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Abstract

We designed a new ontology based on wine data obtained from Wine.com. We first
obtained the ORM2 conceptual model with a methodology which uses the constraints
of the data to identify the relations and entities existing in it. To map this model to
OWL2 we introduced a new fragment of ORM2 for binary relations called ORM2bin

with formal DL semantics. We also created a semantic preserving mapping from this
fragment to OWL2. Finally we validated our ontology using the query verbalisations
provided by Quelo.
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Chapter 1

Introduction

The world is complex. Most of the times one focuses only in a part of it, the
domain of interest. Formalisms from different areas exist to model and represent
the domain of interest. From the database area a strong formalism is Object-Role
Modeling, ORM. With ORM one can represent the conceptual model graphically.
ORM also provides a procedure to translate a conceptual schema to a relational
schema [12].

But data stored in databases is not easily accessible. One has to know
beforehand the structure of the database and the query language to reach the
information. On the Semantic Web, on the other hand, data is stored in almost
schemaless ontologies. With a few number of built-ins these ontologies are able to
model diverse domains of interest. But one still has to know the query language,
and so the need for ontology exploration is born.

Natural Language Interfaces (NLI) can pave the way for an easier access
to data. Users query using Natural Language (NL), and the NLI translates
it into the query language. One of such tools is Quelo [9]. Quelo is a tool for
ontology exploration where the user creates NL queries using menus. However,
this exploration is limited to the concepts and relations of the ontology. The
data takes no active part in the formation of the query. For example, Quelo is
unable to form queries such as “I am looking for wines made in France.”.

1.1 Motivation and objectives

The purpose of this thesis is to design and create an ontology from real raw data
to be used by Quelo. We proceeded in two stages. First, using as input the raw
data we obtain its conceptual schema. Then, from the conceptual schema we
obtain the ontology. This ontology is then validated using Quelo.

For the first stage, we use a methodology proposed by David et al. [4] and
obtain an ORM model. The data used in this stage was obtained from Wine.com.

Wine.com is the biggest online wine retailer in the U.S. selling thousands
of wine bottles per year. Wine.com has an inventory of over a million bottles,
and in their web page they also provide with wine related information such
as winemaker notes, ratings, customer reviews, region descriptions, and maps.
Besides selling wines, they offer a public API to access their wine catalogue and
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wine information [38]. Of this data we selected the data of the Italian region
and some wines of France, Hungary and the U.S.

For the second stage, we translate the ORM model into an OWL 2 (Ontology
Web Language) ontology. There are other works [20, 37, 26] which propose
mappings from ORM to OWL. Hodrob and Jarrar [20] proposed a translation
from ORM into the XML/OWL syntax, Wagih et al. [37] translated ORM2 into
the Manchester syntax and Løvdahl [26] into the Turtle syntax. There are also
some articles by T. Halpin [14, 15, 16, 17] which show examples of several ORM2
diagrams with their translation into Turtle and Manchester syntax. However,
most of these works do not rely in a formal setting. Hodrob and Jarrar [20] use
the SHOIN description logic; nevertheless, this proposal lacks formality and
some of their translations are incorrect. Therefore, we propose a new mapping
from a subset of ORM2 to OWL 2.

Finally, we validate the ontology by creating verbalisations of queries using
Quelo. Since Quelo allows the formulation of only those queries satisfiable in
an ontology, any query formulated which is not consistent with the domain of
interest indicates a flaw on the design of the ontology.

1.2 Thesis outline
This thesis is structured as follows. In Chapter 2 we introduce the ORM2
graphical notation, describe the methodology of [4] to obtain the conceptual
schema, and we follow this methodology using data from the wine domain. The
second stage and the mapping from ORM2 to OWL 2 is described in Chapter 3.
Chapter 4 gives a proper introduction to Quelo and presents the validation of the
ontology. In the last chapter, Chapter 5, we summarize our results and discuss
future work.



Chapter 2

From Raw Data to
Conceptual Schema

In this chapter we describe the methodology followed to obtain the conceptual
schema from the raw data. We also include an introduction to Object Role
Modeling (ORM) in Section 2.1. In Section 2.2 we introduce the constraints
used to restrict the data. We describe the data in Section 2.3. In Section 2.4
we outline the constraints found on the raw data. In Section 2.5 we explain the
methodology proposed by David et al. [4] and how we applied it to our use case.

2.1 Object Role Modeling

Object Role Modeling (ORM) is a method to design conceptual models for
databases. The current version of ORM is ORM2[13] and it is the one we will use
in this thesis. ORM2 was provides with a graphical notation for the representation
of the conceptual model and a method to obtain the relational schema from it.
In this section we will introduce the graphical notation of ORM2.

2.1.1 ORM2 elements

The basic building blocks of an ORM2 diagram are, not surprisingly, object types
and roles. Individuals of the same kind are grouped into object types [5]. There
are two sorts of object types, entity types and value types. Sequences of roles
form predicates, which associate object types. ORM2 also provides a notation to
outline restrictions on both the object types and the roles.

Entity types represent concepts in ORM2, which are depicted with a named
soft rectangle by default. The entity types can have a reference mode, the
identifier of the concept, in the same rectangle between parenthesis. Data values
are called value types and are graphically represented by a dashed, named soft
rectangle. Figure 2.1 shows an example of each of these figures. The population
of an object type are all the instances of the given type.

The relations in ORM2 are called predicates and are modelled based on roles.
For each n-ary predicate there are n roles. Roles in ORM2 are represented with
boxes and predicates as sequences of one or more of such boxes. Each predicate
should include a predicate reading, where the default reading order is left-right
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Person
Book
(isbn) Year

Figure 2.1: An entity type, an entity type with reference mode, and a value
type.

or top-down. Arrow-tips show the reversal of the default reading order. For
predicates with three or more roles, place holders indicate where each role is
located. Figure 2.2 shows examples of different predicates.

is married is father of

is owner of . . . has grade . . . for course . . .

Figure 2.2: Unary, binary, and ternary predicates.

