀XY ¬(R(X,Y), Y>3), ∀XY ¬(R(X,Y), Y <2).

The first three ICs force Y to be different in every tu-
ple. Last two ICs require 2 ≤ Y ≤ 3. The database
R = {(1,−1), (2, 1), (3, 5)} has no fix. 2

In applications where fixes are based on changes of
numerical values, computing concrete fixes is a relevant
problem. For example, correcting household forms in a
census database before doing statistical processing is
a common problem [8]. We can fix certain erroneous
quantities as specified by the ICs. In these cases, the
fixes are relevant objects to compute, which contrasts

with CQA [1], where the main motivation for introduc-
ing repairs is to characterize the notion of a consistent
answer. In the following section we consider complex-
ity and approximation for this problem.

4. Approximation for the Database Fix

Problem

For a fixed set IC of linear denials, the problem
DFP(IC) of deciding whether there exists an LS-fix wrt
IC at a distance ≤ k, is NP -complete in data complex-
ity [4]. The optimization problem DFOP(IC) of find-
ing the minimum distance from an LS-fix wrt IC to a
given input instance, is MAXSNP -hard [4]; thus, un-
less P =NP , it has no Polynomial Time Approximation

Schema [12].
Now, we restrict ourselves to a useful class of de-

nial constraints, for which DFP is still NP -complete
[4], but there is a good approximation algorithm. A
set of linear denials IC is local if: (a) Attributes par-
ticipating in equality atoms or joins are all hard; (b)
There is a built-in with a flexible attribute in each IC;
(c) No attribute A appears in IC both in comparisons
of the form A < c1 and A > c2.

1 Local constraints have
the property that there always exists an LS-fix, and it
can be obtained by locally solving the initial inconsis-
tencies, i.e. no new inconsistencies are be generated by
those updates.

A violation set for ic ∈ IC is a minimal set of tuples
that simultaneously participate in the violation of ic.
In example 4, where IC is local, they are {t1,t4} and
{t1,t5} for IC1 and {t1} and {t2} for IC2. A local fix

for t ∈ D is a tuple t′ that solves the inconsistency of
at least one of the violation sets in which t is involved
and minimizes the the quadratic distance ∆({t}, {t′}).
Consistent tuples have no local fixes. The set S(t, t′)
contains the violation sets that include t and are solved
by changing t by t′. The S(t, t′) for example 4 are the
columns in the table of example 6.

For a fixed set IC of local denials, we can solve an in-
stance of DFOP by transforming it into an instance of
the Minimum Weighted Set Cover Optimization Prob-

lem (MWSCP) [10, Chapter 3] with elements in the un-
derlying set U that have a bounded number of occur-
rences in the collection S of subsets of U . This will al-
low us to obtain a better approximation -within a con-
stant factor- than for the general MWSCP , which is
MAXSNP -hard [11, 12].

The underlying set U in the MWSCP instance con-
tains the violation sets for all ic ∈ IC. The set col-

1 To check the condition, replace ≤ c and ≥ c by < c + 1 and
> c − 1, resp.

3

lection S for U contains the non-empty sets S(t, t′),
where t′ is a local fix for tuple t ∈ D, with weight
w(S(t, t′)) = ∆({t}, {t′}).

Example 6. (example 4 continued) We illustrate the
reduction from DFOP to MWSCP . For the MWSCP

instance, we need the local fixes. Tuple t1 has two lo-
cal fixes t′

1
= (1, 15, 50), that solves the violation set

{t1} of IC2, and t′′
1

= (1, 18, 52), that solves the viola-
tion sets {t1, t4} and {t1, t5} of IC1, and {t1} of IC2,
with weights 4 and 9, resp. t2, t4 and t5 have one local
fix each corresponding to: (2, 16, 50), (1,CD , 25) and
(1,TV , 25) resp. The consistent t3 has no local fix.

Set S1 S2 S3 S4 S5

Local Fix t′
1

t′′
1

t′
2

t′
4

t′
5

Weight 4 9 1 4 1
IC1: {t1, t4} 0 1 0 1 0
IC1: {t1, t5} 0 1 0 0 1
IC2: {t1} 1 1 0 0 0
IC2: {t2} 0 0 1 0 0

The MWSCP is shown in the table, where the el-
ements (violation sets) are rows and the sets (e.g.
S1 = S(t1, t

′
1
)), columns. An entry 1 means that the

set contains the corresponding element; and a 0, oth-
erwise. 2

If we solve instance (U,S) for MWSCP by finding
the minimum weight and a minimum weight cover C, we
could think of constructing a fix by replacing each in-
consistent tuple t ∈ D by a local fix t′ with S(t, t′) ∈ C.
The problem is that there might be more than one t′

and the key dependencies would not be respected. For
example, if we get S(t, t1) and S(t, t2) in C, we would
have two local fixes for t. It can be proved that there ex-
ists a set S(t, t?) = S(t, t1) ∪ S(t, t2) [4] and therefore
we can obtain a fix in those cases by replacing t by t?. It
can be proved that an instance D(C) obtained from C in
this way is an LS-fix that satisfies w(C) = ∆(D,D(C))
[4]. It can also be proved that every LS-fix can be ob-
tained in this way [4].

