
Natural Language Generation Applied to
Intelligent Query Interfaces

Paolo Dongilli

February 18, 2008

Contents

1 Introduction 6
1.1 Problem statement . 6
1.2 Main ideas . 6
1.3 Overview of the thesis . 6

2 Ontologies 7
2.1 Introduction to ontologies . 7
2.2 Languages for expressing ontologies 7
2.3 Description Logics . 7
2.4 Reasoning over ontologies . 7
2.5 SHIQ knowledge bases . 7
2.6 Introducing Concrete domains 8

3 Ontology-based querying 11
3.1 Conjunctive queries . 11

3.1.1 CQ answering . 12
3.1.2 Query graphs . 12
3.1.3 Query rolling-up and focused queries 12

3.2 An intelligent Query Interface . 13
3.2.1 Background . 14
3.2.2 Query Tool . 15
3.2.3 Reasoner interaction . 19
3.2.4 Optimization . 21
3.2.5 Discussion . 23

4 Querying with natural language support 24
4.1 Related work . 24

4.1.1 WYSIWYM and available implementations 24
4.2 A novel implementation of the WYSIWYM paradigm 24

5 NL rendering of a conjunctive query 25
5.1 An Introduction to Natural Language Generation 25
5.2 Text Planning . 26

5.2.1 Content determination . 26
5.2.2 Discourse planning . 27
5.2.3 Summary . 39

5.3 Sentence Planning . 39
5.3.1 Sentence aggregation . 40

1

5.3.2 Referring expressions generation 52
5.3.3 Generation of a Sentence Plan in SPL 58

5.4 Linguistic Realization . 70
5.4.1 Approaches to LR . 70
5.4.2 Overview of Three Feature-based realizers 71

5.5 Linguistic Realization with Systemic Functional Grammar . . . 75
5.5.1 Systemic Functional Grammar 75
5.5.2 The Nigel systemic grammar of English 79
5.5.3 The Upper Model . 80
5.5.4 Input specification: the Sentence Plan Language 81
5.5.5 The KPML System . 84

6 Evaluation 91

7 Discussion and future work 92

8 Conclusions 93

2

List of Algorithms

1 Generation of a topological sort 28
2 Generation of all topological sorts 29
3 Generation of the best topological sorts (Centering Theory) . . . 32
4 Generation of the best topological sorts (Hybrid approach #1

(CT-mCD)) . 34
5 Generation of one of the best topological sorts (Hybrid approach

#2 (mCD-CT)) . 36
6 Generation of a topological ordering using depth-first search . . 37
7 Generation of the text plan ... 50
8 Calculation of the best covering match 51
9 Generation of appropriate referring expressions for each entity

present in a given text plan . 56

3

List of Figures

3.1 Example of query graph. 13
3.2 An excerpt of the Wine Ontology. 16
3.3 Administrative interface of the Query Tool. 17
3.4 Query composition interface. 18

5.1 A query tree . 27
5.2 A discourse tree . 28
5.3 Best and worst cases for topological sorting 30
5.4 Adding a new relation to the query tree of fig. 5.1 36
5.5 Discourse tree derived from the query tree of fig. 5.4 37
5.6 Query tree with ordering annotations attached to relations . . . 38
5.7 Discourse tree with ordering annotation attached to discourse

units . 38
5.8 A query tree waiting to be linearized 48
5.9 Query with abstract role (make) that is rendered as substantive. . 57
5.10 Example of / input for the sentence “Ray sends a nice

letter to Sandra.” . 73
5.11 Example of RealPro input to generate the sentence “The lady

gave a letter to the postman.” . 74
5.12 Example of system network fragment 77
5.13 Example of system network fragment with realization statements 78
5.14 Simplified example of metafunctional layering 79
5.15 Example of system network with choosers 80
5.16 Excerpt of the Penman Upper Model taxonomy 81
5.17 Excerpt of the Generalized Upper Model taxonomy (v3.0) 82
5.18 KPML Pennman-style generation architecture (based on [Bate-

man, 1997b]) . 84
5.19 Excerpt of LOOM ontology from the automotive domain 87
5.20 Lexical items from the automotive domain 90

4

List of Tables

5.1 Aggregation template structures 43
5.2 Aggregation examples . 45
5.3 Linearized templates . 47
5.4 Examples of usage of referring expressions 54
5.5 Complete set of singular pronouns used 58
5.6 Main systems in . 78
5.7 Realization statements used in 78
5.8 Mapping of domain ontology entities and subordination to UM

entitities . 86
5.9 Functional regions in the Nigel Grammar for English 88

5

Chapter 1

Introduction

1.1 Problem statement

1.2 Main ideas

1.3 Overview of the thesis

6

Chapter 2

Ontologies

2.1 Introduction to ontologies

2.2 Languages for expressing ontologies

2.3 Description Logics

2.4 Reasoning over ontologies

2.5 SHIQ knowledge bases

We introduce the DL SHIQ along with its syntax and semantics. SHIQ is
an extension of the DLALC adding role transitivity (S), inverse roles (I), role
hierarchies (H), and qualified number restrictions (Q).

Definition 1 (SHIQ knowledge base). Let NC be a set of concept names and
NR a set of role names with a subset NR+ ⊆ NR of transitive role names. The set
of roles is NR ∪ {R− | R ∈ NR}. The two functions Inv and Trans defined on roles
are introduced. Inv is defined as Inv(R) = R− and Inv(R−) = R for any role name
R. Trans is a boolean function, Trans(R) = true iff R ∈ NR+ or Inv(R) ∈ NR+.

A role inclusion axiom is an expression of the form R v S where R and S are
roles, each of which can be inverse. A role hierarchy is a set of role inclusion
axioms. We define the relationv∗ which denotes the transitive closure ofv over
a role hierarchy R ∪ {Inv(R) v Inv(S) | R v S ∈ R}. A role R is a sub-role of S
when R v∗ S, and a super-role of S when S v∗ R. A role is simple if its neither
transitive nor has transitive sub-roles.

The set of SHIQ concepts is the smallest set such that:

• Every concept name is a concept,

• If C and D are concepts, R is a role, S is a simple role and n is a non-
negative integer, then C u D, C t D, ¬C, ∀R.C, ∃R.C, >nS.C, 6nS.C are
concepts.

A concept inclusion axiom is an expression of the form C v D for two concepts
C and D. A terminology or T-Box is a set of concept inclusion axioms.

7

Let NI = {a, b, c . . .} be a set of individual names. An assertion is an expression
that can have the form C(a), R(a, b) or a 6� b where C is a concept, R is a role and
a, b ∈ NI. An A-Box is a set of assertions.

A SHIQ knowledge base (KB) is a triple K = 〈A,R,T〉, where A is an
A-Box, R is role hierarchy and T is a terminology. The statements contained in
T and R are called terminological while the ones inA are called assertional.

The semantics of SHIQ knowledge bases is given by means of interpreta-
tions.

Definition 2 (Interpretation). An interpretation I = (∆I, ·I) is defined for a set
of individual names NI, a set of concepts NC and a set of roles NR. The set ∆I

is called domain of I. The valuation ·I maps each individual name in NI to an
element in ∆I, each concept in NC to a subset of ∆I, and each role in NR to
a subset of ∆I × ∆I. Additionally, for any concepts C, D, any role R and any
non-negative integer n, the valuation ·I must satisfy the following equations,
where :

RI = (RI)+ for each role R ∈ NR+

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI} (inverse roles)
(C uD)I = CI ∩ CI (conjunction)
(C tD)I = CI ∪ CI (disjunction)

(¬C)I = ∆I \ CI (negation)
(∃R.C)I = {x | for some y, 〈x, y〉 ∈ RI and y ∈ CI} (exists restriction)
(∀R.C)I = {x | for all y, 〈x, y〉 ∈ RI implies y ∈ CI} (value restriction)

(>nR.C)I = {x | |{y | 〈x, y〉 ∈ RI and y ∈ CI}| ≥ n} (>-number restriction)
(6nR.C)I = {x | |{y | 〈x, y〉 ∈ RI and y ∈ CI}| ≤ n} (6-number restriction)

Definition 3 (Model of a knowledge base). An interpretation I satisfies an
assertion A iff:

a ∈ CI if A is of the form C(a)
〈a, b〉 ∈ RI if A is of the form R(a, b)

aI , bI if A is of the form a 6� b

An interpretation I satisfies an A-Box A if it satisfies every assertion in A.
I satisfies a role hierarchy R if RI ⊆ SI for every R v S in R. I satisfies a
terminology T if CI ⊆ DI for every C v D in T . I is a model of K = 〈A,R,T〉
if it satisfiesA, R and T .

The notation I |= α is used to assert that an interpretation I satisfies a
statement α. An interpretation I satisfies (or is a model for) a KB K iff it
satisfies all the statements in K (I |= K).

2.6 Introducing Concrete domains

(SHIQ(D)) For practical purposes in description logics we need to be able to
represent concrete properties as e.g. name, age, height, with values taken from
fixed domains as strings, integer or real numbers. Predicates on these domains
are also needed in order to express, equality, inequality, or other complex
predicates. The solution is to extend description logics with concrete domains
[Baader and Hanschke, 1991].

8

Definition 4 (Concrete domain). A concrete domainD is a pair (∆D,ΦD), where
∆D is a set, and ΦD is a set of predicate names. Each predicate name P ∈ ΦD is
associated with an arity n, and an n-ary predicate PD ⊆ ∆n

D
.

Given m n-ary predicates Pi over D with 1 ≤ i ≤ m, it is also possible
to build a complex predicate derived from the conjunction (u) or disjunction
(t) of the predicates, with the meaning that (P1 u/t P2 u/t · · · u/t Pn) =
((P1)D ∩/∪ (P2)D ∩/∪ · · · ∩/∪ (Pn)D) ⊆ ∆n

D

A first example of concrete domain to illustrate Definition 4 is R, where as
set ∆R we use the real numbers R. We consider the following predicates:

• unary predicates Pq for each P ∈ {<,≤,=,,,≥, >} and each q ∈ R with
(Pq)R = {q′ ∈ R | q′Pq};

• unary predicates P′qP′′r for each P′ ∈ {>,≥}, P′′ ∈ {<,≤}, and q, r ∈ R with
(P′qP′′r)R = {q′ ∈ R | q′P′q ∧ q′P′′q};

Example 1. The concept representing all cars with a mileage lower than 70,000 would
be:

Car u ∃mileage. ≤70000.

Example 2. The cars with a price (in Euro) less than 10000, between 20000 and
40000, or greater than 60000 would be represented by this concept:

Car u ∃priceEUR.(≤10000 t ≥20000≤40000 t ≥60000).

Another concrete domain is S, where ∆S is the set Σ∗ of all finite strings of
characters over some alphabet Σ. We just take into consideration two unary
predicates:

• PL for each P ∈ {∈,<} and each L ⊆ ∆S with (PL)S = {q′ ∈ Σ∗ | q′PL};

Example 3. Using the previous predicate, the off-roaders of make either “Land Rover”,
“Santana”, or “Toyota” can be expressed with the concept:

Off-Roader u ∃make. ∈{“Land Rover′′,“Toyota′′} .

Now we give the formal definition of the description logic SHIQ(D),
obtained extending the SHIQ DL described above with concrete datatypes.
SHIQwill be augmented with

• abstract features which are roles interpreted as functional relations;

• concrete features, interpreted as partial functions from the logical domain
into the concrete domain;

• a new concept constructor that allows to describe constraints on concrete
values using predicates from the concrete domain.

Definition 5 (SHIQ(D) syntax). Let NC, NR, NcF be pairwise disjoint and
countably infinite sets of concept names, role names, and concrete features. Fur-
thermore, let NaF be a countably infinite subset of NR. The elements of NaF are
called abstract features. A path u is a composition f1 · · · fng of n abstract features
f1, . . . , fn (n ≥ 0) and a concrete feature g. For D a concrete domain, the set of
SHIQ(D)-concepts is the smallest set such that

9

• every concept name is a concept, and

• if C and D are concepts, R is a role name, g is a concrete feature, u1, . . . ,un
are paths, and P ∈ ΦD is a predicate of arity n, then the following expres-
sions are also concepts: ¬C, C uD, C tD, ∃R.C, ∀R.C, ∃u1, . . . ,un.P, and
g↑.

x is used as abbreviation for an arbitrary propositional tautology and y as
abbreviation for ¬x. Furthermore, if u = f1 · · · fkg is a path then u↑ is used as
abbreviation for ∀ f1. · · · .∀ fk.g↑.

Let’s extend now the SHIQ semantics presented in Definition 2.

Definition 6 (SHIQ(D) semantics). The semantics of a SHIQ(D) knowledge
base KB is given extending the interpretation function (or valuation) ·I that has
also to map

• each abstract feature f to a partial function fI from ∆I to ∆I, and

• each concrete feature g to a partial function gI from ∆I to ∆D.

If u = f1 · · · fkg is a path, then uI(d) is defined as gI(fIn · · · (fI1 (d)) · · ·). The
interpretation function is extended to arbitrary concepts as:

(∃u1, . . . ,un.P)I = {d ∈ ∆I | ∃x1, . . . xn ∈ ∆D : uIi (d) = xi for 1 ≤ i ≤ n
and (x1, . . . , xn) ∈ PD}

(g↑)I = {d ∈ ∆I | gI(d) undefined }

10

Chapter 3

Ontology-based querying

3.1 Conjunctive queries

Definition 7 (Querying a KB). Querying a DL KB means verifying whether a
given statement α (the query) is a logical consequence of the knowledge base
(i.e. K |= α). In other words the statement α is a logical consequence of K if it is
satisfied in every interpretation I satisfying K (K |= α iff for any interpretation
I, I |= K implies I |= α).

Given a KB K, it is possible to query it using conjunctive queries which are
defined below.

Definition 8 (Conjunctive Queries). A conjunctive query can be represented as
〈~x〉 ← conj(~x, ~y), where ~x is the vector of so called distinguished variables that
will be bound to individuals (single objects) of the knowledge base used to
answer the query; ~y is the vector of non-distinguished variables (existentially
quantified variables). conj(~x, ~y) is a conjunction of terms of the form v1 : C,
〈v2, v3〉 : R, or v4 : P where C is a concept name, R is a role name, P is a simple
or complex predicate over a given concrete domain D and v1, v2, v3, v4 are
variables from ~x or ~y.

Example 4. An example of conjunctive query in the automotive domain is the follow-
ing:

〈x3, x4, x8, x9〉 ← x1 :Off-Roader u 〈x1, x2〉 :soldBy u x2 :CarDealer u

u〈x2, x3〉 :carDealerName u x3 :String u 〈x2, x4〉 :carDealerAddress u

u x4 :String u 〈x2, x5〉 : locatedInCity u x5 :City u 〈x5, x6〉 :cityNameu

u x6 :∈{“Bolzano′′}u〈x1, x7〉 :hasMake u x7 :Land Rover u 〈x1, x8〉 :hasMileageu

u x8 :Float u x8 :≤50000 u〈x1, x9〉 :hasPriceEURu

u x9 :Float u x9 :≥10000≤20000 (3.1)

Underlined variables represent distinguished variables. String and Float repre-
sent two concrete domains, while the others are abstract concepts.

The query above is for an off-roader sold by a car-dealer located in a city whose
name is “Bolzano”. The make must be Land Rover, the mileage must be less

11

than 50000, and the price in Euro between 10000 and 20000. I want to know the
off-roader’s mileage and the price, the car dealer’s name and address.

3.1.1 CQ answering

Definition 9 (Conjunctive Query Answering). Given a query q(~x) where ~x are
distinguished variables, and a KB K, answering q(~x) means returning all tuples
~t that substituted to ~x are such that K |= q(~t).

3.1.2 Query graphs

Definition 10 (Query Graphs). A conjunctive query q can be represented by
means of a directed labelled graph G(q) := 〈V,E〉 where V represents a set of
vertices and E a set of edges. V is the union of the elements in ~x, and ~y; E is
made up of all pairs 〈v1, v2〉where v1, v2 ∈ V and 〈v1, v2〉 :R is a term in q. A node
v ∈ V is labelled with a concept C1u· · ·uCn such that for every Ci, v :Ci is a term
of q. Optionally if node v is labelled with a concrete domain, it can also have an
additional label containing the name of a (simple or complex) predicate. Every
edge e ∈ E is labelled with a set of role names {R | 〈v1, v2〉 :R is a term in q}

We define the function L(v) which returns the label for v ∈ V. If L(v) is
empty, the top concept (>) is returned. The function L(e) (e ∈ E) returns a set
of edge labels for e. The function L−(e) (e ∈ E) returns instead, a set of inverted
edge labels such that L−(e) = {R | R− ∈ L(e)}. The function pred(v1) (v1 ∈ V)
returns a set of vertices {v | v1, v ∈ V ∧ 〈v, v1〉 ∈ E}. Another function we define
is LP(v), which returns (if any) the predicate name associated to v, where L(v)
must return a concrete domain name.

Two vertices v1, v2 ∈ V are adjacent, if L(〈v1, v2〉) , ∅ or L(〈v2, v1〉) , ∅. The
vertex v1 ∈ V is said to be reachable from v2 ∈ V, if v1 is adjacent to v2 or if there
exists another vertex v3 ∈ V such that v3 is adjacent to v1, and v2 is reachable
from v3. A graph G(q) is (cyclic), if there is a v ∈ V, such that L(〈v, v〉) , ∅ or
if there is a v′ ∈ V, such that v is adjacent to v′ and if one element is removed
from L(〈v, v′〉), v′ is still reachable from v.

q is an acyclic conjunctive query if G(q) is not cyclic.
For a better graph readability, nodes are represented with a rectangle when

L(v) is an abstract concept and with an oval when L(v) refers to a concrete
domain.

Figure 3.1 shows the query graph corresponding to the query in Example 4.
Hereinafter we will use the terms query or conjunctive query referring

always to acyclic conjunctive queries.

3.1.3 Query rolling-up and focused queries

We finally need to introduce a fundamental manipulation of the queries which
enables us to exploit the reasoning services provided by a DL reasoner. This
operation is the so called rolling up of an acyclic conjunctive query (see [Horrocks
and Tessaris, 2002]).

Roughly speaking, the rolling up transforms an arbitrary query without
cycles into an equivalent DL expression. The key idea behind is the fact that a
(sub)query of the form P(x, y),R(y) is equivalent to the DL expression (∃P.R)(x).

12

Figure 3.1: Example of query graph.

Any variable can be selected as the root of the tree (since we consider acyclic
queries) and the rest of the query can be “rolled-up” starting from the leaves.1

To analyze the properties of a given query focused on a specific variable
(a focused query), say qx, we roll-up the query using the focus as the root (with
variable x associated with concept F) and then we interrogate the reasoner using
the resulting complex concept QF(x).

In the following section and in [Zorzi et al., 2007] we describe in detail
how we implemented the previous ideas in an intelligent query interface that
enables users to access heterogeneous data sources by means of an integrated
ontology.

3.2 An intelligent Query Interface

We simply called it Query Tool and it was devised to enable users to access
heterogeneous data sources by means of an integrated ontology. The Query
Tool supports the users in formulating a precise conjunctive query, where the
intelligence of the interface is driven by reasoning services running over a given
logic-based ontology.

The ontology, which describes a given domain, defines a vocabulary which
is richer than the logical schema of the underlying data, and it is meant to be
closer to the user’s wide vocabulary. The user can exploit the ontology’s entities
to formulate the query, and she is guided by such a richer vocabulary in order
to understand how to express her information needs more precisely, given the
knowledge of the system. This latter task —called intensional navigation—
is the most innovative functional aspect of our interface. Intensional naviga-
tion can help a less skilled user during the initial step of query formulation,
thus overcoming problems related to the lack of schema comprehension and
enabling her to easily formulate meaningful queries. Queries can be specified
through an iterative refinement process supported by the ontology via inten-
sional navigation. The user may specify her request using generic terms, refine

1Inverse roles provide the possibility of collapsing queries of the form P(y, x),R(y) as well. If the
ontology doesn’t include transitive roles and nominals, cyclic queries can be handled in the same
way (see [Horrocks et al., 2000]). We’re considering techniques to allow more expressive languages.

13

some terms of the query or introduce new terms, and iterate the process. All
details are thoroughly described in the coming sections.

Furthermore we draw the attention of the reader towards the optimization
techniques we are applying to the Query Tool in order to improve the usability
of the system. Improvements are made working on three fronts: reducing as
much as possible the calls to the reasoner, storing the taxonomy, and caching
query information.

First of all we describe the technologies and techniques underlying the sys-
tem, then we present the actual system (Query Tool) from the user perspective,
with a complete exposition of the functionalities of the interface. Afterwards
we illustrate the interaction with the reasoning services followed by a section
on the optimizations of such a system.

3.2.1 Background

Ontology mediated access to data sources

The purpose of the presented Query Tool is to support query formulation in
the context of information access mediated by ontologies. More specifically, the
scenario in which we consider the deployment of the tool consists of one or more
data sources providing their own query language (e.g. they can be relational
sources). The information provided by the sources is described by means of
a global ontology together with mappings relating the ontology vocabulary to
the vocabulary of the data sources. We do not impose any constraint on the
kind of mappings and/or architecture underlying the integration system.

The Query Tool relies on the availability of an ontology providing the vo-
cabulary for the queries and a query engine capable to retrieve the data. These
minimal requirements enable the Query Tool to be used in simple cases in which
data are retrieved from a knowledge base (see [Sirin and Parsia, 2007]) as well
as more complex architectures in which query answering requires complex
processing (e.g. using rewriting [Calvanese et al., 2007]).

The ontology language adopted by the tool is OWL-DL (see [Horrocks et al.,
2003]), therefore the conceptual model exposed to the user centers around the
concept of classes and properties. While the user is guided to the construction
of queries structured in terms and properties which can be refined (see the next
sections for details), the system generates conjunctive queries composed by
unary (classes) and binary (attribute and relation) predicates.