For each role in a predicate there is with one object attached to it, which plays
a specific role in the relationship. Role names may be explicitly shown in square
brackets. For example, in the model for the binary relationship “is father of”,
there are two roles: that of parent and the one of child, both of which are played
by the same object type, Person. Figure 2.3 shows such a diagram with explicit
role names. A possible reading for such a diagram could be “A Person, the
parent, is father of a Person, the child.” The names of the roles may be omitted.

is father of

Person

[parent] [child]

Figure 2.3: Binary predicate with explicit roles.

The association of an n-ary predicate with its n related object types form a
fact type. In the graphical notation, the association is made with lines from the
object type to the roles in the predicate. Figure 2.3 represents a binary predicate
where each role, [parent] and [child], is related with the object type Person. The
population of a role are all the instances which participate in the given role.

To model the domain of interest more accurately ORM2 has constructs
to refine the model. Object types and roles may be restricted depending on
their value or their number of instances. Also the population of each role
can be delimited with respect to the frequency of instances in its population.
Comparisons between the populations of the roles are provided as well. ORM2
also supports the subtyping of entity types. Lastly, fact types can be objectified
and be treated as object types. In the next sections we will introduce the ORM2
constructs used in each of these cases.
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2.1.2 Object type constraints
2.1.2.1 Value constraint

Object types can be restricted by the value they can take. This constraint
is added to an ORM2 diagram via the enumeration of the possible values in
brackets. Ranges can be specified with two dots (..) between the upper and
lower bounds, at least one should be specified. The notation also allows the
combination of enumerations and ranges. Figure 2.4 shows some examples of
the use of this restriction.

(a)

WineColor
{’Red’, ’White’,
’Rosé’,’Other’ }

enumeration

(b)

Rating {0..5}

range

(c)

Grade
{0,5..10}

mixed

Figure 2.4: ORM2 object types with value constraints.

2.1.2.2 Cardinality constraint

Cardinality constraints restrict the total population of an object type. They can
specify an exact number or a range via comparison operators. In the example of
Figure 2.5, the number of Continents is restricted to be five.

Continent

#=5

Figure 2.5: An ORM2 object type with a cardinality constraint.

2.1.3 Internal role constraints
Roles can have constraints as well. The role constraints can be divided into two
groups, internal and external. The internal constraints restrict the roles in one
predicate, whereas the external constraints restrict the roles related to roles in
other predicates. These restrictions can span one or more roles, or a join of them
(Section 2.1.9).

2.1.3.1 Role value constraint

Even though object types can have value constraints, sometimes is also necessary
to limit the values which a role can take, as in Fig. 2.6. Here the values accepted
values for the Month in the role is open are just Jan, Feb, Nov and Dec. Similar
as the object value constraint, the role value constraint can be specified using
enumerations, ranges or a mixture of both.

2.1.3.2 Role cardinality constraint

Roles can also be restricted by cardinality constraints. In this case the total
population of the roles is restricted. In Fig. 2.7 the ORM2 model the total
population for the role is the winner should be at most 1, i.e., there is at most
one Participant which is the winner.
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Winter
Resort

is open

Month

{Jan,Feb,Nov,Dec}
Figure 2.6: An ORM2 diagram with a role value constraint.

Participant

#=1

is the winner

Figure 2.7: An ORM2 diagram with a role cardinality constraint.

2.1.3.3 Internal uniqueness constraint

The internal uniqueness constraint, or internal UC for short, sets an upper bound
of one for the number of participations of an object type in a role. This means,
a role with this restriction accepts only one participation per instance. The
internal UC is graphically specified in the diagram with a bar over the restricted
role. In Figure 2.8 the restriction asserts that each Film is released on at most
one Year.

Film

is released on

Year

Figure 2.8: An ORM2 diagram with an internal UC.

For predicates with more than one role, there are many possibilities to assign
the UCs. As a rule, each n-ary predicate should have at least one UC spanning
n− 1 of its roles. Figures 2.9a, 2.9b and 2.9c present all the possible assignments
of UC for a binary predicate. Figures 2.9d shows a UC for a ternary predicate.
In this last example the constraint conveys that each combination of the first
and third roles should be unique in the population of the predicate.

married to

one-to-one

is father of

one-to-many many-to-many

attends course ...has grade...for course...

(a) (b) (c) (d)

Figure 2.9: Predicates with different kinds of internal UC.

2.1.3.4 Mandatory role constraint

Mandatory role constraints state that all the population of the object type
associated to the role should participate in this role. It is depicted by a full dot
on either edge of the line joining the object type with the predicate. The fact
type in Figure 2.10 has a mandatory constraint for the first role of the predicate
is directed by, which means that all Films should be directed by some Person.
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Film

is directed by

Person

Figure 2.10: An ORM2 diagram with a mandatory role constraint.

2.1.3.5 Internal frequency constraint

A generalisation for the number of times a given instance can participate in a
role is given by the frequency constraint. The instance participation frequency
can be specified with a number, a range or with the use of the comparison
operators. In Figure 2.11 each combination of Team, Match may appear once
in the population of the predicate plays on; however, the frequency constraint
further specifies that each Match can only appear twice.

Match

plays on

Team

2

Figure 2.11: An ORM2 diagram with an internal frequency constraint.

2.1.3.6 Preferred internal UC

As we mentioned on Section 2.1.1, object types in ORM2 may have a reference
scheme to identify the concept. This is just a syntax shortcut for a mandatory
one-to-one relation, as shown in Fig. 2.12. A double bar is drawn to indicate
that this value is the reference mode for the related entity.

Book
(ISBN)

⇒ Book
has

ISBN

Figure 2.12: Equivalence between reference scheme and the preferred internal
UC.

2.1.4 External role constraint
Most of the external role constraints are represented with a dashed line which
connects the restricted roles and the specific symbol for the constraint in a circle
on this line. The external role constraints are not limited to single roles and
most of them can span several roles with possible joins (Section 2.1.9).

2.1.4.1 Value-comparison constraint

This constraint restricts the value a role can have in relation to other roles using
comparisons operators. The possible comparisons operators are ≤, <, >, and ≥.
The dashed line ends in a filled arrow tip, to help the reading, and on the circle
the comparison operator is located. The circle also has two full dots on the left
and right side. Fig. 2.13 shows an example of such a constraint, where the Year
on which a Person died on should be greater than or equal to the Year on which
the same Person was born on.
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Person

died on

born on

Year≥

Figure 2.13: An ORM2 diagram with a value comparison constraint.