Example 7.(example 4 and 6 continued) We have two
minimal covers C1 = {S2, S3} and C2 = {S1, S3, S4, S5}
with weight 10. D(C1) and D(C2) correspond to the
fixes of this problem. 2

Using a greedy algorithm, MWSCP can be approx-
imated within a factor log(N), where N is the size
of the underlying set U [7]. The approximation algo-
rithm returns not only an approximation ŵ to the op-
timal weight wo, but also a cover Ĉ (not necessarily
optimal), which can be used to generate -as above- a
database instance D(Ĉ) with the same key values as
D that satisfies the constraints, but may not be LS-

minimal. It holds ∆(D,D(Ĉ)) ≤ ŵ ≤ log(N) × wo =
log(N) × ∆(D,D′), where D′ is an LS-fix [4].

Example 8. (example 4 and 6 continued) We show
how to use the approximation algorithm for MWSCP

presented in [7] to compute an approximate solution to
our DFOP . We start with Ĉ := ∅, S0

i := Si; and we
add to C the Si such that S0

i has the maximum con-

tribution ratio |S0

i |/w(S0

i). Initially |S1|/w(S1) = 1/4,
|S2|/w(S2) = 3/9, |S3|/w(S3) = 1, |S4|/w(S4) = 1/4
and |S5|/w(S5) = 1. The ratio is maximum for S3 and
S5, so we can add any of them to Ĉ. If we choose
the first, we get Ĉ = {S3}. Now we compute the
S1

i := S0

i r S0

3
, and choose again an Si for Ĉ such that

S1

i maximizes the contribution ratio. Since S1

5
gives the

maximum it is added to Ĉ. By repeating this process
until we get all the elements of U covered, i.e. all the
Sk

i become empty at some iteration point, we obtain

Ĉ = {S3, S5, S1, S4}. In this case Ĉ is an optimal cover
and D(Ĉ) is exactly the LS-fix D′ in example 4. Since
this is an approximation algorithm, in other examples
the cover obtained might not be optimal. 2

Thus, for local denials IC, we have a polynomial time
approximation algorithm for DFOP(IC) within a log-
arithmic factor, where N is the number of violation
sets for D, which is polynomially bounded by the size
of D [4]. However, in our instance of the cover prob-
lem the number of occurrences of elements of U in S
is bounded by a constant that depends on the num-
ber of ICs, flexible attributes and atoms in the ICs [4].
If we apply the approximation algorithm in [10, Chap-
ter 3] for this bounded set cover problem, we get an ap-
proximation within a constant factor [4] for any set of
local constraints.

5. CQA Tractable Cases

The definition of a consistent answer to a query may
depend upon different semantics, e.g. (a) skeptical se-

mantics, where an answer is consistent if it is retrieved
as a normal answer from all possible fixes; (b) brave se-

mantics, where an answer is consistent if it is retrieved
as a normal answer from at least one fix; (c) majority se-

mantics, where an answer is consistent if it is obtained
from most of the fixes; and (d) range semantics, where a
consistent answer is the smallest range such that it con-
tains the answers obtained from all the fixes [2]. The
latter is a natural semantics for this kind of numeri-
cal problems. For all these semantics, consistent query
answering is in general hard [4].

However, if we concentrate on the common class
1AD of denials containing one database atom plus
comparisons, e.g. ∀Id , G,B ¬(Roll(Id , G, B), G = 0,

4

B < 88), we can identify tractable cases for CQA un-
der LS-fixes by reduction to CQA for (tuple and set-
theoretic) repairs of the form introduced in [1] under
key constraints. This is because each violation set con-
tains one tuple, maybe with several local fixes, but all
sharing the same key values; and then the problem con-
sists in choosing one from different tuples with the same
key values. The transformation preserves consistent an-
swers to both ground and open queries. For tractabil-
ity of CQA under LS-fixes, we can use results obtained
in [9] for classical repairs.