Queries

The Query Tool represents queries to the user as trees, in which nodes are
labelled by classes and edges by properties. Each node of the tree correspond
to a different variable and properties (edges) constitute the joins between a
node and the rest of the query. In this way the conjunctive queries generated
by the system are acyclic.2

Users interact with the system to refine the query by a set of operations
which can be performed on nodes of the query tree. Once selected, a node

2From the technical point of view cyclic queries wouldn’t pose any problem; however, usability
tests conducted in the context of a previous project suggested that the users don’t find co-references
intuitive enough.

14

becomes the focus for the operations which can be divided into substitution
(when a class is substituted by more general or specific one) and incremental
refinement by addition of compatible classes or properties. Additionally, the
system allows the deletion of part of the query.

For each focus the tool suggests the terms and/or properties which can be
used to refine the query. This step requires the interaction with an OWL-DL
reasoner in order to establish which properties or classes are “compatible” with
the current query. This must be done in real time when the user interacts
with the tool, since both the query and the focus affect the responses from the
reasoner.

For more details on the query language and the user perspective over the
tool, the reader is referred to [Dongilli et al., 2004]; here we concentrate on
showing how we increased the responsiveness of the system by optimizing the
use of the OWL reasoner.

Reasoning services

An OWL reasoner is employed to derive the information required to drive the
interface. These information range from the taxonomical position of an OWL
expression w.r.t. the terms of the ontology, to the satisfiability of an expression.

To allow for the maximum flexibility, the tool communicates with the rea-
soner by means of the DIG API (see [Bechhofer et al., 2003]). To one side this
enables the possibility of using any compliant reasoner; but on the other side
the use of HTTP as underlying transport introduces additional overhead in
terms of network connections.

For this reason, one of the first goal we wanted to achieve is to minimize
the number of calls to the reasoner (see Section 3.2.4).

An Example

Now we want to present an example that will be referred throughout the rest
of chapter to better understand the operations involving the reasoner. To do
so, we employ an excerpt of the Wine Ontology which is shown in Fig. 3.2. We
adopted the UML notation to represent the is-a relationships among terms and
we introduced constraints of disjointness where needed.

We have Wine Descriptor as root concept and Wine Taste and Wine Colour as
specializations of Wine Descriptor.The concept Wine has a property has Colour
towards concept Wine Colour; the inverse of this property is colour Of when
seen from concept Wine Colour. Wine Colour specializes in Red and White
while Wine in Red Wine, White Wine, and Table Wine respectively.

The axioms of this sample ontology are represented below: [MISSING]

3.2.2 Query Tool

In this section we present a brief description of the end user system. It is a Java-
based application adopting the Standard Widget Toolkit (SWT) [SWT, 2007] for
creating the graphical user interface. The system requires at least JRE 1.4 and a
DL reasoner providing a DIG 1.x interface.

The query interface is provided with four Tabs:

15

Wine_Descriptor

Wine_Taste Wine_Color

<<disjoint>>

Wine

Red_Wine White_Wine

<<disjoint>>

Red White

<<disjoint>>

has_Colour ≡ colour_Of-

Table_Wine

<<disjoint>>

Figure 3.2: An excerpt of the Wine Ontology.

• Admin: administrative interface used to load the ontology and connect
to the reasoner.

• Compose: main query composition interface.

• Query: displays the actual query, mainly for debugging purposes.

• Results: displays the results of the query evaluation.

Initially the user is presented with the Admin Tab (see Figure 3.3). Here,
some preliminary operations necessary for the query formulation have to be
executed:

1. Connection setup: one of the operations the user has to carry out con-
sists in testing the reasoner connection. A reasoner with reference to the
ontology is used by the system to drive the query interface: in particular,
it is used to discover the terms and properties which are proposed to the
user to manipulate the query.

2. Loading and managing ontology files: all the operations the system pro-
vides cannot be accomplished without loading an ontology. The interface
allows the user to specify an ontology in DIG 1.x format to be loaded into
the system. Once the ontology is loaded into the system, the user has also
the possibility to adjust the content of that ontology, depending on her
needs; if the user wants that the modifications take a permanent effect, she
can save them back to the file. As a matter of fact, users might frequently
have the necessity to extend an ontology in order to obtain different results
or to correct it as a consequence of unexpected behaviour.

3. Loading a metadata file: the interface gives the possibility to the user to
specify a metadata file to be loaded into the system. Metadata files contain
valuable information about the terms in the ontology; that information
concerns essentially the lexicalizations of those terms. Actually, as the
terms contained in the ontology could be expressed by a sort of shorthand,
their lexicalizations are provided so that the user can deal with clearly
understandable terms.

4. Customising lexicalizations: given the metadata file, the interface offers
to the user the opportunity to apply desired variations to the lexical in-
formation of the terms. Those variations can be saved back to a metadata

16

file or just saved temporarily in the system. The query to be generated
should be as unambiguous as possible: if the user can assign to the terms
the lexicalizations which best give significant importance to her, the query
formulation will be transparent and therefore the really intended result
will be retrieved.

Figure 3.3: Administrative interface of the Query Tool.

As you can see in Figure 3.3, the reasoner connection has been tested by
means of the “Connect” button. An ontology has been loaded (“Load” button)
and also a metadata file (“Browse” button). Subsequently, the “Create Schema”
button has been clicked and all the lexicalizations of the ontology terms are
presented in the “Lexical Information” table. Here the user can change the
lexicalizations by clicking on the cell corresponding to the lexicalization she
wants to modify.

In the Compose Tab (see Figure 3.4) the user can formulate the query by
means of pop-up menus presenting the possible operations. Initially the user
is presented with a choice of different starting terms (all the concepts in the
ontology or a subset defined by means of the metadata file): she selects the first
term to be added in the query. Subsequently, the interface gives the possibility
to perform the following operations:

• Add compatible terms: other terms specified in the ontology can be
added to the query. The compatible terms are automatically suggested
to the user by means of appropriate reasoning tasks on the ontology de-
scribing the data sources. Indeed, the system suggests only the operations
which are compatible with the current query expression.

• Substitute terms: the system gives the opportunity of substituting the
selected term of the query with a more specific or more general term.
It can also be the case that in the ontology there are terms which are

17

equivalent to the selected one: in this case the user is offered to replace
the selection with an equivalent term.

• Delete terms: as the query is specified through an iterative refinement
process, it could be the case that the user needs to delete some terms from
the query.

• Add or delete properties: analogously, the user can add properties to the
query. A property can be a relation or an attribute. The interface suggests
a list with the possible alternatives. The user can specify some restriction
values to attributes.

Figure 3.4: Query composition interface.

The first operation to compose a query consists in selecting the starting term.
By clicking on a pop-up menu (“Choose starting term”) the user is presented
with a windows showing all the terms that can be used as starting term.

Once the user has selected the starting term, it is possible to refine the query
using again the pop-up menu. The operations allowed are listed in the pop-up
menu; the user can add a compatible term, add a property (relation or attribute),
substitute the term or delete it.

If the user selects an attribute, it is possible to set it as distinguished variable
or to add a restriction to the attribute. The user can also delete properties or
terms from the query and select new ones.

Once the user has formulated the query, the Query tab shows the query in
XML and DIG formats (the menu bar “Options” allows also to view the query
in the corresponding SQL code). Finally, in the Results tab the user can retrieve
the results (if any) corresponding with the formulated query.

In the menu bar, by clicking on “View” menu, the user can have a look to
the log file (“View” log) of the application and also a concise description of the
schema with all the taxonomy (“View” schema).

18

3.2.3 Reasoner interaction

In this section we describe all the operations (w.r.t. the reasoner) that users
can perform during the query formulation process. Refinement of the query
expression can be done by the following operations:

• addition of a compatible term;

• addition of a property;

• substitution of a term with an equivalent, more specific or more general
term.

In primis we present the approach which enables the system to interact with
the reasoner and then the formalization of the above operations.

Addition of a compatible term

This operation requires the list of terms “compatible” with the given query. In
terms of conjunctive queries, it corresponds to add a new term to the query.
The term is compatible and can be added to the query if the resulting query
is satisfiable. Let us formally define a compatible term w.r.t. a query. Given
an ontology Σ and a focused query QF(x) we want to find all the terms Y ∈ C
(where C are all the unary atomic terms) such that:

Σ 6|= QF(x)
u Y v ⊥ Y is not disjoint with QF(x)

Σ 6|= QF(x)
v Y Y is not among ancestors of QF(x)

Σ 6|= Y v QF(x) Y is not among descendants of QF(x)

The reasoning service makes use of satisfiability to check which predicates
in the ontology are compatible with the current focused query. This check
corresponds simply to the addition of the term Y to the focused query QF(x),
and verify that the resulting query is satisfiable. Actually, this operation is very
expensive because the number of reasoner calls matches the number of unary
predicates.

Going back to the example of Sec. 3.2.1, if we have a query with concept
Red Wine and we want to find all the concepts which are compatible with it,
it will turn out that concept Table Wine is compatible with the query while
concept White Wine is incompatible since it is disjoint with Red Wine.

Addition of a property

The addition of a property requires the discovery of both a binary term and
its restriction (or range). The system should check all the different binary
predicates from the ontology for their compatibility. Formally, a property P is
compatible with a focused query QF(x) if

Σ 6|= QF(x)
u ∃P.> v ⊥,

where > represents any possible concept of the domain.
This is practically performed by verifying the satisfiability of the query

QF(x)
u ∃P.>, for all atomic binary predicates P in the signature. Once a binary

predicate is found to be compatible with QF(x), repeated satisfiability is used to

19

select the least generic unary predicate Y ∈ C such that the query QF(x)
u∃P.Y is

satisfiable. In other terms, the operation would consist in determining which are
the compatible properties first, and then establishing which are the restrictions
applicable to P. To discover all compatible properties, we need a number of
reasoner calls equal to the number of properties in Σ. In addition, for each
property found, to determine its restriction, we need as many reasoner calls as
the number of unary predicates.

Again, returning to the example (see Sec. 3.2.1), this time we want to dis-
cover the properties which are compatible with the query Wine Descriptor. As
compatible properties propagate upwards in the hierarchy, property colour of
would be among the compatible properties of Wine Descriptor. If the user
instead composes a query with the concept Wine Taste, the property colour of
would be incompatible because the concept Wine Taste is disjoint with the
concept Wine Colour.

Substitution of a term

Here we want to substitute a focused term of the query with an equivalent,
more specific or more general term. Let us examine the substitution with a
more specific term. In this case we need to perform a containment test of
two conjunctive queries. Given a query focussed on concept F (QF(x)), we
are interested in the unary terms Y subsumed by QF(x), where Y must be the
most general concept among the terms found (i.e. there is no other concept Y
subsumed by QF(x) and containing Y). Formally, given an ontology Σ and a
query QF(x), we want to find all the terms Y ∈ C such that:

Σ |= Y v F,¬∃Z ∈ C | (Z v F,Y v Z,Z , Y).

Σ 6|= F uQF(x)
u Y v ⊥.

From Figure 3.2 it is possible to see that if the query is composed by concept Wine
and we want to substitute it with a more specific term, we would get Red Wine,
White Wine, and Table Wine as candidates for the substitution since they are
direct children of concept Wine.

The cases of substitution with more general and equivalent terms are anal-
ogous.

For the sake of clarity we report the sequence of operations needed to
retrieve the substituting terms:

• query rolling-up;

• retrieval of incompatible classes: the descendants of negation of the query;

• retrieval of parents and children of the substituting term;

• filtering using incompatible terms.

We will see in Section 3.2.4 that a similar procedure is adopted to reduce the
calls to the reasoner when looking for compatible terms.

20

3.2.4 Optimization

As discussed in Section 3.2.1, the system relies on a DL reasoner to drive
the query interface. If on one hand reasoning services with satisfiability and
classification allow only to formulate consistent queries, on the other hand
they introduce performance issues. Reasoner calls are expensive and should be
therefore minimized as much as possible. The expensiveness of reasoner calls
depends both on complexity and the fact that DL reasoners exploit the HTTP
protocol to communicate.

In the following we present some optimization techniques which can im-
prove the usability of the system via a more responsive interface. Aim of the
optimization is to reduce the transitions between the query interface and the
reasoner. Some techniques have already been exploited to reduce the number
of reasoner calls especially in the retrieval of compatible terms to be added
to the query. Another important improvement comes from the storage of the
taxonomy. Finally, information concerning the query can be cached during
the query formulation process in order to extract some deductions to reduce
reasoner calls.

Reducing reasoner calls

Concerning the refinement of the query by compatible terms, the basic policy
to retrieve the compatible terms is to use the satisfiability reasoning service to
check which unary predicates in the ontology are compatible with the current
query. This check corresponds simply to the addition of the term to the current
query, and to verify that the resulting query is satisfiable. Actually, this kind of
operation is very expensive because the number of reasoner calls corresponds
to the number of unary predicates in the ontology.

We adopted a different implementation in the current system. We classify
the query and retrieve the its equivalents, ancestors, and descendants; then
we classify the negation of the query and retrieve the descendants which are
incompatible. The remaining unary predicates are the compatibles (see Section
3.2.3).

In reference to the addition of a property, as we discussed in Section 3.2.3,
this operation requires the discovery of both a binary term and its restriction.
One of the advantages of OWL-DL is the possibility of expressing the inverse of
a role which is extremely useful for determining compatibility of binary terms.
Hence, to discover the restriction of a property we use classification instead of
repeated (and expensive) satisfiability. The idea is to classify the inverse of the
property restricted to the query.
For example, to discover the restriction of property has Colour applied to the
query expression

{x1 |Red Wine(x1),Table Wine(x1)},

we classify the expression ∃has Colour−(Red Wine u Table Wine).
The reasoner returns the list of concept names more general and equivalent
as range candidates of the relation has Colour, when restricted to the domain
(Red Wine u Table Wine). This method, not only lets us discover the least
general predicate(s) which can be applied to the property in the given context,
but also allows us to discard those properties which are incompatible with
the query, i.e. bottom (⊥) is returned as range whenever a given property is

21

incompatible with the query. Summarizing, we are able to both check the
compatibility of a property with the query and find out the property’s range by
means of one single reasoner call.

Taxonomy storage

The taxonomy of the ontology provides static information concerning primitive
concepts. If we store the taxonomy before starting to compose a query, initial
operations like substituting a concept, would not involve the reasoner, thus
improving efficiency.
The taxonomy is actually a partial order ’<’ from Top (>), the whole domain, to
Bottom (⊥), the empty set, where the partial order relation is subsumption. The
partial order can be represented by a directed acyclic graph (DAG), i.e. a directed
graph that contains no cycles. An edge is drawn from a to b whenever a < b. A
partial order satisfies the following properties:

• transitivity, a < b and b < c implies a < c;

• non-reflexive, not(a < a).

These condition prevent cycles because a < b < ... < z < a would imply that
a < a, which is false. The only exception where the property a < a holds is for
the equivalent concepts.

The idea is to save not only the taxonomy but also other information pertain-
ing each concept such as e.g. its incompatible classes and the list of incompatible
properties.

Caching query information

The focus plays an important role during the query formulation process; in
particular the system proposes the available operations on the query w.r.t. the
current focus (i.e. the variable which is currently selected). The focus is crucial
also for caching dynamic information concerning the query and the idea is to
cache both the query and its actual classification at the focus level. In other
words, we want to associate to each single variable which gets the focus the
overall status of the query. Of course, cache at the single node level would be
invalidated as soon as the user further refines the query.

An intuitive approach to exploit the cache would consist in modifying the
system in a way that the user can only remove terms by following the exact
inverse order of the one which has been used to formulate the query. This
means that only the last operation can be undone. In this way we could reduce
or even avoid reasoner calls because the information we need has already been
cached at the node.

We know that refinement of the query is monotonic and therefore whenever
the user adds new terms to the query, the domain is going to be restricted. This
property can also lead us to some conclusions for reducing reasoner calls in
further refinements of the query. This property does not hold when the user
deletes a term from the query; in this case all the cache has to be removed.

22

3.2.5 Discussion

Optimizing the communication and the quantity of exchanged messages behind
the scenes between the Query Tool and the reasoner is only the first action we
are taking to make the use of the interface more comfortable for the user.

The interaction time we are able to save with these enhancements is partially
re-invested in the demands of a new and more complex interface we are build-
ing, based on state-of-the-art natural language generation (NLG) technologies.

The main challenge is that the query (now with partial verbalization of single
concepts and roles) is to be presented to the user in natural language with full
verbalization, and stepwise refinements of the query composed by the user are
presented as natural language refinements that maintain the grammaticality
of the sentences representing the query. Our solution adopts the paradigm
called (‘What You See Is What You Meant’), a user-interface technique
which uses (NLG) technology to provide feedback for user interaction [Power
and Scott, 1998]; it will be presented in Section 4.1.1. The differences between
our approach and that used by available systems employing were
published in [Dongilli et al., 2006], and are explained here in Section 4.2. Chapter
5 will be entirely devoted to the detailed analysis of the problem of rendering
a conjunctive query in English.

23

Chapter 4

Querying with natural
language support

4.1 Related work

4.1.1 WYSIWYM and available implementations

4.2 A novel implementation of the WYSIWYM paradigm

24

Chapter 5

Natural language rendering of
a conjunctive query

.

5.1 An Introduction to Natural Language Genera-
tion

Communication by means of natural language involves two fundamental skills:
Producing text and understanding it. These tasks are the subject of study of two
big areas of research in computational linguistics, which are natural language
generation and natural language understanding respectively; the former will be
dealt with hereinafter.

Natural language generation (NLG) is seen in general as the sequence of
operations needed to map information from some non-linguistic (e.g. raw data)
into linguistic form (either oral or written). These operations are not at all
straightforward, because the task of bridging the gap between non-linguistic
and linguistic representations requires several non-trivial decisions or choices
which include content determination, choice of rhetorical structures at various
levels (text, paragraph, sentence), choice of words and syntactic structures, and
finally the determination of the text layout (or acoustic patterns if we intend to
generate spoken text). One of the main challenges of NLG is devising modular
architectures able to make the previous choices coexist. At least three kinds
of expertise are needed: application domain knowledge, knowledge of the language
(grammar, lexicon, and semantics), and strategic rhetorical knowledge (i.e. how
to achieve communicative goals, text types, style).

NLG system architectures need to include various levels of planning and
merging of information in a way that generated text looks natural and not
repetitive. Typical tasks we find are [Reiter and Dale, 2000]:

• Text planning

– Content determination: Determination of the salient features that
are worth being said.

25

– Discourse planning: Overall organization of the information to con-
vey.

• Sentence planning

– Lexicalization: Putting words to the concepts.

– Sentence aggregation: Merging of similar sentences to improve
readability and naturalness. For example, the sentences “The car
is equipped with a diesel engine” and “The engine’s power is 140
HP” can be aggregated to form “The car is equipped with a diesel
engine whose power is 140 HP”.

– Referring expression generation: Linking words in the sentences
by introducing pronouns and other types of means of reference.

• Linguistic realization

– Syntactic and morphological realization: This stage is the inverse
of parsing: given all the information collected above, syntactic and
morphological rules are applied to produce the surface string.

– Orthographic realization: Matters like casing, punctuation, and
formatting are resolved

In the coming sections we will tackle each one of the mentioned tasks, describing
a pipeline of steps which will build up our own generation architecture, able to
map a conjunctive query (over a given domain ontology) into its corresponding
textual form.

5.2 Text Planning

Thinking what to write or say, and organizing the constituents of our idea in
one of the possible manners that once verbalized will best convey our thought
is what we could define as the text planning capability of a human being. We
want to mimic this human behavior with the first module of our generation
system, where the content (a query), determined by the user by means of an
intelligent query composition interface, is internally reorganized in order to
obtain the possibly most coherent sequence of its constituents. Since the query
is isomorphic to a tree, the job of the discourse planner is to find the best
topological sorting according to some objective function. In Section 5.2.2 we
present and compare six discourse planning strategies indicating one of them
as the best suited for this task. These results were also published in [Dongilli,
2007a] and [Dongilli, 2007b].

5.2.1 Content determination

In our specific context, the content is represented by the query formulated by
the user. Given the specific domain of interest chosen (read ontology), the query
built using the ontology’s (unary and binary) predicates corresponds to a simple
or complex concept (namely a conjunction of predicates) whose constituents
need to be organized and explained in a coherent discourse using one or more
natural language sentences,

26

5.2.2 Discourse planning

Planning a discourse means in general finding the best way of representing an
idea in an organized, specific, and coherent manner. In our case the idea is a
query, a complex concept that the user is thinking and building. We start by
defining the main components of a discourse that are called discourse units.

Definition 11 (Discourse unit). A discourse unit ui(c j, ck) is the atomic compo-
nent of a discourse. In our setting a discourse unit is represented by a role rl
between two entities c j and ck (using the terminology introduced by def. [insert
ref. to cq definition], rl can be either a relation or an attribute having c j and ck
as domain and range respectively; c j is always a concept, and ck is a concept if
rl is a relation, or a predicate over a concrete domain if rl is an attribute).

A discourse unit, once verbalized, can be seen as a stand-alone sentence, or
as a clause in a longer sentence.

We start with a query tree and we map it into another tree we call discourse
tree, created by collapsing a relation between two concepts into a single node.

Definition 12 (Discourse tree). A discourse tree is a directed tree whose nodes
are discourse units. The nodes are tagged with the domain and range entities of
the corresponding role. The edges connect two nodes where the second entity
of the start node and the first entity of the end node are the same. The root node
of the discourse tree is an additional node which introduces the main concept
(c1) the user is looking for, i.e. the root concept of the query tree. The first entity
(c0) of this node is a new entity that will be verbalized as the subject of this first
discourse unit.

Figures 5.1 and 5.2 show a starting query tree and the derived discourse tree.
The sequence order of indexes assigned to concepts and relations in the query
tree, and as consequence the indexes assigned to discourse units, respects the
order of insertion followed by the user while creating the query.

c1

c2

c3

r2

c6

r5

r1

c4

r3

c5

c7

c9

r8

c10

r9

r6

c8

r7

r4

Figure 5.1: A query tree

Our starting point for discourse planning is the generated discourse tree
which is a directed tree as mentioned in def. 12. The problem of finding a
linear sequence of the discourse units in a discourse tree can be translated into
a problem which in graph theory is called topological sorting.