2.1.5 External set-comparison constraints
Set-comparison constraints restrict the population of one role (or sequences of
roles) related to the population of another role.

2.1.5.1 Subset constraint

The subset constraint is employed to limit the population of one role as a subset
of the population of other role. This constraint also has an arrow tip on the side
of the parent role with a subset symbol (⊆) on the circle. On Figure 2.14 the
subset constraint between the Person roles in the predicates died on and born on,
indicates that any Person who died on a Year, should have also been born on
some Year.

Person

died on

born on

Year

Figure 2.14: An ORM2 diagram with a subset constraint.

2.1.5.2 Equality constraint

The equality constraint can be also represented with two subset constraints, one
in each direction. It specifies that the population of the roles is the same. The
symbol on the circle is an equal sign (=). For Figure 2.15 the population of the
roles of has grade for is the same as the population of the roles of took exam of,
i.e., all the Students which have grade for a Course also took the exam of the
same Course.

Student

took exam of

has grade for

Course

Figure 2.15: An ORM2 diagram with an equality constraint.
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2.1.5.3 Exclusion constraint

An exclusion constraint prevents that any entity which belongs to the population
of one of the restricted roles belongs to the population of any of the other
restricted roles. This constraint is represented with a circle with a cross mark
inside. Fig. 2.16 show a usage example for this constraint. Here we assert that
no Person attends the same Course he teaches. In this case the constraint spans
over both roles of the predicates; therefore, the joint population of both roles is
the one used in the constraint.

Person

teaches

attends

Course

Figure 2.16: An ORM2 diagram with an exclusion constraint.

2.1.5.4 Inclusive-or constraint

For the inclusive-or constraint, or external mandatory constraint, all instances
of the entities related to the constrained roles should be in the population of at
least one of the roles. For Fig. 2.17, this means that all Students should either
write a Thesis or attend a Course. As in the case of the internal mandatory
constraint, the symbol for this constraint is a full dot. This constraint does not
exclude the possibility of participating in both roles.

Student

attends

writes

Course

Thesis

Figure 2.17: An ORM2 diagram with an inclusive-or constraint.

2.1.5.5 Exclusive-or constraint

This constrain is the union of the exclusion constrain with the inclusive-or
constraint, and this is reflected also in the symbol which represents it. The
instances should belong to the population to at least one of the roles, but not
both. With this constraint in Fig. 2.18 all Students should either write a Thesis
or attend a Course but not both.
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Student

attends

writes

Course

Thesis

Figure 2.18: An ORM2 diagram with an exclusive-or constraint.

2.1.6 External frequency constraints
2.1.6.1 External uniqueness constraint

The external uniqueness constraint limits the number of combinations of instances
in the related roles. Each combination should be present just once. The symbol
for this constraint is a horizontal line. For example, in Figure 2.19a each
combination of Genus and Species is allowed just once.

It may be the case that this unique combination is selected as the preferred
identifier, as in Figure 2.19b. For the preferred external UC, we use as symbol a
double horizontal line, both of which should touch the circle on both ends to
differentiate it from the equal constraint symbol.

Animal
(code)

has name

belongs to

Species

Genus

(a) External UC.

Animal

has name

belongs to

Species

Genus

(b) Preferred external UC.

Figure 2.19: ORM2 diagrams with external UC.

2.1.6.2 External frequency constraint

The external frequency constraint, as its internal counterpart, is a generalization
of the external uniqueness constraint. This constraint assigns the upper or lower
bound for the number of times the objects in the constrained roles can appear.
The number and the comparison operator are placed on the constraint symbol
circle. On the Fig. 2.20 the constraint sets an upper bound to the number of
times a Customer can request the Refund concerns the same Product, maximum
ten times. In other words, each pair of Customer, Product is related to at most
ten Refunds.

2.1.7 Ring constraints
ORM2 also allows the construction of fact types which relate to the same object.
To restrict this kind of relations, there are ten ring constraints which can also be
combined to form?? more?? meaningful constraints. The basic ring constraints
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Refund

requested

concerns

Customer

Product

≤10

Figure 2.20: An ORM2 diagram with an external frequency constraint.

are: irreflexive, reflexive, asymmetric, symmetric, antisymmetric, intransitive,
transitive, strongly intransitive, acyclic, and purely reflexive. The symbols for
these constraints are shown in Figure 2.21, together with the symbol for the
constraint for an acyclic intransitive ring. As example, Fig. 2.22 shows three

irreflexive reflexive purely reflexive

asymmetric symmetric antisymmetric

intransitive transitive strongly intransitive

acyclic acyclic intransitive

Figure 2.21: All possible ring constraints.

ring predicates, brother of, sibling of, and parent of. In Figure 2.22a, the relation
brother of is transitive, because if Person A is brother of Person B, and B is
brother of Person C, A is brother of C. But it is not symmetric because it is
gender specific. The relation of Figure 2.22b, sibling of, is indeed symmetric.
Lastly, for the relation in Figure 2.22c parent of, we specify it is an acyclic
intransitive relation as no Person can be parent of the parent of his own parent.

Person

brother of

(a) transitive

Person

sibiling of

(b) symmetric

Person

parent of

(c) acyclic intran-
sitive

Figure 2.22: ORM2 diagrams with ring constraints.

2.1.8 Subtyping

ORM2 also provides features to extend objects via subtyping. Subtyping is
specified with a black arrow with a full tip from the subtype to the parent type.
There are also constraints which can be added to the subtypes to specify how
their population relate to each other.



2.1 Object Role Modeling 13

Figure 2.23a shows a simple subtyping example, where it is just asserted
that Red Wine and White Wine are subtypes of Wine. Fig. 2.23b further
specifies that both subtypes are exclusive, i.e., an instance cannot belong to both
subtypes, in the example no Red Wine can be a White Wine. On the other
hand, Figure 2.23c, specifies that the subtypes are total so any instance of Wine
should belong to any of its subtypes. Lastly, Fig. 2.23d shows how to specify a
partition, where all the instances of the parent type should belong to one and
only one of its subtypes. In our example, all Wines should be Red Wines or
White Wines and no Wine is both a Red Wine and a White Wine.