The join graph G(Q) [9] of a conjunctive query Q is
a directed graph, whose vertices are the literals in Q.
There is an arc from L to L′ if L 6= L′ and there is a
variable w that occurs at the position of a non-key at-
tribute in L and also occurs in L′. Furthermore, there
is a self-loop at L if there is a variable that occurs at
the position of a non-key attribute in L, and at least
twice in L. If Q does not have repeated relations sym-
bols, Q ∈ CTree if G(Q) is a forest and every non-key to
key join of Q is full i.e. involves the whole key.

Using the reduction indicated above and results in
[9], we get that for 1ADs and queries in CTree , CQA
under LS-fixes is in PTIME (in data complexity) un-
der any of the semantics above [4]. However, for the
same class of constraints and aggregate CTree queries,
CQA is NP -hard under the brave semantics [4].

6. Conclusions

We have shown that fixing numerical values in data-
bases that fail to satisfy some ICs, poses many new
computational challenges not addressed before in the
context of consistent query answering under classical
repairs. In this paper we concentrated on integer val-
ues, which provide a natural and challenging domain.
Extensions like moving to the real numbers would open
completely different issues. Our framework could be ap-
plied to qualitative attributes with an implicit linear
order given by the application.

Several extensions are reported in [4], and other de-
cision problems are investigated. Complexity results,
under different semantics, involve also aggregate con-
junctive queries and aggregation constraints.

For related work, we refer to the literature on CQA
(c.f. [3] for a survey and references). Papers [13] and
[8] are the closest to our work, because changes in at-
tribute values are basic repair actions, but the peculiar-
ities of numerical values and quantitative distances be-
tween databases are not investigated. Under the set-
theoretic, tuple-based semantics, [6, 5, 9] report on
complexity issues for conjunctive queries, functional
dependencies and foreign key constraints.

Acknowledgments: Research supported by NSERC

(Grant 250279-02), CITO/IBM-CAS Student Intern-

ship Program, and EU projects: Sewasie, Knowledge Web,

and Interop. L. Bertossi is Faculty Fellow of IBM CAS

(Toronto). We are grateful to Alberto Mendelzon for conver-

sations at an earlier stage of this research.

References

[1] Arenas, M., Bertossi, L. and Chomicki, J. Consistent
Query Answers in Inconsistent Databases. In Proc. ACM
Symposium on Principles of Database Systems (PODS
99), 1999, pp. 68-79.

[2] Arenas, M., Bertossi, L. and Chomicki, J., He, X., Ragha-
van,V., andSpinrad, J. Scalar aggregation in inconsistent
databases. Theoretical Computer Science, 2003, 296:405–
434.

[3] Bertossi, L. and Chomicki, J. Query Answering in Incon-
sistent Databases. In ‘Logics for Emerging Applications
of Databases’, J. Chomicki, G. Saake and R. van der Mey-
den (eds.), Springer, 2003.

[4] Bertossi, L., Ḃravo, L., Franconi, E. and Lopatenko,
A. Fixing Numerical Attributes Under Integrity Con-
straints. CoRR paper cs.DB/0503032, arXiv.org e-Print
archive.

[5] Cali, A., Lembo, D., Rosati, R. On the Decidability and
Complexity ofQueryAnswering over Inconsistent and In-
complete Databases. In Proc. ACM Symposium on Prin-
ciples of Database Systems (PODS 03), 2003, pp. 260-271.

[6] Chomicki, J. and Marcinkowski, J. Minimal-Change In-
tegrity Maintenance Using Tuple Deletions. Information
and Computation, to appear.

[7] Chvatal,V. AGreedyHeuristic for theSetCoveringProb-
lem. Mathematics of Operations Research, 1979, 4:233-
235.

[8] Franconi, E., Laureti Palma, A., Leone, N., Perri, S. and
Scarcello, F. Census Data Repair: a Challenging Appli-
cation of Disjunctive Logic Programming. In Proc. Logic
for Programming, Artificial Intelligence, and Reasoning
(LPAR 01). Springer LNCS 2250, 2001, pp. 561-578.

[9] Fuxman, A. and Miller, R. First-Order Query Rewriting
for Inconsistent Databases. In Proc. International Con-
ference on Database Theory (ICDT 05), Springer LNCS
3363, 2004, pp. 337-354.

[10] Hochbaum, D. (ed.) Approximation Algorithms for NP-
Hard Problems. PWS, 1997.

[11] Lund, C. and Yannakakis, M. On the Hardness of Ap-
proximating Minimization Problems. Journal of the As-
sociation for Computing Machinery, 1994, 45(5):960-981.

[12] Papadimitriou, Ch. Computational Complexity.
Addison-Wesley, 1994.

[13] Wijsen, J. Condensed Representation of Database Re-
pairs for Consistent Query Answering. In Proc. Inter-
national Conference on Database Theory (ICDT 03),
Springer LNCS 2572, 2003, pp. 378-393.

5