27

u1(c0 , c1)

u2(c1 , c2)

u3(c2 , c3) u6(c2 , c6)

u4(c1 , c4) u5(c1 , c5)

u7(c5 , c7)

u9(c7 , c9) u10(c7 , c10)

u8(c5 , c8)

Figure 5.2: A discourse tree

Definition 13 (Topological sort). A topological sort of a directed acyclic graph
(DAG) G(V,E) is a linear ordering of its nodes which is compatible with the
partial order R induced on the nodes, where x comes before y (xRy) if there’s a
directed path from x to y in the DAG.

In other terms, topological sorting is a way to extend a partial order relation
into a total order. We can state that every DAG has at least one topological sort,
because of the following

Theorem 1. Every partial order can be extended to a total order. That is: Suppose→
is a partial order on a set X. Then there exists a total order⇒ on X that extends→ as
a relation: If x, y ∈ X and x→ y, then x⇒ y.

Typical algorithms for topological sorting have running time linear in the
number of nodes plus the number of edges (Θ(|V| + |E|)). Since in our setting
we are working with a DAG where |E| = |V| − 1, the complexity is Θ(|V|). A
possible algorithm is the following:

Algorithm 1 Generation of a topological sort
Q← Set of all nodes with no incoming edges
while Q is not empty do

remove a node n from Q
output n
for all nodes m with an edge e from n to m do

remove edge e from the graph
if m has no other incoming edges then

insert m into Q
end if

end for
end while
if graph has edges then

output error (the graph has a cycle)
end if

If we want to find all possible topological sorts, algorithm 1 needs the
following modifications that lead to algorithm 2:

• the while loop must be implemented by a recursive function;

28

• bag Q has to be global to the recursive function;

• an array must be defined to hold the current ranking and that must be
output when Q is found to be empty;

• the currently removed item is to be kept locally;

• when returning from the recursive call, the current item has to be put
back into Q and another node must be picked from Q.

Algorithm 2 Generation of all topological sorts
Q← Set of all nodes with no incoming edges
D← ∅ {array containing temporary linear sort}
call CalculateSorts()

procedure CS()
if Q is not empty then

for i = 1 to size(Q) do
remove node ni from Q
add ni to D
for all nodes m with an edge e from ni to m do

remove edge e from the graph
if m has no other incoming edges then

insert m into Q
end if

end for
call CalculateSorts()
restore ni into Q
restore previously removed edges outgoing from ni
remove last element from D

end for
else

output D
end if
if graph has edges then

output error (the graph has a cycle)
end if
end procedure

We implemented this algorithm (see algorithm 2) whose running time de-
pends on the topology of the tree. It is easy to see that the number of topological
sorts varies from 1 to |E|!; these two extreme cases are shown in Figure 5.3. The
former tree already represents a linear order, while the latter has n − 1 possible
topological sorts.

In our context, finding a topological sort of a discourse tree can be defined
this way:

Definition 14 (Topological sort of a discourse tree). Given a discourse tree with
n discourse units u1,u2, . . . ,un containing n + 1 discourse entities c1, c2, . . . , cn, a
topological sort can be obtained with a permutation π of {1, 2, . . . ,n}, where the

29

u1

u2

. . .

un

u1

u2 . . . un

Figure 5.3: Best and worst cases for topological sorting

sequence of discourse units (uπ(1),uπ(2), . . . ,uπ(n)) is compatible with the partial
order induced by the discourse tree.

Hereinafter a generic topological sort will be associated and identified with
a permutation π.

Given all possible topological sorts of our discourse tree, we need now
to find some constraints with the intent to keep only those orderings that
maximize/minimize some objective function. Given an objective function, the
aim is to find some common properties of the best orderings, in a way to be
able to infer an algorithm that is able to calculate just one of the best topological
sorts.

Centering-Theory-based planning

The constraints we use in this first attempt are borrowed from Centering Theory
which gives us the means to find all possible sequences of discourse units that
maximize coherence.

Centering theory (CT) finds its origins within the theory of discourse struc-
ture that was first developed by [Grosz and Sidner, 1986]. A draft manuscript
describing the centering framework and the first theoretical claims appeared
in 1986 [Grosz et al., 1986], and the authors were then urged to publish a more
detailed description which came into light in 1995 [Grosz et al., 1995]. This,
along with a previous contribution from [Brennan et al., 1987], contains the
main claims of this theory, which are:

1. for each discourse unit, there is exactly one entity which is the center of
attention;

2. there is a preference for consecutive discourse units that keep the same
entity as center, and for the most salient entity in a discourse unit to be
realized as the center of the next utterance;

3. the center is the entity with the highest probability to be pronominalized.

The assumptions of CT are formalized in terms of C f , Cb, and Cp. Given two
consecutive discourse units uπ(i−1) and uπ(i),

• C f (uπ(i)) (forward looking centers) is a list of all discourse entities contained
in ui;

30

• Cb(uπ(i)) (backward looking center) is the most highly ranked entity realized
in uπ(i−1) which is also realized in uπ(i); If uπ(i−1) does not exist, there is no
Cb(uπ(i));

• Cp(uπ(i)) (preferred center) is the highest ranked entity of uπ(i).

[Brennan et al., 1987] define ranking of an entity in a discourse unit as the
likelihood that it will be the primary focus of subsequent discourse. It is more com-
mon now defining the rank in terms of grammatical roles (obliqueness), where
subject > direct object > indirect object > others.

With the abovementioned parameters, we list now the following constraints,
whose violations will build-up the cost function we are going to use.

cohesion: Cb(uπ(i)) = Cb(uπ(i−1)) (checks if the center of the current discourse
unit is the same as the preceding one);

salience: Cb(uπ(i)) = Cp(uπ(i)) (checks if the center is realized as subject);

cheapness: Cb(uπ(i)) = Cp(uπ(i−1)) (checks if the current center was a subject in
the previous discourse unit);

continuity: C f (uπ(i))∩C f (uπ(i−1)) , ∅ (checks if there are no entities in common
between the previous and the current discourse unit).

We say that there is a violation to one of these constraints, if the corresponding
condition does not hold. If there exists no Cb(uπ(i)), cohesion, salience, and
cheapness are not violated. No violation is accounted for the first discourse
unit uπ(1).

The cost function we want to minimize in order to maximize local coherence
is defined as follows:

Definition 15 (Centering-theory-based cost function). Given the setting of def-
inition 14, we define this cost function:

φCT(π) =

n∑
i=1

[coh(uπ(i)) + sal(uπ(i)) + che(uπ(i)) + con(uπ(i))]

where:

coh(uπ(i)) =

0 if i ∈ {1, 2} or

i > 2 and Cb(uπ(i)) = Cb(uπ(i−1))
Kcoh if i > 2 and Cb(uπ(i)) , Cb(uπ(i−1))

sal(uπ(i)) =

0 if i = 1 or

i > 1 and Cb(uπ(i)) = Cp(uπ(i))
Ksal if i > 1 and Cb(uπ(i)) , Cp(uπ(i))

che(uπ(i)) =

0 if i = 1 or

i > 1 and Cb(uπ(i)) = Cp(uπ(i−1))
Kche if i > 1 and Cb(uπ(i)) , Cp(uπ(i−1))

con(uπ(i)) =

0 if i = 1 or

i > 1 and C f (uπ(i)) ∩ C f (uπ(i−1)) , ∅
Kcon if i > 1 and C f (uπ(i)) ∩ C f (uπ(i−1)) , ∅

Kcoh, Ksal, Kche, and Kcon represent the weights assigned to each constraint
violation.

31

We can now use this cost function to discern, among all orderings, the
ones that minimize violations to local coherence in terms of cohesion, salience,
cheapness, and continuity, where the respective weights are assigned according
to the proposal of [Kibble and Power, 2004]: Kcoh = Ksal = Kche = 1, and Kcon = 3.
The assumption we make is that for every discourse unit ui(ck, cl), the preferred
center Cp(ui) (subject) will always be the first discourse entity i.e. ck.

We implemented algorithm 2, and conducted experiments over several tree
topologies, isolating all sortings that minimized the given cost function. The
results obtained, quite unexpected, are reported in the next section.

The first result we observed is that salience is never violated. This can be
formalized in the following theorem:

Theorem 2. Given the setting of definition 14, none of the topological sorts generated
from the discourse tree violates the salience constraint.

Proof. In order to check salience in any discourse unit uπ(i)(cl, cm) of a generic
topological sort π, we have to check that Cb(uπ(i)(cl, cm)) = Cp(uπ(i)(cl, cm)) where
Cp(uπ(i)(cl, cm)) = cl as we assumed above. To identify the Cb we need the
previous discourse unit uπ(i−1)(c j, ck). If it does not exist, this means that uπ(i) is
the first discourse unit (uπ(1)) and there is no salience violation. If we have a
previous utterance, we distinguish two cases:

1. {cl, cm} ∩ {c j, ck} = ∅: this means that there is no Cb in unit uπ(i), therefore
salience is not violated;

2. {cl, cm}∩{c j, ck} , ∅; the units cannot have two discourse entities in common
because this would mean that either the two entities are the same (c j =
cl ∧ ck = cm) or that we have a cycle in our tree (c j = cm ∧ ck = cl) which
is impossible. We can have only one entity in common, i.e. the following
four cases:

(a) c j = cl: This is a valid case; it implies that Cb(uπ(i)(cl, cm)) = cl which
is equal to Cp(uπ(i)(cl, cm)). The salience constraint is attended.

(b) c j = cm: This case is not valid, because this would imply that uπ(i−1)
should occur after before uπ(i), contradicting our hypothesis.

(c) ck = cl: This is a valid case; it implies that Cb(uπ(i)(cl, cm)) = cl which
is equal to Cp(uπ(i)(cl, cm)). The salience constraint is attended.

(d) ck = cm: This is not a valid case, since it would imply coreference
and therefore a cycle in our tree which is impossible.

�

The second result we obtained pertains a common property shown by all
best topological sorts, i.e. the ones that minimize the cost function. This result
is expressed in the following proposition.

Proposition 1. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n + 1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the cost
function expressed in def. 15 are all and only the ones returned by algorithm 3.

Algorithm 3 Generation of the best topological sorts (Centering Theory)

32

D ← u1 {array D stores one by one all best linear sorts; here it is initialized
with the first discourse unit}
n← number of nodes in tree
count← 1 {current size of D}
call CalculateBestSorts(u1)

procedure CalculateBestSorts(u)
L← all children of u
Ld ← children of u having at least one descendant
if Ld , ∅ then

PL ← list of all permutations of L where last node of each permutation is
in Ld

else
PL ← list of all permutations of L

end if
for all p ∈ PL do

append array p to D
for i = size(p) downto 1 do

call CalculateBestSorts(pi)
end for
count← count + size(p)
if count = n then

output D
end if
remove array p from D
count← count − size(p)

end for
end procedure

In plain words, the best topological sorts are the ones for which every
discourse unit is followed by its remaining siblings, where the last sibling
must be one with descendants (to allow a continuity in the discourse); for each
sibling then, starting from the last one, the list of its children (if any) is output.
E.g. one of the best topological sorts from the discourse tree of figure 5.2 is
(u1,u2,u4,u5,u8,u7,u9,u10,u3,u6).

Minimal conceptual distance

The second constraint we decided to experiment with, calculates the sum over
each discourse entity of the distances among discourse units where each entity
is referenced.

This optimization problem can be described as follows:

Definition 16 (Conceptual distance minimization). Given n discourse units,
(u1,u2, . . . ,un) embedding n+1 discourse entities (c1, c2, . . . , cn+1); given a permu-
tationπof {1, 2, . . . ,n}where the sequence of discourse units (uπ(1),uπ(2), . . . ,uπ(n))
is compatible with the partial order induced by the tree, we create a hash table
Hπ where the keys correspond to the discourse entities (c1, c2, . . . , cn+1), and
each value Hπ(ci) is a sorted list of indexes taken from {1, 2, . . . ,n} and referring
to some positions of the permutation.

33

We want to

min
n+1∑
i=1

δπ(ci)

where

δπ(ci) =

{ ∑|Hπ(ci)|−1
k=1 (Hπ(ci)[k + 1] −Hπ(ci)[k]) if |Hπ(ci)| > 1

0 if |Hπ(ci)| = 1

We were able to find a common property of all topological sorts that mini-
mize the newly introduced constraint; it is expressed by the following propo-
sition:

Proposition 2. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n+1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the measure
of conceptual distance as of definition 16 are those that derive from a depth-first-like
visit of the tree, where at any point, given an output node, the valid visits of its subtrees
are all the ones where the biggest (in terms of number of nodes) subtree comes last.

Hybrid approach

The next step was to run topological sorting using a hybrid approach with
both of the two previous constraints. We ran several tests on different tree
topologies.

We first applied the constraints based on centering theory (CT-approach) fol-
lowed by the calculation of the minimal conceptual distance (mCD-approach),
i.e. after minimizing the cost function of the CT-approach, we applied the
mCD-approach on the best ordering. The best results coming out are obvi-
ously a subset of the orderings found by algorithm 3. The best topological
sorts are the ones for which every discourse unit is followed by its remaining
siblings, starting from the ones with no children (if any) and continuing with
the siblings in decreasing order of their respective subtree dimensions; for each
sibling then, starting from the last one (LIFO), the list of its children (if any) is
output. E.g. one of the best topological sorts from the discourse tree of figure
5.2 is (u1,u4,u5,u2,u3,u6,u8,u7,u9,u10). This result is expressed in the following
proposition, where algorithm 4 is a slight variation of algorithm 3.

Proposition 3. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n + 1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the cost
function expressed in def. 15 first, and then the cost function of def. 16 next, are all and
only the ones returned by algorithm 4.

Algorithm 4 Generation of the best topological sorts (Hybrid approach #1 (CT-
mCD))

D ← u1 {array D stores one by one all best linear sorts; here it is initialized
with the first discourse unit}
n← number of nodes in tree
count← 1 {current size of D}
call CalculateBestSorts(u1)

procedure CalculateBestSorts(u)

34

L← all children of u
Ld ← children of u having at least one descendant
if Ld , ∅ then

PL ← list of all permutations of L where nodes in Ld come last, in decreasing
order of their respective subtree dimensions;

else
PL ← list of all permutations of L

end if
for all p ∈ PL do

append array p to D
for i = size(p) downto 1 do

call CalculateBestSorts(pi)
end for
count← count + size(p)
if count = n then

output D
end if
remove array p from D
count← count − size(p)

end for
end procedure

We tried then to apply in sequence the mCD-approach first, and the CT-
approach next. We found out that the sequence of discourse units in each best
topological sort follow the rule expressed by proposition 4.

Proposition 4. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n + 1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the cost
function expressed in def. 16 first, and the cost function of def. 15 next, are all and only
the ones that derive from a depth-first-like visit of the tree, where at any point, given
an output node, we visit its subtrees ordering them by increasing size.

The interesting feature of the outcoming orderings is that we leave long
elaboration chains at the end, planning the short ones first. If we see it from the
point of view of the reader, this is what she usually expects from a text describing
an object: Immediate characteristics/attributes of the described object come first,
and relations of this object with further entities (possibly nested) are left at the
end.

We propose an algorithm that calculates only one of the best orderings, since
there could be more than one.

User-driven planning

If on one side the previous approaches try to minimize some cost functions in
order to have a higher local coherence and/or a better distribution of entities
within discourse units in the text plan, on the other side they don’t take into
consideration how much change is involved in the text plan whenever the user
modifies the query (adding or removing branches to the query tree). The idea
would be to minimize the changes in the order of the discourse units in the text
plan when the user edits the query.

35

Algorithm 5 Generation of one of the best topological sorts (Hybrid approach
#2 (mCD-CT))

n← number of nodes in tree
call CalculateSort(u1)

procedure CalculateSort(u)
output u
L← all children of u sorted by increasing size of respective subtrees
for all p ∈ L do

call CalculateSort(p)
end for
end procedure

We could think of a text plan where the discourse units have the same order
of insertion followed by the user. In this case any addition to the query reflects
in a new discourse unit appended to the text plan. E.g. if a new relation is added
to concept c5 in the query tree of figure 5.1, let’s say r10 along with the range
concept c11, this would generate the query tree of figure 5.4, and the discourse
tree of figure 5.5 with the new discourse unit u11.

c1

c2

c3

r2

c6

r5

r1

c4

r3

c5

c7

c9

r8

c10

r9

r6

c8

r7

c11

r10

r4

Figure 5.4: Adding a new relation to the query tree of fig. 5.1

The chosen topological sort, according to the planning strategy proposed,
would simply be:

u1(c0, c1),u2(c1, c2),u3(c2, c3),u4(c1, c4),u5(c1, c5),u6(c2, c6),u7(c5, c7),
u8(c5, c8),u9(c7, c9),u10(c7, c10),u11(c5, c11).

A newly inserted discourse unit (as u11(c5, c11) in the example) is always ap-
pended to the text plan, possibly far away from the latest previous discourse
unit (u8(c5, c8),) having a common discourse referent (c5), and farther from the
unit (u5(c1, c5)) where this referent was first introduced.

Hence this kind of strategy yields on average pretty bad values in terms of
local coherence and overall conceptual distance according to the measures of
definitions 15 and 16. In fact we cannot expect that the user edits the query
in a coherent way, having the query tree already in mind before typing, and
reproducing it immediately afterwards with a clean depth-first traversal.

36

u1(c0 , c1)

u2(c1 , c2)

u3(c2 , c3) u6(c2 , c6)

u4(c1 , c4) u5(c1 , c5)

u7(c5 , c7)

u9(c7 , c9) u10(c7 , c10)

u8(c5 , c8) u11(c5 , c11)

Figure 5.5: Discourse tree derived from the query tree of fig. 5.4

The regularity of a user-driven order of discourse units, where the last
inserted unit is always appended to the text plan, doesn’t pay-off the bad
average performance in terms of local coherence or conceptual distance.

It is evident that we need to find an appropriate trade-off between coher-
ence/distance criteria and minimal change in the text plan after each query
editing operation.

Depth-first planning

A good trade-off, slightly unbalanced towards the minimization of the change in
the text plan after a query tree edit, is the easiest-to-obtain topological ordering,
merely a depth-first serialization of the tree. Considering the ordering strategies
discussed above, this is among the ones that can be obtained with the lowest
time complexity, i.e. O(n) where n is the number of the discourse tree nodes.

Given the tree of figure 5.5, the topological sort according to this method
would be:

u1(c0, c1),u2(c1, c2),u3(c2, c3),u6(c2, c6),u4(c1, c4),u5(c1, c5),u7(c5, c7),
u9(c7, c9),u10(c7, c10),u8(c5, c8),u11(c5, c11).

Algorithm 6 shows how to obtain such simple ordering.

Algorithm 6 Generation of a topological ordering using depth-first search
n← number of nodes in tree
call CalculateSort(u1)

procedure CalculateSort(u)
output u
L← all children of u from left to right
for all p ∈ L do

call CalculateSort(p)
end for
end procedure

To complete the list of possible planning strategies we tested, we would like
to mention a further one that could be boiled down to a depth-first planning

37

provided we change the tree topology according to further constraints. It’s
presented in the next subsection.

Relation-priority depth-first planning

This planning strategy requires additional information that must be pre-specified
in the ontology and attached to each relation. These information consist of or-
dering annotations assigned to relations, and specifying a partial order among
those relations having the same domain concept. This translates into a priority
value assigned to each discourse unit, and valid only locally within each set of
discourse units which are siblings in the discourse tree.

The idea is to keep the query tree edges (relations) that exit from each node,
sorted from left to right according to their order. In other words the sequence
of relations having the same domain concept are not sorted according to the
insertion order followed while creating the query, but respecting the priority
value associated with each relation. It could happen though, that two or more
relations have the same priority; in this case they are sorted by creation order.

The resulting discourse tree is then ready to be linearized with the simple
depth-first traversal proposed above (algorithm 6).

Figures 5.6 and 5.7 show the previous examples of query and discourse tree
whose topology is modified according to the additional ordering annotations.

c1

c4

ro=1
3

c2

c3

ro=1
2

c6

ro=2
5

ro=2
1

c5

c8

ro=1
7

c7

c9

ro=1
8

c10

ro=2
9

ro=2
6

c11

ro=3
10

ro=3
4

Figure 5.6: Query tree with ordering annotations attached to relations

u1(c0 , c1)

uo=1
4 (c1 , c4) uo=2

2 (c1 , c2)

uo=1
3 (c2 , c3) uo=2

6 (c2 , c6)

uo=3
5 (c1 , c5)

uo=1
8 (c5 , c8) uo=2

7 (c5 , c7)

uo=1
9 (c7 , c9) uo=2

10 (c7 , c10)

uo=3
11 (c5 , c11)

Figure 5.7: Discourse tree with ordering annotation attached to discourse units

38

Following this planning strategy, from the discourse tree of figure 5.7 we
obtain the following topological sort:

u1(c0, c1),u4(c1, c4),u2(c1, c2),u3(c2, c3),u6(c2, c6),u5(c1, c5),u8(c5, c8),
u7(c5, c7),u9(c7, c9),u10(c7, c10),u11(c5, c11).

5.2.3 Summary

We presented six possible strategies for discourse planning of a given complex
concept description. We concentrated on three different goals

1. maximization of local referential-coherence (CT);

2. minimization of overall conceptual distance (mCD);

3. minimization of change in the discourse plan between consecutive edits
(user-driven, depth-first, relation-priority depth-first).

If on one side maximizing the referential coherence (CT) among discourse units
seemed to be a good planning strategy, on the other side we noticed that the
overall conceptual proximity in the generated plans for several tree topologies
was not satisfactory. We introduced then the measure of conceptual distance
(mCD) applying it separately in a first attempt, and in hybrid approaches next.
In hybrid planning we tried two strategies: seeking goal 1 and 2 in sequence
(CT-mCD), and in reverse order (mCD-CT). This second hybrid strategy gave
an interesting result, reported in proposition 4.