Wine

Red
Wine

White
Wine

(a) subtyping

Wine

Red
Wine

White
Wine

(b) exclusive

Wine

Red
Wine

White
Wine

(c) total

Wine

Red
Wine

White
Wine

(d) partition
Figure 2.23: ORM2 diagrams with subtyping and subtype constraints.

2.1.9 Join constraints
Several of the external constraints allow for joins of roles as arguments. The
roles we wish to join should belong to fact types with compatible object types.
An example of a join subset constraint is shown in Figure 2.24. We join the
populations of the roles in the predicates is created in and is from region so that
we obtain all pairs Country, Region for which there is a Wine which is created in
the Country and the same Wine is from the Region. The obtained population
is then used in the subset constraint. In simpler terms, the subset constraints
guarantees that for any Wine which is created in a Country and also is from a
Region, this Region is located in the same Country.

Country

located in country

Region

Wine

is created in is from region

Figure 2.24: An ORM2 diagram with a join subset constraint.

2.1.10 Objectification
Objectification allows us to add relations to predicates by converting them into
objects. In an ORM2 diagram this conversion is shown by surrounding the
objectified predicate with a soft rectangle, as entity types, and assigning it a
name. In Figure 2.25 the predicate reviewed has been objectified as Review to
add the fact has rating to it.
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Person

“Review”

Product
reviewed

has rating

Number

Figure 2.25: An ORM2 diagram with objectification.

In this introduction to the ORM2 graphical notation we omitted some of its
components as derived and semiderived fact types, deontic ring constraints and
textual constraints.

2.2 Constraints definitions

We first introduce some concepts, as defined by David et al. [4]. In a rela-
tional database, a relation r(A1, . . . , An), is formed by r a relation symbol and
{A1, . . . , An} a set of pairwise distinct attributes. The arity of the relation is
determined by the number of its attributes, n. A relational schema R is an
alphabet of relation symbols.

Two pairwise disjoint sets Γ and ΓO are assumed, where Γ holds the elements
used to identify the usual values of a database and ΓO holds the elements used to
identify objects. Each element of Γ and ΓO is uniquely determined by a constant
symbol. The union of both sets compose the database domain. Given a
relational schema R a database instance or database D for R is defined as a set
of assertions?? of the form r(t), where r is a relation in R of arity n and t in a
n-tuple of constants over Γ ∪ ΓO ∪ null, where null is a special constant not in
Γ nor ΓO.

Let rD = {t | r(t) ∈ D}. Given an attribute set X of r ∈ R, a database D
for R, and a tuple t ∈ rD, t[X] is used to denote the projection of t on X. A
projection t[X] is called with no null values if for every A ∈ X it holds that
t[A] 6= null.

A raw database schema DB = 〈R,Σ〉 is any data source structured as a set
of attributes, with no knowledge of the relationships to which they may belong.
It consist of R a relational schema and Σ a set of constraints. The relational
schema R, in this case, consists of a unique relation U which has as attributes
all the attributes of the database schema, called the universal relation.

The constraints in Σ are of two types, integrity constraints and null value
constraints. Integrity constraints restrict which tuples can be part of a relation
[7]. Null value constraints deal with the null values in the attributes.

2.2.1 Integrity constraints

A functional dependency (FD) of the form r : X → A holds in a relation r
of a database D if for every tuple in r the value of the attribute A depends
on the value of the attributes in X. In other words, for each set of values
that is assigned to X corresponds only one value for A. For example, in
the relation the relation attendance(Course, Student, Professor) if the FD
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attendance : {Course} → Professor holds then for each Course there is only
one Professor. The FDs further allow us to define the key of a relation. A
subset of attributes of r X is a key or candidate key of r, key(r,X), if for every
attribute B of r such that B /∈ X it holds that r : X→ B and no proper subset
of X has this property.

A multivalued dependency (MVD) is an assertion of the form r : X � Y.
The MVD are a generalization of the FDs [7]. For this constraint each set of
values assigned to X may correspond to more than one set of values of ⊂ Y .
However, the set of the possible values assigned to the set of attributes Y
depends on the set of values assigned to X. For example, given the relation
attendance(Course, Student, Professor), if there is a MVD between Course
and Student it would mean that the set of Students which attend a Course
depends only on the Course.

An inclusion dependency (IND) of the form r1[X] ⊆ r2[Y] constraints the
values of a relation with respect to the values of other relation. That is, for each
tuple in r1 the values assigned to the attributes in X should also be assigned
to the attributes in Y of some tuple in the relation r2. If in an IND key(r2,Y)
also holds, X is called a foreign key of r1. For instance, a IND between the
relations student(StudentId) and masterStudent(StudentId,MastersName),
masterStudent[{StudentId}] ⊆ student[{StudentId}] means that allmasterStudentss
should be students.

The last integrity constraint is the exclusion dependency (ED) r1[X]∩r2[Y] =
∅. As the INDs, this constraint restricts the values of a relation with respect to
the values of other relation. However, instead of requiring the values in the other
relation to be present, this constraint requires that the values are not present.
In other words, every set of values assigned to the attributes of X in a tuple
of r1 should not be assigned to the attributes in Y of r2. For example, an ED
between the relations employee(PersonId) and underage(PersonId) insures
that no underage person is an employee.

2.2.2 Null value constraints

The last three constraints allow us to explicitly define how the nulls for each
attribute should be handled. In a relational model, the null value allows for two
interpretations [36], unknown or nonexistent. Given a tuple t and an attribute
A, if t[A] = null under an unknown interpretation this null represents some
value in Γ which is missing from the tuple in the database. On the other hand,
under a nonexistent interpretation, the value for t[A] does not exist.

For example, in the relation person(Name,MiddleName, FatherName),
the null values in attribute FatherName are interpreted as unknown because
an actual value exists. On the other hand, if the attribute MiddleName is null
for some instance, it means that the middle name does not exist, i.e., this person
has no middle name.