While these approaches work well when we consider the complex concept
description as a static input, they fail when we want that the input be created
incrementally by a user requesting a sequence of plan generations. From a
human-machine interaction viewpoint we would like to minimize the changes
in the plan between consecutive edits. This is achieved introducing the third
goal. User-driven planning answers this purpose but doesn’t pay-off the bad
average performance in terms of local coherence or conceptual distance. Depth-
first planning although very simple, yields a better trade-off of the three goals.

We proposed then a last strategy (relation-priority depth-first) which requires
that roles be augmented in the domain ontology with ordering annotations,
specifying a partial order valid among those roles having the same domain
concept. The natural rationale behind this is that when describing a concept,
relations and attributes that better characterize the concept under exam should
be planned first, leaving secondary roles for subsequent positions in the plan.

5.3 Sentence Planning

The module that usually comes next to a text planner in most NLG systems is
a sentence planner (otherwise called microplanner). It is widely recognized (even
if there still is considerable debate in the NLG research community) that the
main tasks of a sentence planner are

• lexicalization

• aggregation

39

• referring expression generation

Lexicalization means choosing the right words and syntactic structures
to effectively communicate the message encoded in a text plan. Given the
NLG system we are going to use (KPML), this process is part of the linguistic
realization module, and it will be described in section 5.4.

Aggregation deals with the quantity of information that each sentence in
the text must contain.

Referring expression generation suggests which phrases should be used
to refer to each domain entity found in the text plan.

Given these three phases, systems available to-date employ one of two
possible solutions as described in [Reiter and Dale, 2000]:

• a blackboard architecture, where no specific ordering is imposed over the
abovementioned phases;

• a pipelined architecture, which the various phases come in a pre-specified
order.

In our system we start with sentence aggregation, followed by referring
expressions generation, and finally we generate a sentence plan.

5.3.1 Sentence aggregation

Aggregation can be seen as the task of combining several input elements into
a more complex structure for the sake of conciseness, coherence, fluency and
conciseness.

[Cheng et al., 1997] give an excellent definition of aggregation that reads as
follows:

Functioning as one or a set of processes acting on some intermediate text
structures in text planning, aggregation decides which pieces of structures
can be combined together to be realized as complex sentences later on so
that a concise and cohesive text can be generated while the meaning of the
text is kept almost the same as that without aggregation.

Skipping sentence aggregation would lead to stilted texts composed by
simple subject-verb-object sentences. Starting from the concept expressed in
section ..., and using the relation-priority depth-first planning strategy without
aggregation we would obtain the following text after linguistic realization:

u1 I’m looking for a car. u4 The car is made by Land Rover. u2 The
car is equipped with an engine. u3 The engine runs on diesel. u6 The
engine’s displacement size is [. . .]. u5 The car is sold by a car dealer.
u8 The car dealer’s name is [. . .]. u7 The car dealer is located in a city.
u9 The city is in Italy. u10 The city is in the province of Trento.

Types of Aggregation

In the past twelve years, researchers working on aggregation mainly elaborated
on Wilkinson’s [Wilkinson, 1995] classification which is based on locus of process:
“Something which the various treatments of aggregation have differed on or left vague

40

is at exactly what levels of language generation aggregation may take place. . . . In fact,
aggregation-like phenomena can occur at such a variety of stages and in such a variety
of ways that the term begins to seem stretched beyond its capacity.” [Wilkinson, 1995]

The typologies are six:

• Conceptual aggregation: this is the deepest locus of aggregation, where
a complex concept can possibly be reduced to a simpler equivalent one
by means of an inference.

• Discourse (rhetorical) aggregation: any operation that applies to a dis-
course structure, rhetorical structure, or text plan and maps it to a better
structure or plan (how “better” must be defined by a metric).

• Semantic aggregation: the combination of two or more semantic entities
into one by means of semantic grouping; it takes place at a level which is
abstracted from syntax, but is language-dependent. [Reape and Mellish,
1999] note that they “could not find no clear examples of semantic aggregation
in the literature which couldn’t alternatively be classified as either conceptual,
syntactic or lexical aggregation.”

• Syntactic aggregation: the most frequent form of aggregation. Aggrega-
tion rules that are commonly specified are (a) subject grouping rules and
(b) predicate grouping rules.

• Lexical aggregation: includes three types of aggregation: (a) the mapping
of more lexical predicates to fewer lexemes, (b) the mapping of (more)
lexical predicates to (fewer) lexical predicates and (c) the mapping of
(more) lexemes to (fewer) lexemes.

• Referential aggregation: this was introduced by [Reape and Mellish,
1999] and is not covered by [Wilkinson, 1995]; it refers to aggregation by
means of referring expression generation.

In our setting, aggregation is meant to detect shared concepts and roles,
and to combine them in order to reduce redundancies and repetitions in the
resulting text. Given a text plan, as sequence of discourse units, we try to
aggregate them according to a set of aggregation template structures which can
be reduced to three types:

• simple conjunction structure,

• shared subject-predicate,

• syntactic embedding,

which are a subset of the aggregation roles foreseen and described in [Melen-
goglou, 2002] for the M-PIRO project.

The three abomementioned types mainly fall under the syntactic aggrega-
tion typology, and they are described below.

41

Simple conjunction Simple conjunction can be employed whenever we want
to aggregate several roles of the same concept, and the result is the aggregation
of several propositions with the same subject.

Let’s suppose we have the following relational structure:

Car

LandRover

builtBy

Diesel

runOn

ABS

equippedWith

Without aggregation the three discourse units would generate three separate
sentences: The car is built by Land Rover. The car runs on diesel. The car is equipped
with ABS. Using simple conjunction we would obtain: The car is built by Land
Rover, it runs on diesel, and it is equipped with ABS, where for the sake of readability
we pronominalized the subjects of the second and third clause.

Shared subject-predicate There are cases where two or more consecutive dis-
course units sharing the same domain concept also have the same role name.
This is a case of conjunction with shared subject-predicate, as e.g. in the follow-
ing relational structure:

Car

ABS

equippedWith

A/C
equippedWith

ElectricWindows

equippedWith

Without aggregation we would have: The car is equipped with ABS. The car is
equipped with A/C. The car is equipped with electric windows.

Using simple conjunction we obtain: The car is equipped with ABS, A/C, and
electric windows.

We can also use shared subject-predicate aggregation when we need to
express identity among concepts. Given a relational tree this can happen when
a concept is followed by one or more compatibles as in this example:

Car u Off-roader u Non-smoker car

. . .

. . .

. . .

. . .

. . .

. . .

In aggregated form we have The car is an off-roader and a non-smoker car.

Syntactic embedding With this kind of aggregation we have a dominant
proposition a secondary proposition which is realized as a subordinated con-
stituent as e.g. a non-defining relative clause. Starting from the following
relational tree

42

Car

CarDealer

Austria

locatedIn

soldBy

we could obtain this aggregated form: The car is sold by a car dealer who is located
in Austria.

Aggregation Template Structures

The aggregation template structures we mentioned above are now formally
listed in table 5.1 according to the number of discourse units we want to aggre-
gate.

Table 5.1 takes into consideration all subtree patterns we try to recognize
in a given relational tree. A maximum number of aggregatable units must be
defined and it represents the maximum value that can be assigned to variable
n. We define with nu the number of unique roles with the same domain concept
(c1 as shown in templates n.2 and n.3).

Table 5.1: Aggregation template structures

Units ID Template Aggregation

2 2.1 c1 u c2 u c3 shared subject-predicate

2.2

c1

c2

r1

c3

r2
a) simple conjunction
b) shared subject-predicate (if r1 =

r2)

2.3

c1

c2

c3

r2

r1

syntactic embedding

3 3.1 c1 u c2 u c3 u c4 shared subject-predicate

continued on next page

43

Units ID Template Aggregation

3.2

c1

c2

r1

c3

r2

c4

r3

a) simple conjunction
b) shared subject-predicate (if r1 =

r2 = r3)
c) simple conjunction (between

different roles) + simple con-
junction (for roles that are equal,
if either r1 = r2 or r2 = r3)

3.3

c1

c2

r1

c3

c4

r3

r2 a) simple conjunction + syntactic
embedding

b) shared subject-predicate + syn-
tactic embedding (if r1 = r2)

3.4

c1

c2

c3

r2

c4

r3

r1

syntactic embedding + shared
subject-predicate (r2 = r3)

n n.1 c1 u c2 u c3 u . . . u cn+1 shared subject-predicate

n.2

c1

c2

r1

c3

r2

. . .

. . .

cn+1

rn

a) simple conjunction (for n ≤ 3
and r1 , r2 , · · · , rn)

b) shared subject-predicate (if r1 =
r2 = · · · = rn)

c) simple conjunction (between
different roles, if 2 ≤ nu ≤ 3)
+ shared subject-predicate (for
roles that are equal1)

continued on next page

1Note that the planning algorithm we have chosen (relation-priority depth-first) keeps the roles
(descending from the same concept) ordered according to their priority, where multiple instances
of the same role are always consecutive in the text plan, and never mixed-up with other roles
having their same priority.

44

Units ID Template Aggregation

n.3

c1

c2

r1

. . .

. . .

cn−m

cn−m+1

rn−m

. . .

. . .

cn+1

rn

rn−m−1

a) if n = m + 2, syntactic embed-
ding + shared subject-predicate
(if m ≥ 1)

b) simple conjunction (if m + 2 <
n ≤ m + 3 and r1 , r2 , · · · ,
rn−m−1) + syntactic embedding +
shared subject-predicate (if m ≥
1)

c) shared subject-predicate (if n >
m + 2 and r1 = r2 = · · · = rn−m−1)
+ syntactic embedding + shared
subject-predicate (if m ≥ 1)

d) simple conjunction (between
different roles ∈ {r1, . . . , rn−m−1}

if 2 ≤ nu ≤ 3) + shared
subject-predicate (for roles ∈
{r1, . . . , rn−m−1} that are equal) +
syntactic embedding + shared
subject-predicate (if m ≥ 1)

For all n.3 templates these con-
ditions must hold: m ≥ 0 and
rn−m = · · · = rn.

For the patterns expressed above and in particular for n ∈ {2, 3, 5, 6} we
show in table 5.2 several examples of aggregation. For n = 6 and n = 7 in
some cases we exceed the limit of maximum number of clauses (with different
roles) aggregatable in one sentence by means of simple conjunction (nu = 4),
therefore we need to use two sentences. On the opposite, in 8.2.c even if we
have 8 propositions, we are able to aggregate them all into one single sentence
because nu = 3.

Note that for the sake of readability the last column of table 5.2 shows the
final surface form after aggregation and pronominalization.

Table 5.2: Aggregation examples

ID Propositions Aggregated form
2.1 The car is an off-roader. The car is a

non-smoker car.
The car is an off-roader and a non-
smoker car.

2.2.a The car is a Land Rover. It is equipped
with ABS.

The car is a Land Rover and it’s
equipped with ABS.

2.2.b The car is equipped with air condition-
ing. The car is equipped with electric
windows.

The car is equipped with air condition-
ing and electric windows.

2.3.a The car is equipped with an engine.
The engine runs on diesel.

The car is quipped with an engine that
runs on diesel.

3.1 The car is an off-roader. The car is a
demonstration car. The car is a non-
smoker car.

The car is an off-roader, a demonstra-
tion car, and a non-smoker car.

continued on next page

45

ID Propositions Aggregated form
3.2.a The car is a Land Rover. Its model is

Defender. It is equipped with a traction
control system.

The car is a Land Rover, its model is De-
fender, and it is equipped with a trac-
tion control system.

3.2.b The car is equipped with ABS. The car
is equipped with air conditioning. The
car is equipped with electric windows.

The car is equipped with ABS, air con-
ditioning, and electric windows.

3.2.c The car is a Land Rover. The car
is equipped with ABS. The car is
equipped with air conditioning.

The car is a Land Rover and it’s
equipped with ABS and air condition-
ing.

3.3.a The car is an off-roader. It is equipped
with an engine. The engine runs on
diesel.

The car is an off-roader and it’s
equipped with and engine that runs on
diesel.

3.3.b It is equipped with ABS. The car is
equipped with an engine. The engine
runs on diesel.

The car is quipped with ABS and an
engine that runs on diesel.

3.4 The car is equipped with an engine.
The engine runs on gasoline. The en-
gine runs on methane.

The car is quipped with an engine that
runs on gasoline and methane.

5.1 similar to 3.1
5.2.a similar to 3.2.a
5.2.b similar to 3.2.b
5.2.c The car is a Land Rover. The car’s

model is Defender. The car is equipped
with ABS. The car is equipped with air
conditioning. The car is equipped with
electric windows.

The car is a Land Rover, its model is
Defender and it’s equipped with ABS
and air conditioning.

5.3.b The car is a Land Rover. The car’s
model is Defender. The car is equipped
with ABS. The car is equipped with air
conditioning. The car is equipped with
an engine. The engine runs on diesel.

The car is a Land Rover, its model is
Defender and it’s equipped with ABS
and an engine that runs on diesel.

5.3.c similar to 3.3.b
5.3.d The car is a Land Rover. The car’s

model is Defender. The car is equipped
with an engine. The engine runs on
gasoline. The engine runs on methane.

The car is a Land Rover, it’s model
is Defender, and it’s equipped with
an engine that runs on gasoline and
methane.

6.2.d
nu = 4

The car is a Land Rover. The car’s
model is Defender. The car’s color is
yellow. The car is equipped with ABS.
The car is equipped with air condition-
ing. The car is equipped with electric
windows.

The car is a Land Rover, its model is
Defender and it’s color is yellow. It’s
equipped with ABS, air conditioning,
and electric windows.

continued on next page

46

ID Propositions Aggregated form
7.2.c
nu = 4

The car is a Land Rover. The car’s
model is Defender. The car’s color is
yellow. The car’s color is blue. The
car is equipped with ABS. The car is
equipped with air conditioning. The
car is equipped with electric windows.

The car is a Land Rover, its model is
Defender and it’s color is yellow and
blue. It’s equipped with ABS, air con-
ditioning, and electric windows.

8.2.c The car is a Land Rover. The car’s color
is yellow. The car’s color is blue. The
car’s color is red. The car is equipped
with a traction control system. The
car is equipped with ABS. The car is
equipped with air conditioning. The
car is equipped with electric windows.

The car is a Land Rover, it’s color is yel-
low, blue, and red, and it’s equipped
with a traction control system, ABS,
and air conditioning.

The next step is meant to find a way to compute the best match of the
patterns of table 5.1 for a given relational tree taking into consideration that the
text planning algorithm we choose is the relation-priority depth-first.

Best template structure matching

The idea behind is to linearize both the relational tree (according to the chosen
planning algorithm) and the template structures, seeking the best covering
match of the linearized templates in the plan that minimizes the number of
sentences in the outcoming sentence plan.

The linearized templates we foresee are listed in table 5.3. Concepts are
represented as Ci, Ci+1, Ci+2, etc. where the emphasized index stands for the
level in the tree where the concept (as node) is situated. Roles are represented
as Rj, Rj+1, Rj+2, etc. where the emphasized index is the same for edges of the
tree that represent the same role.

Linearized template Original ID
1 Ci+, n.1
2 (CiRjCi+1,)+ n.2.b
3 (CiRjCi+1,)+(Ci+1Rj+1Ci+2,)+ n.3.a, n.3.b, n.3.c
4 (CiRjCi+1,)+(CiRj+1Ci+1,)+ n.2.c
5 (CiRjCi+1,)+(CiRj+1Ci+1,)+(Ci+1Rj+2Ci+2,)+ n.3.d
6 (CiRjCi+1,)+(CiRj+1Ci+1,)+(CiRj+2Ci+1,)+ n.2.a, n.2.c
7 (CiRjCi+1,)+(CiRj+1Ci+1,)+(CiRj+2Ci+1,)+(Ci+1Rj+3Ci+2,)+ n.3.d

Table 5.3: Linearized templates

Table 5.3 groups the linearization of the allowed tree templates ordered
by increasing number of constituents; it also shows that each linearization
corresponds to one or more tree templates.

In order to find the best template structure match, we need to convert the
text plan output by the previous phase using the same notation employed for
the linearizations above.

47

Let’s suppose we have the tree of figure 5.8. Provided we use the planning
algorithm proposed in section 5.2.2 (relation-priority depth-first planning), the
text plan with the notation introduced above would be:

C1C1C1,C1R1C2,C1R2C2,C2R3C3,C2R3C3,C1R4C2,C2R5C3,C2R6C3,

C3R7C4,C3R8C4,C2R9C3, (5.1)

The list of templates needs to be instantiated: indexes i and j must be
initialized according to the index (level) of the first concept and the first role
in the text plan respectively. We obtain a list of regular expressions we call
aggregation patterns or simply patterns.

1 C1(C1)+,

2 (C1R1C2,)+

3 (C1R1C2,)+(C2R2C3,)+

4 (C1R1C2,)+(C1R2C2,)+

5 (C1R1C2,)+(C1R2C2,)+(C2R3C3,)+

6 (C1R1C2,)+(C1R2C2,)+(C1R3C2,)+

7 (C1R1C2,)+(C1R2C2,)+(C1R3C2,)+(C2R4C3,)+

The pattern matching is done starting from the longest pattern #7 to the
shortest one #1. The first pattern that matches is #1 followed by #5. We are
able to aggregate the first three compatible concepts (C1C1C1,) in a first sen-
tence, followed by another sentence that aggregates four units (C1R1C2,C1R2C2,
C2R3C3,C2R3C3,). After these first two hits, no other pattern matches the re-
maining part of the plan:

C1R4C2,C2R5C3,C2R6C3,C3R7C4,C3R8C4,C2R9C3,

We need to re-instantiate the list of templates setting i = 1 and j = 4. The
patterns become then:

c1 u c1,1 u c1,2

c4

r3

c2

c3

r2 = r5

c6

r1

c5

c8

r7

c7

c9

r8

c10

r9

r6

c11

r10

r4

Figure 5.8: A query tree waiting to be linearized

48

1 (C1,)+

2 (C1R4C2,)+

3 (C1R4C2,)+(C2R5C3,)+

4 (C1R4C2,)+(C1R5C2,)+

5 (C1R4C2,)+(C1R5C2,)+(C2R6C3,)+

6 (C1R4C2,)+(C1R5C2,)+(C1R6C2,)+

7 (C1R4C2,)+(C1R5C2,)+(C1R6C2,)+(C2R8C3,)+

This time there is only one pattern that matches, namely #3. The part of the
text plan that remains to be matched is

C2R6C3,C3R7C4,C3R8C4,C2R9C3,

The templates need to be instantiated again with i = 2 and j = 6 yielding
these patterns:

1 (C2(C2)+,)+

2 (C2R6C3,)+

3 (C2R6C3,)+(C3R7C4,)+

4 (C2R6C3,)+(C2R7C3,)+

5 (C2R6C3,)+(C2R7C3,)+(C3R8C4,)+

6 (C2R6C3,)+(C2R7C3,)+(C2R8C3,)+

7 (C2R6C3,)+(C2R7C3,)+(C2R8C3,)+(C3R10C4,)+

Again, pattern #3 is the only one that matches. There are two more units to
be matched:

C3R8C4,C2R9C3,

This time we need to instantiate just the first four templates (whose mini-
mum length doesn’t exceed the remaining two units), with i = 3 and j = 8:

1 C3(C3)+,

2 (C3R8C4,)+

3 (C3R8C4,)+(C4R9C5,)+

4 (C3R8C4,)+(C3R9C4,)+

where only pattern #2 matches. Finally the last set of patterns is generated
setting i = 2 and j = 9, in order to match the very last unit with pattern #2
shown below.

C2R9C3,

1 C2(C2)+,

2 (C2R9C3,)+

Summarizing, given the query tree of figure 5.8, the text plan resulting from
it is composed by 11 clauses which, according to the proposed templates, can
be joined to form 6 sentences (S1 . . . S6) as reported below:

Sentences Patterns
S1 c1 u c1,1 u c1,2 C1C1C1, 1
S2 c1r3c4 + c1r1c2 + c2r2c3 + c2r5c6 C1R1C2,C1R2C2,C2R3C3,C2R3C3, 5
S3 c1r4c5 + c5r7c8 C1R4C2,C2R5C3, 3
S4 c5r6c7r8c9 C2R6C3,C3R7C4, 3
S5 c7r9c10 C3R8C4, 2
S6 c5r10c11 C2R9C3, 2

49

Algorithms

In this section we describe two algorithms: The first one (algorithm 7) is needed
to obtain the text plan with the notation introduced in the previous section; the
second one (algorithm 8) finds the best covering match of the text plan using
the aggregation templates of table 5.3.

Algorithm 7 Generation of the text plan ...
u1 ← root node
p← “” {text plan as string}
P← empty vector {text plan as vector of pointers to query entities}
ir ← 1 {role counter}
r−1 ← null {previous role}
call CalculateTextPlan(u1)

procedure CalculateTextPlan(u)
append “C” & level(u) to p
append main concept of u to P;
Cu ← list of compatible concepts in node u
for all c ∈ Cu do

append “C” & level(u) to p
append c to P

end for
append “,” to p
Ru ← all edges (roles) from u {left to right}
for all r ∈ Ru do

v← target node of edge r
{same roles (r = r−1) keep the same index ir in the new notation}
if r , r−1 then

ir ← ir + 1
end if
append “C” & level(u) & “R” & ir & “C” & level(u) + 1 & “,” to p
append main concept of u to P
append r to P
append main concept of v to P
r−1 ← r
call CalculateTextPlan(v)

end for
end procedure

The outputs of this algorithm both represent the text plan as serialization of
a given query tree:

• a string p with the notation shown above;

• a vector P of pointers to the entities composing the query.

Algorithm 8, instead, takes the output string p and calculates the best cov-
ering match of the text plan using the aggregation templates of table 5.3. The
templates are instantiated at the beginning according to the indexes assigned
to the first concept and the first role of p. The resulting patterns are matched

50

against p starting from the longest to the shortest one. The matching template
number and the match are saved; then the match is removed from p. As soon
as none of the patterns matches, the templates are instantiated again as above.
The process stops when p is empty. The output consists of two lists: a list con-
taining the sequence of matches, and a list of the template IDs corresponding
to each match.