A not null constraint for an attribute A in a relation r prevents the appearance
of null values in attribute A for all tuples in r. For example, in the relation
course(CourseId,Name), to enforce that Name should not be null we could
add the not null constraint not-null(course,Name).
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A mandatory participation constraint (MPC) for an attribute A in a relation
r indicates that for all tuples in r, the attribute A has a value. Therefore,
if for a tuple A is null, this null represents an unknown value. As in the
case of the relation person(Name,MiddleName, FatherName), a constraint
exists(person, FatherName) should be added to indicate that the FatherName
always exists; although, it may be unknown.

A MPC w.r.t. the left-hand side of an FD is a special case of MPC. Given an
attribute A in a relation r and a FD r : X→ A, this constraint states that if in
a tuple the attributes in X are not null, then the value for A in the tuple should
also exists. That is, in any tuple of r any null value in A, if X is not null, is an
unknown value. For instance in the relation livesIn(PersonId, City, Country)
with a FD livesIn : City → Country means that if we know in which City the
person lives in, then we should also know in which Country, i. e., if City is not
null then Country is not null as well.

In Table 2.1 we present a formal definition of all these constraints.
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In the following, r is a relation in R, A and B are attributes of r, and X and Y are subsets of attributes of r. For the integrity constraints
only projections with no null values are considered.

Constraint is satisfied in a database D iff

Functional dependency for each t1, t2 ∈ rD if t1[X] = t2[X] then t1[A] = t2[A]
r : X→ A

Multivalued dependency for each t1, t2 ∈ rD if t1[X] = t2[X] then there exist t3, t4 ∈ rD s.t.
r : X � Y (i) t3[X] = t1[X], t3[Y] = t1[Y], and t3[Z] = t2[Z]

(ii) t4[X] = t1[X], t4[Y] = t2[Y], and t4[Z] = t1[Z]
for Z set of all attributes of r that are neither in X nor in Y

Inclusion dependency for each t1 ∈ rD1 there exists t2 ∈ rD2 s.t. t1[X] = t2[Y]
r1[X] ⊆ r2[Y] where r1, r2 are relations in R and |X| = |Y|
Exclusion dependency there are no two tuples t1 ∈ rD1 and t2 ∈ rD2 s.t. t1[X] = t2[Y]
r1[X] ∩ r2[Y] = ∅ where r1, r2 are relations in R and |X| = |Y|

Not null constraint for each t ∈ rD it holds that t[A] 6= null
not-null(r,A)

Mandatory participation constraint for each t ∈ rD such that for each t[A] = null,
exists(r,A) this null denotes some value v ∈ Γ for t[A]

MPC w.r.t. the left-hand side (LHS) of an FD for each t ∈ rD s.t. t[B] 6= null for all B ∈ X,
exists(r,A)LHS(X→A) each null where t[A] = null denotes some value v ∈ Γ for t[A]

where r : X→ A is an FD

Table 2.1: Integrity and null value constraints
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Property Abbrev.

Appellation_Id AID
Appellation_Name AN
ProductAttribute_Id PAID
ProductAttribute_ImageUrl PAIU
ProductAttribute_Name PAN
Producer_GeoLocation_Url PG
Producer_Id PID
Producer_ImageUrl PIU
Producer_Name PN
Producer_Url PU
Region_Id RID
Region_Name RN
WineType_Id TID

Property Abbrev.

WineType_Name TN
VarietalBlend_Id VBID
VarietalBlend_Name VBN
GeoLocation_Url WPG
WineProduct_Id WPID
PriceMin WPM
Name WPN
PriceRetail WPR
Ratings_HighestScore WPT
Url WPU
Reviews_HighestScore WPV
PriceMax WPX
VintageYear WPY

Table 2.2: Property names and abbreviations

2.3 Data preprocessing
The data provided by Wine.com through their public API (api.wine.com) is
available in XML or JSON formats. The data used was obtained via the Catalog
API. The structure of data is a list of objects which may contain properties with
data values and other objects [38].

We changed the names of some of the properties and objects to remove
ambiguous terms. For example, we changed Year to VintageYear and Varietal to
VarietalBlend . The object Vineyard actually refers to the wine producer, and we
changed the name to Producer . Finally, we cleaned the data by removing those
entries with erroneous information.

The list of properties obtained from the Catalog and their description are
shown in Appendix A. Some properties, like the URLs to other products were
ignored for the construction of the conceptual schema.

The used properties with their abbreviations are shown in Table 2.2.
In Figure 2.26 we show a sample of anonymized data obtained from the XML.

We will use this data sample to illustrate the methodology followed in the next
sections.

2.4 Data constraints
The adopted methodology converts a raw database schema into a conceptual
schema [4]. Therefore, first we obtained such a database schema for our data.
The relational schema R, as noted before, consist of a universal relation, denoted
by U which for our case included all the attributes defined in Table 2.2. Contrary
to what David et al. [4] assume, we lacked the logical schema of the relational
data. Therefore, we extracted the constraints using data mining techniques
based on the XML structure of the data [38], and in the actual data obtained.
We deduced 29 constraints for this data source.

Constraints (2.1) to (2.7) are functional dependency constraints and are
described in Subsection 2.4.1. We found only one multivalued dependency
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ti AID AN PAID PAIU PAN PG PID PIU PN

t1 4 Provence . . . /wnmap=1 1 w1.jpg La Bastide Blanche
t2 1 Veneto 3 w3.jpg Lamberti
t3 2 Piedmont 2 Bold 2 Cascina Adelaide

ti PU RID RN TID TN VBID VBN WPG

t1 . . . /w=1 2 France 3 Rosé Wine Rosé . . . /map=1
t2 . . . /w=3 1 Italy 1 Sparkling 3 Rosé
t3 . . . /w=2 1 Italy 2 Red Wines 4 Nebbiolo

tiWPID WPM WPN WPR WPT WPU WPV WPX WPY

t1 1 2.8 La BBB Rosé 2004 2.8 90 . . . /detail=1 5 6.7 2004
t2 2 3.3 Lamberti Rose Spumante 5.8 0 . . . /detail=2 0 7.3 NV
t3 3 9.6 C. Adelaide (1.5 L) 2010 9.6 97 . . . /detail=3 0 9.6 2010

Figure 2.26: Sample data

constraint (2.8), shown in Subsection 2.4.2. Because we started with a universal
relation U , there were no inclusion nor exclusion dependency constraints.

The null value constraints are shown in the last three subsections of this
section. The not null constraints [(2.9) to (2.16)] in Subsection 2.4.3, the
mandatory participation constraints [(2.17) to (2.20)] in Subsection 2.4.4, and
the MPC w.r.t. the LHS [(2.24) to (2.21)] in Subsection 2.4.5. Also Table 2.3
shows the semantics of the null value for each attribute.

Integrity constraints

In the next subsections we use the abbreviations introduced in Table 2.2. For
both the FDs and the MVDs we omit the relation which is always U . We merge
those FDs with the same LHS into a single FD to avoid repetition.

2.4.1 Functional dependencies

A wine product has a product Name and at most one VintageYear. It also
has a detail Url, a PriceMin, a PriceMax, and a PriceRetail. It may have at
most one GeoLocation_Url as location URL. It has a Ratings_HighestScore
and a community Reviews_HighestScore. The product also corresponds to
one appellation, and is made by one producer created with grapes of one
varietal/blend.

{WPID} → {WPN,WPY,WPU,WPM,WPX,WPR,WPG,

WPT,WPV,AID,PID, V BID}
(2.1)

An appellation has an Appellation_Name, and corresponds to one region.

{AID} → {AN,RID} (2.2)

A region has one Region_Name.

{RID} → {RN} (2.3)
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Attr. Null type

WPID not-null
WPM not-null
WPN not-null
WPR not-null
WPT not-null
WPU not-null
WPV not-null
WPX not-null
AID unknown
AN unknown
PID unknown
PN unknown
PU unknown

Attr. Null type

RID unknown
RN unknown
TID unknown
TN unknown
VBID unknown
VBN unknown
WPY unknown
PAID nonexistent
PAIU nonexistent
PAN1 nonexistent
PG nonexistent
PIU nonexistent
WPG nonexistent

Table 2.3: Null types by attribute

A varietal/blend has one VarietalBlend_Name and corresponds to a wine type.

{V BID} → {V BN, TID} (2.4)

A wine type has a WineType_Name.

{TID} → {TN} (2.5)

A producer has a Producer_Name and a Producer_Url as description URL. It
may also have at most one Producer_ImageUrl and a location shown in at most
one Producer_GeoLocation_Url.

{PID} → {PN,PU, PIU, PG} (2.6)

A product attribute has a ProductAttribute_Name and has at most one Product-
Attribute_ImageUrl.

{PAID} → {PAN,PAIU} (2.7)

2.4.2 Multivalued dependencies
A wine product may have several product attributes

WPID � {PAID} (2.8)

Null constraints
Each attribute of U has three possibilities regarding the null values. It may be
never null, it may be null and unknown, or null and nonexistent. Table 2.3
shows which possibility corresponds to each attribute. Based on this table and
in the integrity constraints we obtained the following constraints.

2.4.3 Not null constraints
1Depends on the value of PAID. See constraints (2.7) and (2.23)
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not-null(U ,WPID) (2.9)
not-null(U ,WPN) (2.10)
not-null(U ,WPM) (2.11)
not-null(U ,WPR) (2.12)

not-null(U ,WPT ) (2.13)
not-null(U ,WPU) (2.14)
not-null(U ,WPV ) (2.15)
not-null(U ,WPX) (2.16)

2.4.4 Mandatory participation constraints

exists(U ,AID) (2.17)
exists(U ,P ID) (2.18)

exists(U ,V BID) (2.19)
exists(U ,WPY ) (2.20)

2.4.5 MPC w.r.t. left-hand side

exists(U ,V BN)LHS(VBID→VBN) (2.21)
exists(U ,T ID)LHS(VBID→TID) (2.22)
exists(U ,PAN)LHS(PAID→PAN) (2.23)

exists(U ,AN)LHS(AID→AN) (2.24)
exists(U ,RID)LHS(AID→RID) (2.25)
exists(U ,RN)LHS(RID→RN) (2.26)

exists(U ,PN)LHS(PID→PN) (2.27)
exists(U ,PU)LHS(PID→PU) (2.28)
exists(U ,TN)LHS(TID→TN) (2.29)

2.5 Developing the conceptual schema
David et al. [4] methodology consists of five phases which are labelling existent
nulls, normalization to the 4NF, processing nonexistent nulls, introduction of
object identifiers and other constraints, and finally the generation conceptual
schema.

The main idea of this methodology is to translate the data constraints into
conceptual constraints. Using the functional and multivalued dependencies the
initial U is decomposed into several relations which fulfil the restrictions. To
guarantee a lossless decomposition, the methodology performs an analysis of
the meaning of the null values before the actual decomposition. Attributes with
unknown null values are assigned a new value, which should satisfy the integrity
constraints.

On each of the following subsections, we will briefly explain each phase and
how we applied it to our case of study. We will continue to use the abbreviations
introduced in Table 2.2.

2.5.1 Labelling existent nulls
In this phase the attributes for which null represents an unknown value are
given a filler value. These filler values should adhere to the integrity constraints
of the database schema defined in Σ [27]. Once all the unknown null values are
assigned a new value, all the MPC are converted into no null value constraints.
From this point on all the null values are nonexistent.