Algorithm 8 Calculation of the best covering match
input T {list of templates to be instantiated}
input p {text plan as string}
input P {text plan as vector of pointers to query entities}
ptmp ← p {tmp copy of text plan}
Tinst ← empty list {list of patterns as instances of T}
Lm ← empty list {list of string matches}
Lt ← empty list {list of template IDs that matched}
M ← empty list {array containing in M[0] the match, in M[1] the ID of the
matching pattern}
i← index (level) of first concept in ptmp
j← index of first role in ptmp
Tinst ← generatePatterns(T, i, j)
while ptmp not empty do

M← getMatch(Tinst,&ptmp)
if M = null then

i← index (level) of first concept in ptmp
j← index of first role in ptmp
Tinst ← generatePatterns(T, i, j)
M← getMatch(Tinst,&ptmp)

end if
append M[0] to Lm {match}
append M[1] to Lt {template ID}

end while
output Lm
output Lt

function generatePatterns(T, i, j)
for all t ∈ T do

substitute i, j in t
calculate indexes of concepts C and roles R in T
append t to Tinst

end for
return Tinst
end function

function getMatch(Tinst, ptmp)
M← null
for i = length(Tinst) downto 1 do

if existsMatch(Tinst[i], ptmp) then
M[0]←match Tinst[i] in ptmp
M[1]← i
remove M[0] from ptmp

51

break
end if

end for
return M
end function

Some clarifications about algorithm 8 are necessary..

5.3.2 Referring expressions generation

Referring expressions represent the ways we can consider to refer to discourse
entities in a message or text in general. As [Reiter and Dale, 2000] clearly
explain, the symbolic names of knowledge base entities within these messages need to
be replaced by the semantic content of noun phrase referring expressions that will be
sufficient to identify the intended referents to the hearer. The reference to a discourse
entity can be done by means of a noun phrase in several ways:

1. definite noun phrases (as e.g. ‘the car’): these are used when referring to
an entity that has already been introduced before, or when the entity is
assumed to be known or inferable by the hearer;

2. indefinite noun phrases (as e.g. ‘a car’): this is the case when we refer to
a new discourse entity that hasn’t been previously mentioned;

3. definite pronouns (he, she, it, . . .) usually anaphoric2, and typically
referring to entities mentioned in the same or the previous sentence;

4. indefinite pronouns (one, as in ‘the regular one’);

5. relative pronouns as subject (who, that, which), referring to an entity
contained in the previous clause;

6. names, where named entities can be referred to using portions of their
name (‘The writer Richard Wright’→ ‘Richard Wright’)

Of the above categories, we restrict the generation of referring expressions to
definite noun phrases (as subject), indefinite noun phrases (as direct or indirect
object), definite pronouns (as subject), and relative pronouns (as subject).

We also report the use of

• possessive pronouns when referring to one of the attributes of a previ-
ously mentioned entity (e.g. The engine’s displacement size is 2500 cc, and
its weight is 250 kg);

• relative pronouns used as possessives (like whose), to incorporate a refer-
ence to the possessor of an attribute following the pronoun. The posses-
sor is usually introduced in the previous clause within the same sentence
(e.g. I’m looking for a car whose make is Lada).

2A reference is said to be anaphoric if its interpretation depends on a preceding entity in the
discourse, which is called the antecedent.

52

We start by listing some constraints we have to take into account during
this phase.

The first and most general constraint is that all entities of the text plan
(except the subject of the first unit which is in first person singular form) will
be rendered in third person singular form.

Moreover, for each one of the referring expressions we use, there are certain
constraints we have to stick to that limit the position that the expression can
occupy within a sentence:

indefinite noun phrases (R-INP) are always in (direct or indirect) object posi-
tion, and they are used the first time an entity appears in the text;

definite noun phrases (R-DNP) are always in subject position; otherwise this
would mean that the entity, being also in object position the first time
it was mentioned in the text, is co-referenced by two roles, which is
impossible for our definition of conjunctive query (see Section . . .).

definite pronouns (R-DP) are always in subject position; in this case we must
be careful to respect the gender of the referent;

relative pronouns as subject (R-RPS) which must be the same as the object of
the previous unit;

possessive pronouns (R-PP) can only precede a subject; they must refer to the
subject of the previous unit, not to the object, otherwise

relative pronouns as possessives (R-RPP) would be the right choice.

Given these constraints it turns out to be very easy to assign the first two
referring expressions: for each discourse unit, the first entity is tagged as a
definite noun phrase (R-DNP) and the second as an indefinite noun phrase (R-INP).
At this point we have to note that this pre-assignment of a definite or indefinite
status to entities will not affect those entities that will be lexicalized either as
proper nouns or uncountable nouns. We will see this further on, when we
handle the generation of sentence plans.

From this point on, the task is to deal with the pronominalization of the
first entity of each unit. We could easily borrow the idea of the local focus of
attention, in particular the pronominalization strategy proposed by Centering
Theory [Grosz et al., 1995], which states in Rule 1 that

If any element of C f (Un) is realized by a pronoun in Un−1, then the
Cb(Un+1) must be realized by a pronoun also.

In other terms, citing again the authors, this means that

[. . .] no element in an utterance can be realized as a pronoun
unless the backward-looking center of the utterance is realized as a
pronoun also.

where utterance (Un) is what we call discourse unit or simply unit (with a
lower-case notation un).

This rule, though, does not discern among the four categories of pronouns
we have, indicating which one we should use. In principle we could simply

53

use definite pronouns (R-DP), but we want to go beyond the simple achievement
of grammatical sentences, having a higher degree of fluency, conciseness, and
avoiding repetitions.

The previous phase (see Section 5.3.1) yielded the aggregation (where pos-
sible) of several discourse units into what will become multi-clausal sentences.
Within the same sentence we can have clauses (units) whose first entity (sub-
ject) is the same as the second entity (object) of the previous unit. This is a case
in which the pronoun of the latter unit is a relative pronoun as subject (R-RPS), of
what will become a relative clause.

If the role expressed in a unit is concrete (i.e. an attribute of the first entity),
and the first entity of the current unit is the same as the first entity of the
previous unit, the role will be the subject, prepended by a possessive pronoun
(R-PP). The two consecutive units don’t need to be part of the same sentence.

Finally, in the same setting as the previous paragraph, where instead the
first entity of the current unit has to correspond to the second entity of the
previous unit, we would prepend the role (subject) of the present unit with a
relative pronoun used as possessive (R-RPP).

Table 5.4 reports an example for each one of the referring expressions we
took into consideration.

Table 5.4: Examples of usage of referring expressions

Ref. expr. Query tree Sentence

R-INP

I

Car

lookFor I’m looking for a car.

R-DNP

Car

ABS

equippedWith The car is equipped with
ABS.

R-DP

Car

FIAT

madeBy

ABS

equippedWith The car is made by FIAT and
it is equipped with ABS.

continued on next page

54

Ref. expr. Query tree Sentence

R-RPS

Car

CarDealer

Italy

locatedIn

soldBy

The car is sold by a car dealer
who is located in Italy.

R-PP

Car

Bravo 1.6

model

blue

color The car’s model is Bravo 1.6
and its color is blue.

R-RPS

Car

Engine

. . .

power

equippedWith

The car is equipped with an
engine whose power is

We condense now all the previous considerations, rules, and constraints
into an algorithm for the generation of referring expressions. The input of the
algorithm is an ordered list of all entities we have in our text plan, with the
additional aggregation information obtained from the aggregation algorithm.

The output will be the same list of entities, where each entity will be com-
pleted with additional information about the referring expression to be used.

To accomplish this task we need a few functions:

• getUnit(ci) returns the discourse unit where entity ci is to be found;

• getPreviousUnit(uk) returns the unit preceding uk;

• getPreviousEntity(ci) returns the entity preceding ci;

• getFirstEntity(uk) returns the first entity in uk;

• getNextEntity(ci) returns the next (to the current one) entity in uk;

• getLastEntity(uk) returns the last entity uk;

• getEntityPosition(ci) returns the relative position of entity ck within its
discourse unit; the position is a positive integer in {1, 2} for units like c jrkcl
or an integer in a bigger set {1, 2, 3, . . .} for units such as ci u ci,1 u ci,2 u . . .
which represent the conjunction of two or more compatible concepts;

55

• getSentence(uk) returns the sentence to which unit uk has been assigned
after aggregation;

• inSameSentence(uk, ul) which returns true if the two discourse units uk
and ul are part of the same sentence after aggregation, otherwise it returns
false;

• sameConcept(ci, cj) returns true if the two entities refer to the same
concept;

• setRefExpr(ci, refExpr) sets the given referring expression refExpr in
ci;

• existsRole(ci, cj) returns true if ci and c j are connected by a role, false
otherwise;

• isConcreteRole(ci, cj) returns true if the role having ci as domain and c j
as range is a concrete role (attribute), false if it is an abstract role (relation).

Algorithm 9 Generation of appropriate referring expressions for each entity
present in a given text plan

input P {text plan as vector of discourse entities, which are uniquely identified, even
though it can happen that two entities refer to the same KB concept}
for all c ∈ P do

ucur ← getUnit(c)
uprev ← getPreviousUnit(u);
if getEntityPosition(c) = 1 then

cnext = getNextEntity(c)
setRe f Expr(c, R-DNP)
if uprev , NULL then

if sameConcept(getFirstEntity(uprev), c) then
setRe f Expr(c, R-DP)
if existsRole(c, cnext) then

if isConcreteRole(c, cnext) then
setRe f Expr(c, R-PP)

end if
end if

else if inSameSentence(uprev,ucur) then
if sameConcept(getLastEntity((uprev), c)) then

setRe f Expr(c, R-RPS)
if existsRole(c, cnext) then

if isConcreteRole(c, cnext) then
setRe f Expr(c, R-RPP)

end if
end if

end if
end if

end if
else

setRe f Expr(c, R-INP)
end if

end for

56

A few comments at this point are necessary. First of all, the use of possessive
pronouns (R-PP) and relative pronouns as possessives (R-RPP) is not restricted
to entities connected with a concrete role: We can have cases where an entity
is followed by an abstract role which behaves as an attribute and is therefore
rendered as a substantive instead of a predicate, as abstract roles usually are.

For example, the query of figure 5.9 would be rendered as “I am looking
for a car whose make is Santana”, where the abstract role make is rendered as
the subject of the second unit, and the reference to car is incorporated into the
relative pronoun (whose).

I

Car

Santana

make

lookFor

Figure 5.9: Query with abstract role (make) that is rendered as substantive.

This is to be considered an exception, since the rule is that abstract roles are
usually rendered as a predicate (as e.g. the abstract role lookFor).

Another issue regards the correct choice of a pronoun according to the
gender of the referent (third person singular), and the fact that they are either singular they
human or non human entities. The problem arises when we want to refer to
a single definite person androgynously, i.e. with a gender-neutral pronoun.
There are various viable solutions. We could try to avoid using the pronoun,
but this would lead to annoying repetitions of the name that should have
been pronominalized. In order to avoid sexist writing we could alternate
male and female pronouns: in this case this would be pretty confusing for
the user. We very often see people using both pronouns together but this
is considered by readers and writers stylistically inelegant. Excluding the
possibility of inventing a new pronoun, what remains —and this is the solution
we adopt— is resorting to plural pronouns such as they, and their for singular
uses. This is called the singular they.

Singular they is a popular, non-technical expression for uses of the pronoun
they (and its inflected forms) when plurality is not required by the context.
Singular they remains morphologically and syntactically plural, and its use
as pronoun of indefinite gender and indefinite number is well established in
speech and writing, even in literary and formal contexts [Merriam-Webster,
2007]. We weaved an example of singular they usage in the previous paragraph,
in correspondence of the margin note.

The assignment of the correct pronoun to each pronominalizable entity will
be dealt in detail in the following section. We only anticipate in Table 5.5 the
set of all pronouns we are going to use.

57

Non-human Human

Type Indefinite Masculine Feminine Indefinite

R-DP it he she they

R-RPS that who/that

R-PP its his her their

R-RPP whose

Table 5.5: Complete set of singular pronouns used

5.3.3 Generation of a Sentence Plan in SPL

With the outputs obtained from the discourse planning, sentence aggregation,
and referring expression generation phases, we are ready to generate the input
for the linguistic realizer. The input is called sentence plan and the language
used is the Sentence Plan Language or simply SPL, a language devised by Robert
Kasper [Kasper, 1989]. The details of this formalism are thoroughly explained
in Section 5.5.4.

In short, SPL is the form of non-linguistic input adoptet by several linguistic
realizers, among which we mention [Bateman, 1997a], the one we adopted.
In a more general way we can say that an SPL is the semantic specification of a
sentence.

We start with some examples, where for each one we show the query, the
sentence plan it is mapped into, and the -generated text.

Example 1 In this first example the query is a conjunction of three compatible
concepts: Used-car, Off-Roader, and Non-smoker-car.

Query

Used-car u Off-roader u Non-smoker-car

Sentence Plan

(s1 / class-ascription

:modality must

:domain

(c1 / used-car

:determiner the)

:range

(:and

(c2 / off-roader)

(c3 / non-smoker-car))

)

Generated text

The used-car must be an off-roader and a non-smoker car.

These three concepts are represented in the sentence plan by three variables
c1, c2, and c3; s1 instead, is the variable representing the relational process we
use in order to verbalize our input query in a descriptive way. The process
is a class-ascription, one of the process types defined in the Merged Upper

58

Model (see Section 5.5.3), a general task- and domain-independent linguistically-
motivated ontology used for mediating between domain knowledge and the
linguistic realizer. A class-ascription process must have at least two partic-
ipants, which are called :domain and :range: The domain is the first concept
(Used-car), and the range is the conjunction of all other concepts (in this case
Off-roader and Non-smoker-car). generates the class ascription as a
copula that relates domain and range as subsets i.e. the used car we are looking
for is contained in the intersection of the sets of all off-roaders and non-smoker
cars. We also added the :modality property to the class ascription process, in
order to emphasize that this is a query expressing user requirements.

Example 2 Here the query is composed by three concepts (Used-car, Air-con-
ditioning, and Central-locking) and two instances of the same role (equip-
ped-with).

Query

Used-car

Air-conditioning

equipped-with

Central-locking

equipped-with

Sentence Plan

(s2 / equipped-with

:modality must

:domain

(c1 / used-car

:pronoun it)

:range

(:and

(c2 / air-conditioning)

(c3 / central-locking)))

Generated text

It must be equipped with air-conditioning and central locking.

The derived sentence plan contains a process named equipped-withwhich
is subsumed by the more general Upper-Model (UM) concept called genera-
lized-possession. The participants are the used car as :domain and both
air-conditioning and central-locking as :range. We decided to pronominalize
the subject of the sentence.

Example 3 We show here a more complex query, containing five concepts and
three roles.

59

Query

Used-car

FIAT

make

Engine

Methane

run-on

Gasoline

run-on

equipped-with

Sentence Plan

((s3 s4)

(s3 / property-ascription

:modality must

:domain

(c1 / make

:lex make

:determiner the

:owned-by

(c2 / used-car

:pronoun it

:determiner the))

:range

(c3 / template

:pattern "FIAT"))

(s4 / equipped-with

:lex equipped-with

:modality must

:domain

(c2 / used-car

:determiner the

:pronoun it)

:range

(c4 / engine

:process

(s5 / run-on

:tense present

:actor c4

:actee

(:and

(c5 / methane)

(c6 / gasoline))))))

Generated text

Its make must be FIAT, and it must be equipped with an engine that runs on methane and
gasoline.

The sentence plan is made up of two main coordinate clauses, s3 and s4,
which are associated to two processes: aproperty-ascriptionandequipped-with
(seen in the previous example). The latter contains a further process (run-on)
that gives additional information about the engine’s fuel (methaneandgasoline):
This sub-process is realized as a relative clause (. . . that runs on methane and gaso-
line). Sincerun-on is subsumed by the UM-processdispositive-material-ac-
tion, the participants of this process have to be named :actor and :actee. We
also want to remark the use of a possessive (its) and a definite pronoun (it)
referring to used-car, along with the relative pronoun (that) referring to the
engine, automatically generated by the realizer as subject of the sub-process.

We proceed now formally by describing how to map each one of the tem-
plates we listed in Table 5.3 into a corresponding text plan. Indexes of concepts

60

in that table are equal for concepts on the same level, while here indexes are
numbered differently for different concepts. For each template, we show the
corresponding generic query, its linearization and the generated sentence plan.

We draw the attention of the reader to the fact that all concepts included in
the following sentence plans may seem confusing because of a name duplica-
tion. When we write (ci / ci), the first ci is a variable, the second one is the
name of the concept assigned to the variable, also called type as we will see in
Section 5.5.4.

Template 1.

Query

c1 u c2 u . . . u cn

Linearization

(c1, c2, . . . , cn)

Sentence Plan

(s1 / class-ascription

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

Template 2. r1 is an abstract role in the domain ontology:

Query

c1

c2

r1

. . .

r1

cn

r1

r1: abstract role

Linearization

(c1r1c2, c1r1c3, . . . , c1r1cn)

Sentence Plan

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

or, if r1 is a concrete role in the domain ontology:

61

Query

c1

c2

r1

. . .

r1

cn

r1

r1: concrete role

Linearization

(c1r1c2, c1r1c3, . . . , c1r1cn)

Sentence Plan

(s1 / property-ascription

:modality must

:domain

(r1 / r1

:owned-by

(c1 / c1

:determiner ???

:pronoun ???))

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

Template 3. If r1 and r2 are both abstract roles:

Query

c1

c2

r1

. . .

r1

cn

cn+1

r2

. . .

r2

cn+m

r2

r1

r1, r2: abstract roles

Linearization

(c1r1c2, c1r1c3, . . . , c1r1cn, cnr1cn+1, cn+1r2cn+2,

cn+1r2cn+3, . . . cn+1r2cn+m)

Sentence Plan

(s1 / r1

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn

:process

(r2 / r2

:tense present

:actor cn

:actee

(:and

(cn+1 / cn+1)

(... / ...)

(cn+m / cn+m))))))

otherwise, if r2 is a concrete role we have:

62

Query

c1

c2

r1

. . .

r1

cn

cn+1

r2

. . .

r2

cn+m

r2

r1

r1: abstract role
r2: concrete role

Linearization

(c1r1c2, c1r1c3, . . . , c1r1cn, cnr1cn+1, cn+1r2cn+2,

cn+1r2cn+3, . . . cn+1r2cn+m)

Sentence Plan

(s1 / r1

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn

:process

(r2 / property-ascription

:tense present

:extracted-variable-id r2

:domain

(r2 / r2

:relations

(o1 / ownership

:domain cn

:range r2))

:range

(:and

(cn+1 / cn+1)

(.../...)

(cn+m / cn+m))))))

Template 4. Here we have four possibilities, depending on the fact that r1 and
r2 can either be abstract or concrete roles. We start with the case that r1 and r2
are abstract roles.

63

Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

r2

r1, r2: abstract roles

Linearization

(c1r1c2, c1r1c3, . . . , c1r1cn, c1r2cn+1,

c1r2cn+2, . . . , c1r2cn+m)

Sentence Plan

((s1 s2)

(s1 / r1

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

(s2 / r2

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+2)

(.. / ..)

(cn+m / cn+m))))

If either one of r1 or r2 (or both) is a concrete role (say ry), the previous
sentence plan is no more valid. We need to replace the sentence plan chunk
containing ry (left box below) with the one on the right.

(sx / ry

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

(sx / property-ascription

:modality must

:domain

(ry / ry

:owned-by

(c1 / c1

:determiner ???

:pronoun ???))

Template 5. If r1, r2, and r3 are abstract roles:

64

Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

cn+m+1

r3

. . . cn+m+p

r3

r2

r1, r2, r3: abstract roles

Linearization

(c1r1c2, . . . , c1r1cn, c1r2cn+1, . . . , c1r2cn+m,

cn+mr3cn+m+1, . . . , cn+mr3cn+m+p)

Sentence Plan

((s1 s2)

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

(s2 / r2

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+1)

(... / ...)

(cn+m / cn+m

:process

(r3 / r3

:tense present

:actor cn+m

:actee

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p))

)))))

If r1 is a concrete role we should substitute in the previous plan the chunk
reported in the left box below with the one on the right box.

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

(s1 / property-ascription

:modality must

:domain

(r1 / r1

:owned-by

(c1 / c1

:determiner ???

:pronoun ???))

Since r2 cannot be a concrete role (otherwise cn+m would be a concrete data
type, which is not possible because it should be a leaf), the last variant to this
sentence plan is that r3 is a concrete role. The substitution we perform in this
case is:

65

(r3 / r3

:tense present

:actor cn

:actee

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p)))

(s3 / property-ascription

:tense present

:extracted-variable-id r3

:domain

(r3 / r3

:relations

(o1 / ownership

:domain cn

:range r3))

:range

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p)))

Template 6. If r1, r2, and r3 are abstract roles:

Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

r2

cn+m+1

r3

. . . cn+m+p

r3

r1, r2, r3: abstract roles

Linearization

(c1r1c2, c1r1c3, . . . , c1r1cn, c1r2cn+1, c1r2cn+2, . . . , c1r2cn+m, cn+mr3cn+m+1, . . . , cn+mr3cn+m+p)

Sentence Plan
((s1 s2 s3)

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(.. / ..)

(cn / cn)))

(s2 / r2

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+2)

(... / ...)

(cn+m / cn+m)))

(s3 / r3

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p))))

Otherwise, if any of r1, r2, or r3 is a concrete role, we perform a substitution
as we explained for Template 4.

Template 7. If r1, r2, r3, and r4 are abstract roles:

66

Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

r2

cn+m+1

r3

. . . cn+m+p

cn+m+p+1

r4

. . . cn+m+p+q

r4

r3

r1, r2, r3, r4: abstract roles

Linearization

(c1r1c2, c1r1c3, . . . , c1r1cn, c1r2cn+1, c1r2cn+2, . . . , c1r2cn+m, cn+mr3cn+m+1, . . . , cn+mr3cn+m+p,

cn+m+pr4cn+m+p+1, . . . , cn+m+pr4cn+m+p+q)

Sentence Plan
((s1 s2 s3)

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(.. / ..)