For our study case, we defined these integrity constraints in Section 2.4.
Therefore, we assign the filler values such that for any attribute A, which can
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ti AID AN PAID PAIU PAN PG PID PIU PN

t1 4 Provence . . . /wnmap=1 1 w1.jpg La Bastide Blanche
t2 1 Veneto 3 w3.jpg Lamberti
t3 2 Piedmont 2 Bold 2 Cascina Adelaide

ti PU RID RN TID TN VBID VBN WPG

t1 . . . /w=1 2 France 3 Rosé Wine 100 Rosé . . . /map=1
t2 . . . /w=3 1 Italy 1 Sparkling 3 Rosé
t3 . . . /w=2 1 Italy 2 Red Wines 4 Nebbiolo

tiWPID WPM WPN WPR WPT WPU WPV WPX WPY

t1 1 2.8 La BBB Rosé 2004 2.8 90 . . . /detail=1 5 6.7 2004
t2 2 3.3 Lamberti Rose Spumante 5.8 0 . . . /detail=2 0 7.3 NV
t3 3 9.6 C. Adelaide (1.5 L) 2010 9.6 97 . . . /detail=3 0 9.6 2010

Figure 2.27: Sample data with no unknown nulls

be null, and any FD X → A where A appears in the RHS, if t1[X] = t2[X]
for any t1, t2 ∈ U , then it holds that t1[A] = t2[A] = v, v a filler value. A
special case resulted from constraint (2.7), because the LHS may also be null,
we added a further restriction so that, if t1[PAID] = t2[PAID] 6= null then it
should be the case that t1[PAN ] = t2[PAN ]. We also updated all the MPC in
Subsection 2.4.4 to not null constraints.

For the sample on Figure 2.26, the VBID for tuple t1 is null. However, this
null corresponds to an unknown value. As this attribute does not appear in the
RHS of any FD we assign any value to it . The resulting relation can be seen in
Figure 2.27.

2.5.2 Normalization to the 4NF

Normalization is a process proposed by Codd [3] by which the relations in a
database are organized to eliminate redundancy and support data integrity.
There are five Normal Forms (NF) and on each NF the relations of the database
schema must fulfil with certain restrictions.

For the relations of a database schema to be in First Normal Form (1NF)
there must not be duplicate tuples in any relation and all the attributes must
contain simple values [2]. The Second Normal Form (2NF) deals with the
functional dependencies on relation keys which are not atomic. A relation is in
2NF iff it is in 1NF and for all r ∈ R if key(r,X) and |X| ≥ 2 then there is no
FD r : Y → B such that B /∈ X and Y ⊂ X. In other words, all the non-key
attributes of r functionally depend on the whole set of attributes of its key or
candidate keys.

The third Normal Form (3NF) tackles the transitive functional dependencies.
For a relation r to be in 3NF it must be in 2NF and any attribute not in a key
or candidate key must functionally depend directly on a key of r. That is, if B
is an attribute of r that is not in a key of r, then there is no X and Y such that
key(r,X), not key(r,Y), r : X→ Y and r : Y → B. The Fourth Normal Form
(4NF), proposed by Fagin [7], deals with MVD. A relation r is in 4NF iff it is
in 3NF and if a nontrivial MVD r : X � Y exists, then it is also the case that
r : X→ A for all A attribute of r. In other words, all dependencies in a relation
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have in the LHS a key for r. We will not discuss the Fifth Normal Form in this
work.

Given the nine FDs and the MVD in Section 2.4 we normalized the universal
relation U . For the 1NF the Name attribute was not a simple value as it
contained information regarding the VintageYear and a new attribute we called
BottleType and will abbreviate as BT . This new attribute was included to the
right-hand side (RHS) of constraint (2.1), and because it has a default value, a
not null constraint was also added. We then changed the attribute name from
Name (WPN) to WineName (WN). For example, the attribute WineName for
the tuple t3 in the sample of Figure 2.27 after the 1NF would be contain the
string “C. Adelaide” and the new attribute BottleType will be assigned the string
“1.5 L”.

Further evaluation of the data allowed us to add the following FDs.

{WN} → {PID} (2.30)
{WN,WPY } → {AID, VBID} (2.31)

{WN,WPY,BT} → {WPID} (2.32)

Constraint (2.30) means that a WineName belongs to exactly one Producer.
Constraint (2.31) indicates that a WineName of a given VintageYear belongs to
an appellation, and is created with grapes of a varietal/blend. The WineName,
the VintageYear and the BottleType determine a wine product as stated by con-
straint (2.32). At this point, the key for U was the pair of attributes WPID and
PAID. According to 2NF all non key attributes should depend on the whole key.
This was not the case mainly due to FDs (2.1) and (2.7). Therefore, we decom-
posed U into three relations, wineProduct, productAttribute and hasAttribute,
where productAttribute had all the attributes of constraint (2.7), hasAttribute
the attributes WPID and PAID, and wineProduct all the attributes of U not
in productAttribute.

The sample data would be divided into the three relations of Figure 2.28.
For the 3NF we analysed the transitive FDs. In wineProduct there were

several of such cases, given by the composition of FD (2.1) and the constraints
from (2.2) to (2.6), (2.30) and (2.31). Finally, as there were no MVD on any
relation in the 3NF, this schema was also in the 4NF.

The relations in our schema after normalization were the following

wineProduct(WPID,WN,WPY,BT ,WPG,WPU,WPM,WPX,WPR,

WPT,WPV )

appellation(AID,AN,RID)

hasAttribute(WPID,PAID)

producer(PID,PN,PU, PIU, PG)

productAttribute(PAID,PAN,PAIU)

yearlyWine(WN,WPY ,AID, V BID)

region(RID,RN)

varietalBlend(V BID, V BN, TID)

wine(WN,PID)

wineType(TID, TN)