(cn / cn)))

(s2 / r2

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+2)

(.. / ..)

(cn+m / cn+m)))

(s3 / r3

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p

:process

(r4 / r4

:tense present

:actor cn+m+p

:actee

(:and

(cn+m+p+1 / cn+m+p+1)

(... / ...)

(cn+m+p+q / cn+m+p+q)))))))

If any of r1, r2, or r4 is a concrete role, we perform a substitution as explained
for Template 4.

Fine tuning of the sentence plans Given the text plan augmented with aggre-
gation information (i.e. the matching templates from Table 5.3) and the referring
expression types (Table 5.5) associated to each concept, obtaining the sentence
plan(s) is just a matter of mapping the list of aggregation patterns into the
corresponding SPL chunks as specified above.

It was not mentioned above that the sentence plan(s) must be preceded by
an introductory one, which declares what the user is looking for (root concept, introductory

sentence plansay c1), at least in our setting where the complex concept description represents

67

a user query.
One possible introductory sentence could be “I’m looking for c1”, where c1

is the root concept of the query, and the corresponding sentence plan would be
the following:

(s0 / look-for

:actor speaker

:actee (c1 / c1)

:tense present-continuous

)

The type look-for is subsumed by the UM-process dispositive-mate-
rial-action, the participants of this process are :actor and :actee; the actor
in this case is of type speaker and will be realized as a first person singular (I),
and the actee will be the c1. The verb describing the process look-for will be
rendered as a present continuous.

With this initial SPL chunk, we have all needed sentence plans to be passed
to the linguistic realizer. They need to be finalized though.

First of all we need to check if any relation (abstract role) has to be realized
as a passive voice verb. In order to test this, we need a way to directly recognize passive voice
from the role name if the domain concept (subject) will act as source (actor) or
recipient (actee) of the action represented by the role. We will call the former
kind of role active role and the latter as passive role. We adopted a simple naming
convention that helps us recognize passive roles, which is a minus sign (−) put as
suffix of the corresponding active role. E.g. if the active role is sell, the passive
role will be sell-. Therefore, whenever a query contains a passive role, its
minus sign is deleted, and the active role is used in the sentence plan with an
additional SPL line (:pp-theme) specifying that the grammatical subject is the
recipient of the action denoted by the verb.

We show below two sentence plans involving an active role and the corre-
sponding passive role.

Query

Car-Dealer

Car

sell

Query

Car

Car-Dealer

sell-

Sentence plan

(s1 / sell

:actor (c1 / car-dealer

:determiner the)

:actee (c2 / car))

Sentence plan

(s1 / sell

:pp-theme c2

:actor (c1 / car-dealer)

:actee (c2 / car

:determiner the))

Generated text
The car dealer sells a car.

Generated text
The car is sold by a car dealer.

68

A further adjustment on the generated sentence plans is the correct assign-
ment of values to the parameters :determiner and :pronoun according to the
output of Algorithm 9 together with Table 5.5. For each concept, the output of referring

expressionsthe algorithm can be one of R-INP, R-DNP, R-DP, R-RPS, R-PP, R-RPP. For each
one we detail now what the effects on the sentence plan (hereinafter SP) are.

R-INP in this case nothing needs to be done because if no :determiner at-
tribute is specified in the SP, the linguistic realizer automatically assigns
an indefinite article (a, an) to the entity;

R-DNP this triggers the assignment of the article the to the :determiner at-
tribute in the SP;

R-DP here we must consider first if the concept in question is human or non-
human. This information must be available in the ontology, e.g. under
the form of concepts as Non-Human-Entity and Human-Entity directly or
indirectly subsuming the given concept. If human, we need to check if
it’s either Male or Female using the pronoun he or she respectively, or they
if undefined. For non-human entities we use it. In the SP we assign one
of {it, he, she, they} to the attribute :pronoun;

R-RPS nothing needs to be done here, because the SP structure will already
lead the linguistic realizer to render the concept as a relative pronoun (see
e.g. the process that involves actor cn in Template 3;

R-PP the same considerations made for R-DP are valid here; the pronoun val-
ues of the set {it, he, she, they} are used and associated via the :pronoun
attribute to the owner of a given concrete role; the linguistic realizer
translates then the definite pronoun into the right possessive pronoun;

R-RPP for the generation of relative pronouns as possessives, nothing needs
to be added to the SP.

The following last consideration shortly discusses the inclusion of a modal
verb in the clauses, needed to emphasize the requirements of the user in terms modal verb
of relations among concepts and their attributes in a query. The modal we
already introduced before is must as e.g. in the sentence The car must be an
off-roader and a non-smoker car. Naively putting it in each sentence would be
quite annoying for the same user rereading the query, but on the other side this
would be the right way of referring to an object we are looking for and precisely
describing.

An option would be the one of rendering the query without modal auxil-
iaries (in our case only must), and the user describes the object how it is instead
of how it must be. The introductory sentence could be extxsended e.g. as: I’m
looking for a THING that is described as follows, where THING stands for the
starting concept chosen by the user. The SP generating this sentence is:

69

(s0 / look-for

:tense present-continuous

:actor speaker

:actee

(c1 / THING

:process

(s1 / be-described-as

:tense present

:actor c1

:actee

(c2 / template

:pattern "follows"))))

5.4 Linguistic Realization

Linguistic realization is the last operation of the NLG-pipeline we have de-
scribed so far. The task of a linguistic realizer is to convert sentence-sized
chunks of a suitable input representation (sentence plan) into grammatically
correct sentences.

5.4.1 Approaches to LR

Four main approaches to text realization are available [Hovy, 1997], differing in
terms of sophistication/expressive power and flexibility. They are listed below,
ordered from the simplest (and less flexible) to the most sophisticated ones:

• canned text systems,

• template systems,

• phrase-based systems,

• feature-based systems.

We will describe in turn each one of these categories.

Canned Text Systems

Whenever we want to generate a piece of text for a very specific purpose,
without the need of modifying it according to some parameters, canned text
is the easiest solution. It has been used by almost every application to convey
a message (warning, error, help, etc.) to the user, a message which is simply
associated to a given code produced by an application event. No syntactic or
morphological process is involved, except, in some cases, capitalizing the first
word in the sentence, and putting a full stop at the end.

Template-based Systems

Slightly more sophisticated, these systems provide template texts containing
a certain number of placeholders, which at runtime will be substituted with

70

strings depending on the context (a title, a name, an address, some numbers,
etc.). One typical example is represented by mail-merge applications, where
the same letter with a few variations (receiver, salutation, closing, . . .) needs
to be created in multiple copies for different receivers.

Phrase-based Systems

In these systems, templates are more general, and resemble phrase structure
grammar rules. They represent the various typologies of phrases we have
in natural language (noun phrases, verb phrases, etc.) along with a set of
rules specifying how phrases can be combined together to form grammatical
sentences. E.g. we could have a pattern like [subject verb object] where
each one of its components can be further decomposed into one of other pos-
sible phrasal patterns as [subject] → [determiner adjectives head-noun

modifiers]. The generation process starts with a top-level sentence pattern
matching the sentence plan, and stops when all pattern constituents have been
replaced by one or more words.

The phrase-based approach is quite flexible in comparison to the ones seen
before, and it is rather simple to implement such a system for a grammar of
limited size; beyond a certain limit though, it is hard to keep track of all phrasal
interrelationships in order to avoid wrong phrase expansions.

Feature-based Systems

These represent the highest level of sophistication and flexibility available for
the generation of sentences. Here every possible alternative for expressing a
sentence or part of it can be chosen by means of features: we can say if a
sentence is positive or negative, if it is declarative, imperative, or a question, which
are the tenses used in its clauses, etc. Generation in this case is accomplished by
incrementally collecting features for each part of the input sentence plan until
the sentence is complete: this can be done either by traversing a feature selection
network (see Sec. 5.5.1) or via unification (see Sec. 5.4.2).

The strength of a feature-based approach is that any distinction in language
can be encoded as a feature in the system. On the other side, cons of this
approach are that also in these systems —as in the previous ones— maintenance
of feature interrelationships tends to be quite hard; moreover (but this is no
more an issue nowadays) some authors [McRoy et al., 2001] report that quite
often the entire grammar needs to be traversed, such systems tend to be too
slow for real-time applications.

5.4.2 Overview of Three Feature-based realizers

We present in this section three widely used feature-based linguistic realizers,
and we will show the different input representations they require. is the
system we employed and we just provide a short description of it in the next
section, leaving all details for Section 5.5.

71

KPML

 (K-Pennman-multilingual) is a grammar development environment
from the University of Bremen [Bateman, 1997a]. is a complex appli-
cation, well known for extensive multilingual systemic-functional grammar
(SFG) development and maintenance as well as for NL generation. For the
sake of preciseness, as described in [Bateman, 1997b], the intended purposes of
 are:

• to offer generation projects large-scale, general linguistic resources (at
the time of writing available resources include English, Chinese, Czech,
Greek, Japanese, Russian, German, and Spanish in varying stages of
development);

• to offer generation projects an engine for using such resources for gener-
ation;

• to encourage the development of similarly structured resources for lan-
guages where they do not already exist;

• to provide optimal user-support for undertaking such development and
refining general resources to specific needs;

• to minimize the overhead of providing text im multiple languages;

• to encourage contrastive functional linguistic work;

• to raise awareness and acceptance of text generation as a useful endeavor.

 can be used as fully featured grammar development environment, but
it is also available as a simple blackbox linguistic realizer. The environment
offered by the system takes over and extends the functionality of its predecessor,
the Penman text generation system [Mann, 1983a; 1983b] outperforming it in
terms of ease of use, development support, and multilingual design.

The input required by is an annotated semantic specification (sentence
plan) expressed using the Sentence Plan Language (SPL). Our sentence planner,
as shown above, adopts this language which will be formally described in
Sec. 5.5.4.

SURGE (FUF)

/ [Elhadad, 1992; 1993] is a text realization system which implements
an extension of a functional unification grammar3 (). FUF is a declarative for-
malism for which exists an interpreter written in CommonLisp for a functional

3 [Kay, 1979] is a formalism for describing grammars of natural languages. It shares some
similarities with Tree Adjoining Grammar, and allows the expression of the idiosyncratic syntactic
constraints of a given language. does not subscribe to any specific grammar model, and is not
a theory of grammar itself. As clearly described by [Kasper, 1988], it is a framework that represents a
grammar in a form that is simultaneously readable by linguists and suitable for use by computer programs
that generate or analyze text. Unlike many previous grammatical formalisms, which required a different
representation for analysis than for generation, FUG is intended to be neutral in this respect.’ In earlier work,
FUG was also called Functional Grammar or Unification Grammar. The notation of FUG looks very different
from that of Systemic Functional Gram-mar (SFG); but if we look beyond the differences of format, we find
that FUG and SFG make many of the same assumptions about language and grammar. The similarities are
due, in part, to the fact that when Martin Kay [Kay, 1979] formulated FUG he was responding to many of
Michael Halliday’s ideas.

72

unification based language specifically designed to develop text generation ap-
plications. [Elhadad and Robin, 1996] is a comprehensive generation
grammar of English written in FUF.

The input of / is a functional description (FD) which is a type of
feature structure. FDs include thematic structures, syntactic categories, and
content words. Function words, as articles, pronouns, an conjunctions can be
automatically generated by the system. Moreover provides defaults (as
most other systems do) in a way that a shorter partial specification is possible.
Figure 5.10 shows an example of FD which generates the sentence “Ray sends
a nice letter to Sandra.”

((cat clause)

(process ((type composite)

(relation-type possessive)

(lex "send")))

(participants ((agent ((cat proper)

(lex "Ray")))

(affected ((cat proper)

(lex "Sandra")))

(possessor (ˆ affected))

(possessed ((cat common)

(lex "letter")

(definite no)

(describer ((lex "nice")))))))

Figure 5.10: Example of / input for the sentence “Ray sends a nice
letter to Sandra.”

RealPro (MTT)

Finally we introduce RealPro [Lavoie and Rambow, 1997], described in [Real-
Pro, 2008] as a text generation engine that performs syntactic realization — i.e.,
the transformation of abstract syntactic specifications of natural language sen-
tences (or phrases) into their corresponding surface forms. It supports multiple
languages and levels of linguistic representation, with performance suitable
for real-world applications. In applications such as machine translation, text
generators need to be able to handle a wide variety of different inputs, and pro-
duce fluent text for each one. Whether the input is at the semantic, conceptual,
or phrasal level, there are often simply too many syntactic rules that need to
be taken into account for a simple phrase concatenation-based approach to be
feasible. This is in contrast to applications such as data summarization, where
the system designer has more control over the syntactic variety that will be
required in generated text, and a template-based approach is often practical.
RealPro provides a grammar rule engine that can generate text from sophisti-
cated, multi-level linguistic representations. The abstraction it provides makes
it easy to generate many syntactic variants of the same semantic content on
demand — unlike with template-based approaches, where the combinatorics
of generating multiple syntactic variants quickly becomes unmanageable.

73

RealPro’s interesting aspect is that its syntactic specifications are based
on the deep-syntactic structures of the Meaning-Text linguistic theory (MTT)
[Žolkovskij and Mel’čuk, 1967; Mel’čuk and Žolkovskij, 1970], a theoretical
framework for the construction of models of natural languages, called Meaning-
Text Models. Meaning-Text theory emphasizes on semantics and considers
natural language primarily as a tool for expressing meaning. MTT is based on
the following three postulates:

Postulate 1. Natural language is (considered as) a many-to-many correspondence
between an infinite denumerable set of meanings and an infinite denumerable set of
texts.

Postulate 2. The Meaning-Text correspondence is described by a formal device which
simulates the linguistic activity of the native speaker—a Meaning-Text Model.

Postulate 3. Given the complexity of the Meaning-Text correspondence, intermedi-
ate levels of (utterance) representation have to be distinguished: more specifically, a
Syntactic and a Morphological level.

Methodological Principle The Meaning-Text correspondence should be described
in the direction of synthesis, i.e., from Meaning to Text (rather than in that of analysis,
i.e., from Text to Meaning).

This is why MTT is well suited for linguistic synthesis (rather than analysis),
and paraphrasing (synonymy production of linguistic expressions, and full
sentences). MTT considers relations (rather than classes) as the main organizing
factor in language and makes an extensive use of the concept of linguistic
dependency, in particular of syntactic dependency (vs. constituency).

As far as input to RealPro is concerned, Figure 5.11 shows a sample input
for the sentence “The lady gave a letter to the postman.” With an input of
this form, RealPro adds then the missing function words (as e.g. auxiliaries,
prepositions, and articles) and all the necessary morphological features. In
order to use RealPro, applications need not specify all syntactic objects that
appear in the output but just the sufficient knowledge of the target language to
render the necessary syntactic relations.

give [class:verb tense:past]

(

I lady [class:common_noun article:def gender:fem]

II letter [class:common_noun article:undef]

III postman [class:common_noun article:def]

)

Figure 5.11: Example of RealPro input to generate the sentence “The lady gave
a letter to the postman.”

74

5.5 Linguistic Realization with Systemic Functional
Grammar

In the previous section we introduced three feature-based realizers along with
the different linguistic theories or formalisms employed. Hereinafter we con-
centrate on one of them, a famous and fascinating linguistic theory, Systemic
Functional Linguistics (SFL), which was leveraged for the purpose of natu-
ral language generation giving rise to what is called computational SFL. We
present Systemic Functional Grammar (SFG) and a computational implemen-
tation called the Nigel systemic grammar of English. We will see what the Upper
Model, a linguistic ontology is used for, and what is the input specification to
the chosen realizer we chose (). Finally we will see how really works
and how we are using it for our purpose.

5.5.1 Systemic Functional Grammar

History

Systemic Functional Grammar (SFG) is a grammar model and major influential
linguistic theory developed by Michael Alexander Kirkwood (M. A. K.) Hal-
liday and grown out of the work of John Rupert Firth, a British linguist who
influenced a whole generation of linguists for more than twenty years in the
University of London. Firth was an important figure in the foundation of lin-
guistics as an autonomous discipline in Britain, and the popularity of his ideas
among contemporaries gave rise to what was known as the ’London School’
of linguistics. Among Firth’s students, the so-called neo-Firthians were exem-
plified by Michael Halliday, Professor of General Linguistics in the University
of London from 1965 until 1970 when he moved to Australia, establishing the
department of linguistics at the University of Sydney. Through his teaching
there, SFL has spread to a number of institutions throughout Australia, and
around the world.

Theory

Systemic-functional grammar is concerned primarily with the choices that are
made available to speakers of a language by their grammatical systems. These
choices are assumed to be meaningful and relate speakers’ intentions to the
concrete forms of a language.

Language is considered a social resource by means of which speakers and
hearers act meaningfully. Meanings are in systemic functional grammar di-
vided into three broad areas, called metafunctions: the ideational, the interper-
sonal and the textual, as extensively described in the literature, in particular
[Halliday and Matthiessen, 2004].

• The ideational is grammar for representing the world. That is, the propo-
sitional content, which is concerned with ideation providing the speaker
with the resources for interpreting and representing reality. It is divided
into two subtypes, the experiential and the logical metafunctions: The
former is reflected in terms of configurations of processes and partici-
pants. We could name e.g. the structure of the clause, which

75

describes what in other theories are known as semantic relations. The
experiential part of the ideational metafunction also includes systems for
circumstantials, types of prepositional phrase, tense, noun-types, etc. The
logical part, instead, is the mode for creating various kinds of complexes
that are hypotactically or paratactically related.

• The interpersonal is grammar for enacting social relationships such as ask-
ing, requests, asserting control, or ordering. Thus the interpersonally is
very much about interaction between human beings, society and culture.

• Finally, the textual is grammar for binding linguistic elements together
into broader texts (via pronominalizations, grammatical topicalization,
thematization, expressing the newsworthiness of information, etc.), or
more simply, the rhetorical structure of a text. What is a subordinate
clause? What is an independent clause? These are the kinds of questions
that deal with the textual element of meaning.

Systemic functional grammar deals with all of these areas of meaning
equally and within the grammatical system itself.

From a higher level perspective, as clearly explained in [Teich, 1999, pages
8–9], view of language rests upon four main considerations:

• language is behaviour potential, realized by systems that support the
theoretical notion of choice;

• language construes meaning which is realized by stratification (phonol-
ogy, grammar, semantics), represented in as paradigmatically orga-
nized resources;

• language is multifunctional, where functional diversification is repre-
sented by the metafunctions descripted above;

• using language is choice in the potential and ultimately actualization of
the potential, by means of realization statements.

In the following subsections we will see in more detail what a system and
a system network are, along with an explanation on how to specify linguistic
structure by means of realization.

The System Network A system network is a directed graph whose nodes are
choice points called systems. Each system consists of entry conditions and output
features. A small section of systemic network for the English grammar is shown
in Figure 5.12, where system names are capitalized.

The “MOOD TYPE” system e.g. has an entry condition which is “clause”,
and two alternative output features which are “indicative” and “imperative”.
Entry conditions can be conjunctions or disjunctions of output features of other
systems. The “TAGGING” system for example has a disjunctive entry condi-
tion, which can be either the “declarative” or “imperative” feature. There can
be symultaneous systems that share entry conditions, such as “PROCESS TYPE”
and “MOOD TYPE”; this means that both are relevant in the paradigmatic
context described by the entry condition “clause” and both must be entered as
soon as the system “RANK” outputs “clause”.

76

...
RANK

clauses

PROCESS-

TYPE

mental

verbal

relational

RELATION-

TYPE

intensive

possessive

circumstantial

RELATIONAL-

AGENCY

ascriptive

equative

material

MOOD-

TYPE

indicative
INDICATIVE-

TYPE

interrogative
INTERROGATIVE-

TYPE

wh-

yes/no

declarative
TAGGING tagged

untagged

imperative

THEME markedtheme

unmarkedtheme

groups

words

]

Figure 5.12: Example of system network fragment

Connections among systems define a partial ordering that spans, if we con-
sider the graphical representation, from least delicate (most general) systems
on the left to most delicate (most specific) systems on the right. We have
an incremental description refinement as discussed in [Mellish, 1988], a scale of
delicacy representing a left-to-right dimension. An interesting aspect is that
paradigmatic choices in systems take place not only between grammatical al-
ternatives, but also between lexical alternatives. In fact Halliday introduces
the term lexico-grammar to include both of them, meaning that there is no clear
division between grammar and lexicon, and if on the left part of the network
we have grammatical choices, towards the right side of it lexical choices take
place. This is summarized in Halliday’s expression of lexis as the most delicate
grammar.

We still need to see how systems are related to the functional side of , in
particular with metafunctions. The relation is that each system pertains to one
and only one metafunction. Moreover, systems of the same metafunction are
strictly connected, in a measure that they are largely independent from systems
of other metafunctions. If we refer to Figure 5.12, “PROCESS-TYPE” and the
systems depending on it are in the “TRANSITIVITY” region of the ideational
metafunction; “MOOD TYPE” and its successors are in the “MOOD” region4 of
the interpersonal metafunction, while “THEME” and other systems connected
to it are in the “MOOD” region of the textual metafunction. Table 5.6 shows
the main systems in according to some high-level entry conditions and the
three metafunction.

4Regions are groups of systems within the same metafunction, possessing strong intra-region
dependencies, and weak inter-region dependencies, creating a modularity that is beneficial for
grammar design, maintenance and development.

77

ideational interpersonal textual

clause TRANSITIVITY MOOD THEME

verbal group TENSE MODALITY VOICE

nominal group MODIFICATION PERSON DETERMINATION

Table 5.6: Main systems in

Specifications of linguistic structure The way syntactic structure is created
in is by means of realization statements which are associated with the output
features of systems, and show how the paradigmatic choices in the systems are
expressed as syntagmatic chains in the language structures. In Figure 5.13

clauses
MOOD-

TYPE

indicative

+Subject

+Finite

INDICATIVE-

TYPE

interrogative
INTERROGATIVE-

TYPE

wh-

+Wh

Wh ^ Finite

yes/no

Finite ^ Subject

declarative

Finite ^ Subject

imperative

Figure 5.13: Example of system network fragment with realization statements

The “indicative” feature e.g.. embeds two realization statements, “+Subject”
and “+Finite” which are insertion realizations. The “yes/no” feature instead
has just one, “Subject ∧ Finite”, which is an ordering realization. Table 5.7
summarizes the realization statements of .

Name Notation and example Description

insert +Subject this statement requires the presence of
this function as constituent

order Subject ∧ Finite this requires that the two functions
must be ordered one after the other

conflate Subject / Agent requires that the two functions are re-
alized by the same element of structure

expand Mood (Finite) the first function is expanded to have
the one in brackets as constituent

preselect Subject : singular this constrains the realization of the
function to display the given feature

Table 5.7: Realization statements used in

We terminate with a simplified example (Figure 5.14) of the kind of infor-
mation that is specified in an syntagmatic unit.

78

In your car Paul you will find a navigation system

Theme Rheme textual

Mood Residue interpersonal

Vocative Subject Finite

Locative Actor Process Complement ideational

Figure 5.14: Simplified example of metafunctional layering

5.5.2 The Nigel systemic grammar of English

Nigel represents the biggest computational systemic functional grammar for
English available to-date. Nigel has been under development since the early
1980s [Matthiessen, 1981; 1983; Mann and Matthiessen, 1983], when it was used
within the Penman project for English generation. It was mainly developed by
Christian Matthiessen on the foundation of work by Michael Halliday. Since
then many people have contributed to various parts of its coverage.

The latest version consists of around 765 systems5, where the first one to be
entered is the “RANK” system reported below, whose output features are the
items of the rank scale: clauses, group-phrases, words or morphemes.

(SYSTEM

:NAME RANK

:INPUTS START

:OUTPUTS

((0.2 CLAUSES)

(0.2 GROUPS-PHRASES)

(0.2 WORDS

(INSERT STEM)

(PRESELECT STEM MORPHEMES))

(0.2 MORPHEMES

(INSERT HEAD)))

:CHOOSER RANK-CHOOSER

:REGION RANKING

:METAFUNCTION LOGICAL

)

At word and morpheme level, the Nigel grammar does not provide a uni-
fied lexicogrammar of as in the theory; lexis and morphology are treated
apart in an external lexicon. At the clause level the grammar can generate
clause complexes of two clauses in paratactic or hypotactic relation. In order to
generate, the system network is traversed starting from the “RANK” system;
the rule is that whenever an output feature is chosen, the next step is to collect
all systems having the same entry conditions as the preceding output feature,
and to enter each one of them on turn in random order. Every time an out-
put feature is chosen, the realization statements attached to it are immediately
executed, except the ordering realizations which are collected and executed
later.

5The total count of systems includes 324 gates which are symplified system having only one
output feature.

79

The choice among output features is done by means of choosers and in-
quiries, an explicit formalization developed by William C. Mann under the
name of inquiry semantics or chooser/inquiry interface [Mann, 1983a]. Each sys-
tem with more than one output feature specifies a chooser, a small “choice
expert” that knows how to make appropriate choices among the grammatical
features available. This is done by traversing a decision tree from the root to
one of the leaf nodes which represents the chosen feature. Inquiries are oracles
which can be relied on to motivate grammatical alternations for the current
communicative goals being pursued. Figure 5.15 shows the same network of
figure 5.13 augmented with choosers.

Figure 5.15: Example of system network with choosers

5.5.3 The Upper Model

The Upper Model, also known as linguistic ontology was born within the Penman
project [Matthiessen, 1987] as a fundamental resource for organizing domain
knowledge appropriately for linguistic realization. It is a domain- and task-
independent ontology meant to support and simplify the interface between
domain knowledge and linguistic resources [Bateman, 1990]. The importance
of this interface is clear if we think that most ideational inquiries ask questions
regarding the classification of an input category in terms of abstract semantic
categories. The Upper Model is based on the Bloomington Lattice [Matthiessen,
2005, page 168], an ideational grammatical semantic typology for English started
by Michael Halliday and Christian Matthiessen during the summer of 1986. It

80

reflects the English lexicogrammatical semantics, the ideational metafunction
only, and it is called the ideation base. Figure 5.16 shows an excerpt of the higher
level classes of the Penman Upper model and their taxonomical relations.

Figure 5.16: Excerpt of the Penman Upper Model taxonomy

The Penman Upper Model was augmented to account for the grammar of
German in the 1990’s and it became the Merged Upper Model [Henschel, 1993;
Henschel and Bateman, 1994] for use in the KOMET-Penman Multilingual
Development Environment (KPML) system (see Section 5.5.5 below).

In order to provide more linguistic coverage, both in terms of the generation
ability in a given language, but also in various other languages, and to bring
the Merged Upper Model more in line with the systemic work of Halliday
and Matthiessen [Halliday and Matthiessen, 1999], the Generalized Upper Model
(GUM) [Bateman et al., 1995] was created. At the time of writing, the latest ver-
sion of GUM is 3.06, and Figure 5.17 shows its higher level classes along with
their taxonomical relations. In terms of representation format, the GUM, origi-
nally written in LOOM [MacGregor and Bates, 1987], has been made available
as OWL-DL7 file.

The contents of the Penman Upper Model were used in conjunction with
the Sentence Plan Language (SPL) [Kasper, 1989] (presented below) as input to
the Penman generation system. The system, instead, employs the Merged
Upper Model (LOOM format), hereinafter referred to as the Upper Model..

5.5.4 Input specification: the Sentence Plan Language

An SPL representation is a list of terms which describe the entities that need
to be expressed in NL along with the particular attributes of those entities.

6http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html
7http://www.w3.org/TR/owl-guide

81

Figure 5.17: Excerpt of the Generalized Upper Model taxonomy (v3.0)

Attributes may specify semantic relations that are to be expressed from the
domain model or they may specify responses to inquiries about grammatical
features of sentences. The syntax of SPL, specified in [Kasper, 1989], is reported
here:

Plan → Term+

Term → (Variable / Type Attribute∗) | Variable | Constant |
(Term+) | (: and Term+) | (: or Term+)

Type → ConceptName | (ConceptName+)
Attribute → Keyword Term
Keyword → RelationName |MacroName | InquiryName (Variable+) |

SpecialKeyword

Example 5. A sentence plan for “The car is equipped with a service booklet.”
could be:

(e1 / be-equipped-with

:actor (e2 / car

:determiner the)

:actee (e3 / service-booklet))

e1 represents the main term of this plan, and it denotes an entity of the do-
main model. The type of e1 is be-equipped-with which is defined as special-
ization of generalized-possession, a reified relation from the upper model.
It has two main attributes named :actor and :actee. The actor is denoted by
the keyboard e2 (referring to the concept car) and the actee by e3 (referring to
the concept service-booklet).

The syntax of SPL permits the use of macros as keywords also. With a macro
we can express in a succint manner a set of delicate features to generate some

82

specific grammatical phenomenon. E.g. if we want to express English tense in
general terms, we should provide precise inquiry responses, setting three times
and the ordering relations among them:

• the actual speaking time

• the event time, and

• the time of reference with which the event is contrasted.

The :tense macro was created to simply avoid specifying these tempo-
ral relations, simply distinguishing the English tenses using values that are
expanded into the appropriate inquiry responses.

A system as contains a package of macro keywords that greatly help
in simplifying the creation of a sentence plan.

Example 6. To modify the previous sentence plan in order to generate the sentence
“The car was equipped with a service booklet”, we can use the :tense macro as
follows:

(e1 / be-equipped-with

:actor (e2 / car

:determiner the)

:actee (e3 / service-booklet)

:tense past)

Another facility provided by is a way of defining default values for
inquiries in order to predefine sentence features that do not change frequently
in a given application domain. The SP given above doesn’t specify if the
sentence to be generated must be a statement, a question, or a command, nor
does it say if it should have positive or negative polarity. This is because the
 system generates by default statements with positive polarity.

The interpretation of a SP is done by in two phases:

1. the plan is first transformed into an internal representation, where all
macros are expanded, and type information is distributed to variable
terms whose consistency is also checked. The first term of the plan is
treated as the initial unit to be expressed (main clause of the sentence).

2. given this representation, the generation process is guided by means of
a series of inquiries to the sentence plan and the available knowledge
sources according to this order:

(a) SPL keyword: The SP is searched first for a keyword matching the
name of the inquiry, and the value is returned;

(b) knowledge sources: inquiries may have a function associated with
them called inquiry implementation, which searches the domain and
upper model for the type or the attributes of the SPL terms;

(c) active default value: If an undefined answer is supplied by the
inquiry implementation, or if there is no inquiry implementation,
then the current active default value is used.

83

5.5.5 The KPML System

In this section, proceeding from the introduction of Section 5.4.2, we present
the architecture of the system along with on overview of the generation
process (based on [Bateman, 1997b]) and the resources that the system uses for
this purpose.

The KPML Generation Process

Figure 5.18: KPML Pennman-style generation architecture (based on [Bateman,
1997b])

 uses a Pennman-style generation architecture that is depicted in Figure
5.18. Generation in proceeds in cycles of traversal through the system

84

network. The outcome of this traversal is a set of grammatical features called
selection expressions and a resulting grammatical structure. It is by resolving
grammatical constituents associated with features of the selection expression
that the grammatical structure is created. Features chosen during network
traversal are selected according to the semantic input that needs to be ex-
pressed, operation that is mediated by the chooser and inquiry framework (see
Section 5.5.2): Choosers organize inquiries into “decision trees”, and inquiries
are responsible for (a) inspecting the semantic specification that is being ex-
pressed in order to classify it and (b) providing access to particular portions of
the semantic specification in order to trigger further realization. The connection
between the systemic grammar and the semantic input is made via a function
association table that relates grammatical functions (labels for grammatical con-
stituents) and semantic “hubs” (labels for the semantic input chunks that need
to be expressed). The input arguments for inquiries are grammatical functions.

Cycles of generation will continue for all sub-constituents of a grammatical
unit until all sub-constituents are filled by some linguistic substance, usually
lexemes or morphemes. One thing that has to be avoided is underconstraining
grammatical constituents, which would cause infinite regression. There are four
ways in to correctly specify a grammatical constituent so that it receives
lexical material and doesn’t trigger another cycle through the grammar:

1. an explicit lexical entry can be selected with the realization statement
lexify;

2. a set of lexical features can be associated with a grammatical constituent
using the classify realization statement; on completion of a traversal
through the grammar, the complete collection of lexical features of lexical
features for a grammatical constituent is used to pick a matching lexical
item (i.e. a lexical item whose features unify);

3. the inquiry term-resolve-id can be invoked to ask for an explicit lexi-
calization on semantic grounds;

4. an explicit selection of a morpheme can be made with the morphological
realization operators, which are: preselect-substance, preselect-subs-
tance-as-stem, or preselect-substance-as-property.

It must be noted that if a constituent has been classified, the selection of a
lexical item as shown in (2) will not respect any additional information since
it follows a purely lexicogrammar internal selection. This means that no se-
mantic information or SPL input will be consulted. If we need to take into
account semantic information also, option (3) must be chosen by including the
term-resolve-id inquiry in some chooser that is activated at an appropriate
point during generation.

The semantic organization adopted by foresees first of all a linguistic
ontology called the Upper Model that was presented in Section 5.5.3. All of the
 resources are defined in a way that generation is possible with respect to
a single Upper Model, as concrete instantiation of the ideation base. The domain
model representing the universe of discourse we want to generate natural
language about, must be connected with the upper model. This way we can
directly use entities from the domain model to formulate SPL inputs for the

85

generator. Two other “bases” are needed (as shown in Figure 5.18): Interaction
and text base. The interaction base represents the knowledge that the system
has about the social and epistemic relationship between speaker (machine)
and the hearer; this can be instantiated as a user model. The text base instead,
is concerned with the system’s knowledge about which discourse structures,
coherence relations, and cohesive ties need to be used, which grammatically
are interpreted as theme-rheme structure, conjunctions, referring-expressions,
etc.

KPML Input Resources

In order to be able to generate, the system needs the following linguistic
resources:

• a domain model,

• a grammar,

• and a lexicon.

We introduce them briefly hereinafter, suggesting the reader to refer to [Bate-
man, 1997b, Section 12.2] for an in-depth description of resource organization
and definition formats.

Domain Model Given a domain model on which we want to generate, its
concepts and properties (relations and attributes) must be subordinated to the
Upper Model entities by means of LOOM axioms. This means we have to
rewrite the original domain ontology in the input format required by
(LOOM), subordinating it to the Upper Model. For generation purposes, not
all axioms of the original ontology need to be translated, but just concept
and role (abstract and concrete) definitions, and subsumption relations. The
mapping is pretty simple, since all source entities (both concepts and roles) will
be translated into LOOM concepts, and either subordinated to an UM Object
or a Process or one of their descendants (see Table 5.8).

Domain Ontology Entity . . . mapped into a . . . subordinated by an UM

concept concept Object

relationv concept Process

relationa concept Object

attribute concept Object

Table 5.8: Mapping of domain ontology entities and subordination to UM
entitities

Since attribute descriptions will be rendered using a copula (e.g. “the en-
gine’s power is 250 HP”, “the car’s weight is 1500 kg”), an UM Property As-
cription (Process) needs to be used in the sentence plan to describe this process.
Furthermore the reified attribute (see Table 5.8) will most probably become the
subject of the clause, and the domain concept of the attribute will be used as
the subject’s modifier.

86

Relations instead, have been distinguished into two categories: relationv
and relationa. The former represents relations which will be expressed as verbs
describing the respective processes as in “the car runs on gasoline”. The latter
refers to those relations that act as attributes (but have a concept as range instead
of a concrete datatype) and are treated the same way as attributes are (e.g. ”the
car’s make is VW”, “the car’s model is Golf GTD”).

(defconcept Vehicle

:is (:and Penman-kb::Decomposable-Object :primitive))

(kpml::annotate-concept Vehicle :lex-items (vehicle))

(defconcept Car

:is (:and Vehicle :primitive))

(kpml::annotate-concept Car :lex-items (car))

(defconcept Car-Dealer

:is (:and Penman-kb::Object :primitive))

(kpml::annotate-concept Car-Dealer :lex-items (car-dealer))

(defconcept Make

:is (:and Penman-kb::Object :primitive))

(kpml::annotate-concept Car :lex-items (make))

(defconcept Model

:is (:and Penman-kb::Object :primitive))

(kpml::annotate-concept Model :lex-items (model))

(defconcept Sell

:is (:and Penman-kb::Dispositive-Material-Action :primitive))

(kpml::annotate-concept Sell :lex-items (sell))

Figure 5.19: Excerpt of LOOM ontology from the automotive domain

Some example concept definitions in LOOM format regarding the automo-
tive domain are reported in Figure 5.19. The :primitive predicate means that
the concept it refers to is incompletely specified, i.e. there are hidden attributes
about objects of that type that are not represented and the concept is thus con-
sidered as a ‘primitive’. v-type relations of the original domain ontology must
be reified and represented as concepts subsumed by one of the “processes”
of the Upper Model (see Figure 5.16). The remaining a-type relations are rei-
fied and classified under the Object sub-hierarchy (see concepts Make or Model
above) and, as stated above, will be usually rendered as subject of the generated
clause (e.g. ”the car’s make is Opel”). The domain concept of the relation will
be used as subject modifier (as car’s in the previous example).

The kpml::annotate-concept lines following concept definitions are nec-
essary to create a link between the defined concept and the respective lexical
items contained in the Lexicon.

87

Grammar Although in our work we currently generate in English using the
latest Nigel Grammar for English (Section 5.5.2), it is good to know that there
are other resources available for a range of languages (including resources
for Chinese, Czech, Greek, Japanese, Russian, German, and Spanish in vary-
ing stages of development)8. The Nigel Grammar for English consists of 42
functional regions (see Table 5.9), each one giving its name to three files, one
containing the systems, one the choosers and the third one the enquiries for
that region. E.g. the RANKING region is covered by the three files which are
RANKING.systems, RANKING.choosers, and RANKING.inquiries.

ADJECTIVAL-COMPARISON

ADJECTIVAL-GROUP

ADVERBIAL

ATTITUDE

CIRCUMSTANTIAL

CLASSIFICATION

CLAUSECOMPLEX

CONJUNCTION

COUNTNUMBER

CULMINATION

DEPENDENCY

DETERMINATION

ELABORATION

ELLIPSIS

EPITHET

GATES

MOOD

NOMINALGROUPCOMPLEXITY

NOMINAL-PERSON

NONRELATIONALTRANSIT.

NOUNTYPE

ORDINALITY

PHRASAL-MOOD

POLARITY

POST-DEICTICITY

PPCOMPLEXITY

PPOTHER

PPSPATIOTEMPORAL

PROCESSUALTHINGTYPE

PRONOUN

QUALIFICATION

QUANTIFICATION

QUANTITY-GROUP

RANKING

RELATIONALTRANSITIVITY

SELECTION

TAG

TENSE

THEME

UNIFYINGGATES

VOICE

WORD-FORMS

Table 5.9: Functional regions in the Nigel Grammar for English

The grammar files are written using LISP-like syntax, as shown in the fol-
lowing triplet of system, chooser, and inquiry taken from the MOOD region.

(SYSTEM

:NAME MOOD-TYPE

:INPUTS INDEPENDENT-CLAUSE-SIMPLEX

:OUTPUTS

((0.5 INDICATIVE)

(0.5 IMPERATIVE

(INSERT NONFINITIVE)

(INFLECTIFY NONFINITIVE STEM)))

:CHOOSER MOOD-TYPE-CHOOSER

:REGION MOOD

:METAFUNCTION INTERPERSONAL

)

8A collection of systemic-functional grammars for natural language generation can be found in
the Generation Bank of the University of Bremen. The generation bank is a website that is being con-
structed to contain lexicogrammars for tactical generation in a variety of languages. All grammars
have the same form and can be used by the same generator i.e. the KPML system. When complete,
each grammar fragment will contain a complete grammar definition in KPML-standard format,
including example sets (’target suites’) that provide a summary of coverage and corresponding se-
mantic inputs. It’s available here: http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/
genbank/generation-bank.html.

88

(CHOOSER

:NAME MOOD-TYPE-CHOOSER

:DEFINITION

((ASK (COMMAND-Q SPEECHACT)

(COMMAND

(IDENTIFY SUBJECT

(COMMAND-RESPONSIBLE-ID SPEECHACT))

(CHOOSE IMPERATIVE))

(NOCOMMAND

(CHOOSE INDICATIVE)))

)

(ASKOPERATOR

:NAME COMMAND-Q

:DOMAIN TP

:PARAMETERS (ACT1)

:ENGLISH (

" Is the illocutionary point of the surface level"

"speech act represented by"

ACT1

" a command, i.e. a request of an action by the"

"hearer?"

)

:OPERATORCODE KPML::COMMAND-Q-CODE

:PARAMETERASSOCIATIONTYPES (CONCEPT)

:ANSWERSET (COMMAND NOCOMMAND)

)

Finally we see how lexical items are stored and described in .

Lexicon Three lexical items taken from the automotive domain are presented
in Figure 5.20.

89

(lexical-item

:name car

:spelling "car"

:sample-sentence "This car is a Land Rover."

:features (common-noun noun)

:editor "PAOLO DONGILLI"

:date "Mon Sep 19 15:26:39 CEST 2006"

)

(lexical-item

:name sell

:spelling "sell"

:sample-sentence "This car is sold by a car dealer."

:features (disposal-verb do-verb effective-verb s-irr)

:properties ((pastform "sold")

(edparticipleform "sold"))

:editor "PAOLO DONGILLI"

:date "Wed Sep 14 11:11:39 CEST 2006"

)

(lexical-item

:name car-dealer

:spelling "car dealer"

:sample-sentence "The car dealer is located in Germany."

:features (common-noun noun)

:editor "PAOLO DONGILLI"

:date "Wed Sep 14 10:59:45 CEST 2006"

)

Figure 5.20: Lexical items from the automotive domain

The features that appear under the features slot depend on the concrete
linguistic resources defined to the system. The properties slot, instead, is
used for holding idiosyncratic exceptions to general morphological processes.
A resource-external morphology handling is adopted in , i.e. the resource
definitions assume that the morphological features that they use are interpreted
by some non-systemic component of . One example of such a resource def-
inition is the Nigel grammar of English, for which the Penman system provided
hardcoded English morphology. This hardcoded morphology is inherited by
9.

9The current version of the Nigel grammar released as a -resource set, does however include
systemic resources for morphology. This provides a more flexible and transparent representation
of the linguistic resources at word and morpheme rank, but increases the generation time a little
since further cycles through the grammar are required.

90

Chapter 6

Evaluation

91

Chapter 7

Discussion and future work

92

Chapter 8

Conclusions

93

Appendix

English semantics for generation with

Process types

The following tree shows the process types defined in the Merged Upper Model
and usable in SPL input specifications for generating natural language with
the system. The most common process types are shown in boldface, and
followed by the participants (in brackets) that are inherent to them. An example
sentence illustrates an instance of that process type.

1. RELATIONAL-PROCESS

1.1. ONE-PLACE-RELATION

1.1.1. EXISTENCE (:domain) There is a book on the table.

1.2. TWO-PLACE-RELATION

1.2.1. GENERALIZED-POSSESSION (:domain, :range) I’ve got
two brothers.
1.2.2. CIRCUMSTANTIAL (:domain, :range) The stone weighs
eight kilos.
1.2.3. INTENSIVE

1.2.3.1. ASCRIPTION
1.2.3.1.1. PROPERTY-ASCRIPTION (:domain, :range)
My tailor is rich.
1.2.3.1.2. CLASS-ASCRIPTION (:domain, :range) My fa-
ther is a teacher.
1.2.3.1.3. QUANTITY-ASCRIPTION

1.2.3.2. UM-IDENTITY
1.2.3.3. SYMBOLIZATION

2. MENTAL-PROCESS

2.1. MENTAL-ACTIVE

2.2. MENTAL-INACTIVE

2.2.1. COGNITION (:senser, :phenomenon) I know the answer.
2.2.1.1. BELIEVE
2.2.1.2. KNOW
2.2.1.3. THINK

94

2.2.2. REACTION (:senser, :phenomenon) I don’t like tea.
2.2.2.1. LIKING
2.2.2.2. STRIVING
2.2.2.3. WANTING
2.2.2.4. DISLIKING
2.2.2.5. FEARING

2.2.3. PERCEPTION (:senser, :phenomenon) Nobody saw the
accident.

3. VERBAL-PROCESS

3.1. ADDRESSEE-ORIENTED-VERBAL-PROCESS (:sayer, :say-
ing, :recipient) I told her the news.

3.2. NON-ADDRESSEE-ORIENTED-VERBAL-PROCESS (:sayer,
:saying) I didn’t say that.

4. MATERIAL-PROCESS

4.1. DIRECTED-ACTION

4.1.1. CREATIVE-MATERIAL-ACTION (:actor, :actee, :benefi-
ciary) My brother has written a book.
4.1.2. DISPOSITIVE-MATERIAL-ACTION (:actor, :actee, :ben-
eficiary) We have changed the first chapter.

4.2. NONDIRECTED-ACTION (:actor) He died.

4.2.1. AMBIENT-PROCESS (usually no participant involved)
It’s raining.

Circumstances
This is a list of the circumstances recognized by the semantic organization built
into KPML. Most circumstances types are defined just like participants: first
you type the circumstance type after a colon (shown in blue below), and then
in brackets you write the name of the circumstance, the semantics of the con-
stituent that comes with the preposition and the rest of information (which is
the same as for participants, because you always have participants or processes
after prepositions). Other circumstances however have a more complex for-
malism, including two names and two places for semantics. NAME1 refers to
the name given to the circumstance relation, while NAME2 refers to the name
of the participant that comes with the preposition. Logically, the semantics
relative to that participant are placed next to NAME2. Sometimes, however,
it is important to specify the precise semantics to obtain the right generation.
In these cases the semantics appears in bold. Examples, again drawing on the
results that would be produced by the Nigel grammar of English, are:

:inclusive (accom-1 / object :lex money)

:destination (Fr / object :lex France)

:absolute-temporal-extent (tempo / object :lex day :number plural)

:matter-q matter

:matter-id

(abo1 / empty :domain x :range (book / object :lex book :determiner the))

95

In red you can find the result of generation with these commands.

ACCOMPANIMENT

• with
:inclusive ([name] / [semantics] :lex [item])

• as well as
:additive ([name] / [semantics] :lex [item])

• instead of
alternative ([name] / [semantics] :lex [item])

• without
:exclusive ([name] / [semantics] :lex [item])

CAUSE

• because of
:reason ([name] / [semantics] :lex [item])

• for (purpose)
:purpose ([name] / [semantics] :lex [item])

• for (client)
:client ([name] / [semantics] :lex [item])

• in spite of
:causal-relation ([name] / [semantics] :lex [item])

COMPARISON

• like
:similarity ([name] / [semantics] :lex [item])

• similar to
:know-manner-q known
:process-manner-id ([name1] / [semantics]

:resemblance-q resemblance
:formal-register-q formal
:concrete-comparison-q concrete
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition]))

• different from
:know-manner-q known
:process-manner-id ([name1] / [semantics]

:resemblance-q resemblance
:resemblance-type-q difference
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition]))

MEANS

• Adverbial Group
:manner ([name] / [semantics] :lex [item])

96

• by (generalized means)
:generalized-means ([name] / [semantics] :lex [item])

• by (enablement)
:enablement ([name] / [semantics] :lex [item])

• by (agentive)
:agentive ([name] / [semantics] :lex [item])

• by means of
:know-manner-q known
:process-manner-id ([name1] / enablement

:explicit-means-q explicit
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition]))

• with (instrumental)
:instrumental ([name] / [semantics] :lex [item])

SUBJECT-MATTER

• concerning
:specific-matter ([name] / [semantics] :lex [item])

• in the case of
:matter-q matter
:matter-id ([name1] / specific-matter

:matter-coverage-q clause
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition]))

• about :diffuse-matter ([name] / [semantics] :lex [item])

• as to
:matter-q matter
:matter-id ([name1] / diffuse-matter
:matter-coverage-q clause
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition]))

• of
:matter-q matter
:matter-id ([name1] / diffuse-matter

:formal-register-q formal
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition]))

ROLE-PLAYING

• as :role-playing ([name] / [semantics] :lex [item])

TEMPORAL EXTENT

97

• for (temporal extent)
:absolute-temporal-extent ([name] / [semantics] :lex [item])

• in (temporal extent)
:relative-temporal-extent ([name] / [semantics] :lex [item])

• during
:exhaustive-duration ([name] / [semantics] :lex [item])

SPATIAL EXTENT

• for (spatial extent)
:absolute-spatial-extent ([name] / [semantics] :lex [item])

• along
:parallel-extent ([name] / [semantics] :lex [item])

• across
:nonparallel-extent ([name] / [semantics] :lex [item])

SPATIAL LOCATION

• Adverbial Group
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / [semantics]

:identifiability-q identifiable
:location-relation-specificity-q unspecified
:lex [item])

• at (spatial location)
:spatial-locating ([name] / space-point :lex [item])

• in (spatial location)
:spatial-locating ([name] / three-d-location :lex [item])

• outside
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / [semantics]

:containment-q noncontainment
:domain x
:range ([name2] / three-d-location :lex [item]))

• inside
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / [semantics]

:explicit-containment-q explicit
:domain x
:range ([name2] / three-d-location :lex [item]))

• on
:spatial-locating ([name] / one-or-two-d-location :lex [item])

• beside
:horizontal ([name] / [semantics] :lex [item])

• next to
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / horizontal

:immediate-adjacency-q adjacent

98

:specify-adjacency-q specified
:domain x
:range ([name2] / [semantics] :lex [item]))

• between
:between ([name] / [semantics] :lex [item])

• behind
:behind ([name] / [semantics] :lex [item])

• below
:below ([name] / [semantics] :lex [item])

• underneath
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / below

:area-of-coverage-q partial
:domain x
:range ([name2] / [semantics] :lex [item]))

• under
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / below

:area-of-coverage-q partial
:surface-contact-q noncontact
:domain x
:range ([name2] / [semantics] :lex [item]))

• above
:above ([name] / [semantics] :lex [item])

• over
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / above

:area-of-coverage-q partial
:surface-contact-q noncontact
:domain x
:range ([name2] / [semantics] :lex [item]))

• on top of
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / above

:area-of-coverage-q partial
:domain x
:range ([name2] / [semantics] :lex [item]))

• in front of
:facing ([name] / [semantics] :lex [item]) to (destination)
:destination ([name] / [semantics] :lex [item])

• onto
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / destination

:domain x
:range ([name2] / one-or-two-d-location :lex [item]))

• into
:spatial-location-specification-q spatiallocation

99

:spatial-location-id ([name1] / destination
:domain x
:range ([name2] / three-d-location :lex [item]))

• towards
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / destination

:orientation-q oriented
:domain x
:range ([name2] / [semantics] :lex [item]))

• from
:source ([name] / [semantics] :lex [item])

• off
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / source

:domain x
:range ([name2] / one-or-two-d-location :lex [item]))

• out of
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / source

:domain x
:range ([name2] / three-d-location :lex [item]))

• away from
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / source

:orientation-q oriented
:domain x
:range ([name2] / [semantics] :lex [item]))

TEMPORAL LOCATION

• Adverbial Group
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / [semantics]

:identifiability-q identifiable
:location-relation-specificity-q unspecified
:lex [item])

• at
:temporal-locating ([name] / time-point :lex [item])

• in
:temporal-locating ([name] / three-d-time :lex [item])

• on
:temporal-locating ([name] / one-or-two-d-time :lex [item])

• by (temporal location)
:temporal-ordering ([name] / [semantics] :lex [item])

• before
:anterior ([name] / [semantics] :lex [item])

100

• until
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / anterior

:period-extremal-q periodextremal
:domain x :range ([name2] / [semantics] :lex [item]))

• after
:posterior ([name] / [semantics] :lex [item])

• since
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / posterior

:period-extremal-q periodextremal :domain x :range
([name2] / [semantics] :lex [item]))

• from
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / posterior

:period-extremal-q periodextremal
:period-time-or-state-q state-or-activity
:domain x
:range ([name2] / [semantics] :lex [item]))

Sentence Types

Many of these specifications are actually ’macros’, which means that they are
shorthand for something more complex. They allow to write simple SPLs
without worrying about the semantic specification that is behind them. For ex-
ample, “:tense present” produces a sentence in the simple present tense without
requiring that you know that this shorthand for a specific set of temporal rela-
tions between the time of speaking and the time of the event described. There
are occasions when you need to delve more deeply, but for a beginning you can
often get by without.

• WH-QUESTIONS
:speech-act-id (q / question :polarity positive)
:question-item-id [name of the participant or circumstance asked about]

• YES/NO-QUESTIONS
:speech-act-id (q / question :polarity variable)

• TENSE
:tense [present, past, future, present-continuous (or present-progressive),
past-continuous (or past-progressive), future-continuous (or future-progressive),
present-perfect, past-perfect, future-perfect, future-in-present (going to),
present-perfect-continuous]

• VOICE
:voice [active/passive]

• POLARITY
:polarity [positive/negative]

101

• MODALITY
:modality [can, cant, could, couldnt, may, might, must, neednt, should,
shouldnt, will, wont, would, wouldnt]

102

Bibliography

[Baader and Hanschke, 1991] F. Baader and P. Hanschke. A Scheme for Inte-
grating Concrete Domains into Concept Languages. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence, IJCAI-91, pages 452–457,
Sydney (Australia), 1991.

[Bateman et al., 1995] John A. Bateman, Bernardo Magnini, and Giovanni Fab-
ris. The generalized upper model knowledge base: Organization and use.
In N. J. I. Mars, editor, Towards very large knowledge bases: knowledge building
and knowle dge sharing, pages 60–72, Amsterdam, 1995. IOS Press.

[Bateman, 1990] John A. Bateman. Upper modeling: organizing knowledge for
natural language processing. In Proceedings of the Fifth International Natural
Language Generation Workshop, pages 54–60, Pittsburgh, PA., 1990. Organized
by Kathleen R. McKeown (Columbia University), Johanna D. Moore (Uni-
versity of Pittsburgh) and Sergei Nirenburg (Carnegie Mellon University).
Held 3-6 June 1990, Dawson, PA.

[Bateman, 1997a] John A. Bateman. Enabling technology for multilingual nat-
ural language generation: the KPML development environment. Journal of
Natural Language Engineering, 3(1):15–55, 1997.

[Bateman, 1997b] John A. Bateman. KPML Development Environment: multilin-
gual linguistic resource development and sentence generation. German National
Center for Information Technology (GMD), Inst itute for integrated publi-
cation and information systems (IPSI), Darmstadt, Germany, January 1997.
(Release 1.1).

[Bechhofer et al., 2003] Sean Bechhofer, Ralf Möller, and Peter Crowther. The
DIG Description Logic Interface. In Proceedings of the 2003 International Work-
shop on Description Logics (DL2003), volume 81 of CEUR Workshop Proceedings,
2003.

[Brennan et al., 1987] Susan E. Brennan, Marilyn W. Friedman, and Carl J. Pol-
lard. A centering approach to pronouns. In Proceedings of the 25th annual
meeting on Association for Computational Linguistics, pages 155–162, Morris-
town, NJ, USA, 1987. Association for Computational Linguistics.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
Ontology-based database access. In Proc. of the 15th Italian Conf. on Database
Systems (SEBD 2007), 2007.

103

[Cheng et al., 1997] Hua Cheng, Chris Mellish, and Michael O’Donnell. Aggre-
gation based on text structure for descriptive text generation. In Proceedings of
the PhD Workshop on Natural Language Generation, 9th European Summer School
in Logic, Language and Information (ESSLLI97), Aix-en-Provence, France, 1997.

[Dongilli et al., 2004] Paolo Dongilli, Enrico Franconi, and Sergio Tessaris. Se-
mantics driven support for query formulation. In Description Logics, 2004.

[Dongilli et al., 2006] Paolo Dongilli, Sergio Tessaris, and John Bateman. Lever-
aging Systemic-Functional Linguistics to Enhance Intelligent Database
Querying. In Proceedings of the Sixth International Conference on Intelligent
Systems Design and Applications, Jinan, China, October 2006.

[Dongilli, 2007a] Paolo Dongilli. Centering-theory-based text planning of a
conjunctive query. In Proceedings of the 3rd Language & Technology Conference,
Lecture Notes in AI (LNAI), Poznan, Poland, October 2007. Springer Verlag.

[Dongilli, 2007b] Paolo Dongilli. Discourse planning strategies for complex
concept descriptions. In Proceedings of the 7th International Symposium on
Natural Language Processing (SNLP-2007), Pattaya, Chonburi, Thailand, De-
cember 2007.

[Elhadad and Robin, 1996] Michael Elhadad and Jacques Robin. An overview
of : a reusable comprehensive syntactic realization component. Techni-
cal Report Technical Report 96-03, Computer Science, Ben Gurion University
of the Negev, Beer Sheva, Israel, 1996.

[Elhadad, 1992] Michael Elhadad. Using argumentation to control lexical choice:
a functional unification-based approach. Phd dissertation, Department of Com-
puter Science, Columbia University, 1992.

[Elhadad, 1993] Michael Elhadad. FUF: the Universal Unifier. User Manual
Version 5.2. Technical Report Technical Report CUCS-038-91, Department of
Computer Science, Columbia University, New York, 1993.

[Grosz and Sidner, 1986] Barbara J. Grosz and Candace L. Sidner. Attention, in-
tentions, and the structure of discourse. Computational Linguistics, 12(3):175–
204, 1986.

[Grosz et al., 1986] Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein.
Towards a computational theory of discourse interpretation. Unpublished
ms., 1986.

[Grosz et al., 1995] Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein.
Centering: A framework for modeling the local coherence of discourse.
Computational Linguistics, 21(2):203–225, 1995.

[Halliday and Matthiessen, 1999] Michael A. K. Halliday and Christian M. I. M.
Matthiessen. Construing experience through meaning: a language-based approach
to cognition. Cassell, London, 1999.

[Halliday and Matthiessen, 2004] Michael A. K. Halliday and Christian M.I.M.
Matthiessen. An Introduction to Functional Grammar. Edward Arnold, Lon-
don, 3rd edition, 2004.

104

[Henschel and Bateman, 1994] Renate Henschel and John A. Bateman. The
merged upper model: a linguistic ontology for German and English. In
Proceedings of COLING ’94, volume II, pages 803–809, Kyoto, Japan, August
1994.

[Henschel, 1993] Renate Henschel. Merging the English and the German Upper
Model. Technical report, GMD/Institut für Integrierte Publikations- und
Informationssysteme, Darmstadt, Germany, 1993. Appears as: Arbeitspapiere
der GMD, 848, June 1994. GMD, Sankt Augustin.

[Horrocks and Tessaris, 2002] Ian Horrocks and Sergio Tessaris. Querying the
semantic web: a formal approach. In Ian Horrocks and James Hendler,
editors, Proc. of the 2002 International Semantic Web Conference (ISWC 2002),
number 2342 in Lecture Notes in Computer Science, pages 177–191. Springer-
Verlag, 2002.

[Horrocks et al., 2000] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan
Tobies. How to decide query containment under constraints using a descrip-
tion logic. In Logic for Programming and Automated Reasoning (LPAR 2000),
volume 1955 of Lecture Notes in Computer Science, pages 326–343. Springer,
2000.

[Horrocks et al., 2003] Ian Horrocks, Peter F. Patel-Schneider, and Frank van
Harmelen. From SHIQ and RDF to OWL: The making of a web ontology
language. Journal of Web Semantics, 1(1):7–26, 2003.

[Hovy, 1997] Eduard Hovy. Survey of the state of the art in human language technol-
ogy, chapter 4.1, Language generation: overview, pages 139–146. Cambridge
University Press, New York, NY, USA, 1997.

[Kasper, 1988] Robert T. Kasper. Systemic grammar and functional unification
grammar. In James D. Benson and William S. Greaves, editors, Systemic
Functional Approaches to Discourse, pages 176–199. Ablex, Norwood, New
Jersey, 1988. Also available as USC/Information Sciences Institute, Reprint
Report ISI/RS-87-179, 1987.

[Kasper, 1989] Robert T. Kasper. A flexible interface for linking applications
to PENMAN’s sentence generator. In Proceedings of the DARPA Workshop on
Speech and Natural Language, 1989.

[Kay, 1979] Martin Kay. Functional grammar. In Berkeley Linguistics Society,
editor, Proceedings of the 5th Meeting of the Berkeley Linguistics Society, 1979.

[Kibble and Power, 2004] Rodger Kibble and Richard Power. Optimizing refer-
ential coherence in text generation. Computational Linguistics, 30(4):401–416,
2004.

[Lavoie and Rambow, 1997] Benoit Lavoie and Owen Rambow. A fast and
portable realizer for text generation systems. In Proceedings of the 5th. Con-
ference on Applied Natural Language Processing, pages 265–268, Washington,
D.C., 1997. Association for Computational Linguistics.

105

[MacGregor and Bates, 1987] Robert MacGregor and Raymond Bates. The
LOOM knowledge representation language. In Proceedings of the Knowledge-
Based Systems Workshop, 1987. Held in St. Louis, Missouri, April 21-23, 1987.
Also available as ISI reprint series report, RS-87-188, USC/Information Sci-
ences Institute, Marina del Rey, CA.

[Mann and Matthiessen, 1983] William C. Mann and C. M. I. M. Matthiessen.
Nigel: A systemic grammar for text generation. Technical Report RR-83-105,
USC/Information Sciences Institute, February 1983. This paper also appears
in a volume of the Advances in Discourse Processes Series, R. Freedle (ed.):
Systemic Perspectives on Discourse: Volume I. published by Ablex.

[Mann, 1983a] William C. Mann. The anatomy of a systemic choice. Discourse
Processes, 1983. Also available as USC/Information Sciences Institute, Re-
search Report ISI/RR-82-104, 1982.

[Mann, 1983b] William C. Mann. An overview of the penman text generation
system. In AAAI, pages 261–265, 1983.

[Matthiessen, 1981] C. M. I. M. Matthiessen. A grammar and a lexicon for a
text-production system. In The Nineteenth Annual Meeting of the Association
for Computational Linguistics. Sperry Univac, 1981.

[Matthiessen, 1983] Christian M. I. M. Matthiessen. The systemic framework in
text generation: Nigel. In W. Greaves & J. Benson, editor, Systemic Perspectives
on Discourse. Ablex, 1983.

[Matthiessen, 1987] Christian M. I. M. Matthiessen. Notes on the organization
of the environment of a text generation grammar. In Gerard Kempen, editor,
Natural Language Generation: Recent Advances in Artificial Intelligence, Psychol-
ogy, and Linguistics. Kluwer Academic Publishers, Boston/Dordrecht, 1987.
Paper presented at the Third International Workshop on Natural Language
Generation, August 1986, Nijmegen, The Netherlands.

[Matthiessen, 2005] Christian M. I. M. Matthiessen. Remembering bill mann.
Comput. Linguist., 31(2):161–172, 2005.

[McRoy et al., 2001] Susan W. McRoy, Songsak Channarukul, and Syed S. Ali.
Creating natural language ouput for real-time applications. Intelligence,
12(2):21–34, 2001.

[Melengoglou, 2002] Alexander Melengoglou. Multilingual aggregation in the
m-piro system. Master’s thesis, University of Edinburgh, 2002.

[Mellish, 1988] Christopher S. Mellish. Implementing systemic classification
by unification. Journal of Computational Linguistics, 14(1):40–51, 1988.

[Mel’čuk and Žolkovskij, 1970] Igor A. Mel’čuk and Alexander K. Žolkovskij.
Towards a Functioning Meaning-Text Model of Language. Linguistics, 57:10–
47, 1970.

[Merriam-Webster, 2007] Merriam-Webster. Merriam-Webster’s Online Dic-
tionary. http://www.merriam-webster.com, 2007.

106

[Power and Scott, 1998] Richard Power and Donia Scott. Multilingual Author-
ing Using Feedback Texts. In Proceedings of the 17th International Conference on
Computational Linguistics and 36th Annual Meeting of the Association for Com-
putational Linguistics (COLING-ACL 98), pages 1053–1059, Morristown, NJ,
USA, 1998. Association for Computational Linguistics.

[RealPro, 2008] RealPro. The RealPro text generation engine. http://www.
cogentex.com/technology/realpro/index.shtml, 2008.

[Reape and Mellish, 1999] Mike Reape and Chris Mellish. Just what is aggrega-
tion anyway? In Proceedings of the 7th European Workshop on Natural Language
Generation, pages 20–29, Toulouse, 1999.

[Reiter and Dale, 2000] Ehud Reiter and Robert Dale. Building Natural Language
Generation Systems. Cambridge University Press, 2000.

[Sirin and Parsia, 2007] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL
Query for OWL-DL. In 3rd OWL Experiences and Directions Workshop
(OWLED-2007), 2007.

[SWT, 2007] SWT. The Standard Widget Toolkit. http://www.eclipse.org/
swt, 2007.

[Teich, 1999] Elke Teich. Systemic Functional Grammar in Natural Language Gen-
eration: Linguistic Description and Computational Representation. Cassell, Lon-
don, 1999.

[Žolkovskij and Mel’čuk, 1967] Alexander K. Žolkovskij and Igor A. Mel’čuk.
O semantičeskom sinteze. Problemy kibernetiki, 19(?):177–238, 1967.

[Wilkinson, 1995] John Wilkinson. Aggregation in natural language genera-
tion: Another look. Co-op work term report, September 1995.

[Zorzi et al., 2007] Ivan Zorzi, Sergio Tessaris, and Paolo Dongilli. Improving
Responsiveness of Ontology-Based Query Formulation. In Proceedings of
the 4th Italian Workshop on Semantic Web Applications and Perspectives (SWAP
2007), Bari, Italy, December 2007.

107