Keys are underlined and candidate keys are double underlined. The normal-
ized schema for the sample is shown in Figure 2.29. The wineProduct relation
was divided into eight relations by the FDs. For the sample only the primary
keys are shown in bold face.
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wineProduct
ti AID AN PG PID PIU PN PU RID

t1 4 Provence . . . /wnmap=1 1 w1.jpg La Bastide Blanche . . . /w=1 2
t2 1 Veneto 3 w3.jpg Lamberti . . . /w=3 1
t3 2 Piedmont 2 Cascina Adelaide . . . /w=2 1

wineProduct
ti RN TID TN VBID VBN WPG WPID WPM

t1 France 3 Rosé Wine 100 Rosé . . . /map=1 1 2.8
t2 Italy 1 Sparkling 3 Rosé 2 3.3
t3 Italy 2 Red Wines 4 Nebbiolo 3 9.6

wineProduct
ti WPN WPR WPT WPU WPV WPX WPY

t1 La BBB Rosé 2.8 90 . . . /detail=1 5 6.7 2004
t2 Lamberti Rose Spumante 5.8 0 . . . /detail=2 0 7.3 NV
t3 C. Adelaide 9.6 97 . . . /detail=3 0 9.6 2010

productAttribute
ti PAID PAIU PAN

t1
t2
t3 2 Bold

hasAttribute
ti WPID PAID

t1 1
t2 2
t3 3 2

Figure 2.28: Sample data in 2NF

2.5.2.1 Inclusion dependencies

Since David et al. [4] use the universal instance assumption (UIA) as defined by
Bernstein [2], all the generated relations can be seen as projections of U . Thus,
inclusion dependencies exist between the new relations and U . By transitivity of
the subset relation in the INDs, equality dependencies between the attributes of
the new relations are inferred.
For our case study, we considered only such INDs which involve at least one key
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attribute. The inferred INDs are the following:

yearlyWine[AID] ⊆ appellation[AID] (2.33)
hasAttribute[PAID] ⊆ productAttribute[PAID] (2.34)
wine[PID] ⊆ producer[PID] (2.35)
appellation[RID] ⊆ region[RID] (2.36)
varietalBlend[TID] ⊆ wineType[TID] (2.37)
yearlyWine[VBID] ⊆ varietalBlend[VBID] (2.38)
wineProduct[WN ] ⊆ wine[WN ] (2.39)
yearlyWine[WN ] ⊆ wine[WN ] (2.40)
hasAttribute[WPID] ⊆ wineProduct[WPID] (2.41)
wineProduct[WN,WPY ] ⊆ yearlyWine[WN,WPY ] (2.42)

appellation[AID] ⊆ yearlyWine[AID] (2.43)
producer[PID] ⊆ wine[PID] (2.44)
region[RID] ⊆ appellation[RID] (2.45)
wineType[TID] ⊆ varietalBlend[TID] (2.46)
varietalBlend[VBID] ⊆ yearlyWine[VBID] (2.47)
wine[WN ] ⊆ wineProduct[WN ] (2.48)
wine[WN ] ⊆ yearlyWine[WN ] (2.49)
yearlyWine[WN,WPY ] ⊆ wineProduct[WN,WPY ] (2.50)
productAttribute[PAID] ⊆ hasAttribute[PAID] (2.51)
wineProduct[WPID] ⊆ hasAttribute[WPID] (2.52)

All the new INDs are added to Σ′ of the normalized schema norm(DB) = 〈R′,Σ′〉.
If the set of attributes on the RHS is also a key of the relation in the RHS, then
in agreement with the definition introduced in Section 2.4 that set of attributes
is a foreign key of the relation on the LHS. This is the case for the dependencies
from (2.33) to (2.42).

2.5.3 Processing nonexistent nulls

The INDs just added assume that the projections for each attribute are the same
for all relations. However, it is important to remember that some of the attributes
may contain nonexistent null values. For example, the dependency (2.52)
presumes that all wineProducts should also be in the relation hasAttribute
which is not always true. Therefore, in this phase the null values are removed
from the relations.

Let r be a relation r(A1, . . . , An), with key K, where at least one of its
attributes can be null. To remove the null values from r, it is decomposed into
2n relations resulting from the projections over the set of attributes of r from
the power set of its attributes. Only tuples with no null values are included in
these relations.

From all these relations only those with all the attributes of K are considered.
For each new relation r′ there is new foreign key constraint of the form r′[K] ⊆
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r[K]. If all the attributes of r′ did not have nulls in the original relation r, then
it is also the case that r[K] ⊆ r′[K].

Given all the foreign key constraints, there are two cases to consider:

1. If the key attributes for a relation r are composed of one foreign key.

2. If the key attributes for a relation r are composed of more than one foreign
keys.

For the first case, new foreign constraints between the decomposed relations are
generated r′′[K] ⊆ r′[K], in any case where r′′ has attributes which had nulls
and r′ has only non nullable attributes with K the key for both relations. For
the second case, any IND r′′[K] ⊆ r′[K] where the key of r′ is composed of more
than one foreign key, and r′ has nullable attributes, is dropped.

For our case the only attributes which can contain nulls with no con-
straints are PAID, PAIU , PIU , PG, and WPG, which correspond to relations
hasAttribute, productAttribute, producer, and wineProduct. The attribute
PAN may contain nulls only if PAID is null. After the decomposition we
obtain this new schema:

wineProduct(WPID,WN,WPY,BT ,WPU,WPM,WPX,WPR,WPT,WPV )

wineProductWithGeoLocation(WPID,WPG)

productAttributeWithImage(PAID,PAIU)

yearlyWine(WN,WPY ,AID, V BID)

appellation(AID,AN,RID)

hasAttribute(WPID,PAID)

producer(PID,PN,PU)

producerWithImage(PID,PIU)

producerWithGeoLocation(PID,PG)

productAttribute(PAID,PAN)

region(RID,RN)

varietalBlend(V BID, V BN, TID)

wine(WN,PID)

wineType(TID, TN)

We dropped constraints (2.51) and (2.52) and added the following new foreign
key constraints.

producerWithImage[PID] ⊆ producer[PID] (2.53)
producerWithGeoLocation[PID] ⊆ producer[PID] (2.54)
wineProductWithGeoLocation[WPID] ⊆ wineProduct[WPID] (2.55)
productAttributeWithImage[PAID] ⊆ productAttribute[PAID] (2.56)

For our sample data all the nullable attributes contain nulls. The decom-
position to remove all null values, added three new relations to the schema.
This schema is shown in Figure 2.30. The attribute PAIU is not in the schema
any more, as all its values in the sample are null and this schema has no null
values.
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2.5.4 Object IDs, other constraints

For the next phase, the conceptual entities are identified and assigned a unique
Object Identifier to identifying, instead of using its attributes as identifiers. It
is suggested to insert a new attribute to act as the key of the relation. For-
eign keys should be updated accordingly. These new attributes belong to ΓO.
David et al. [4] give a guide to identify entities, if the key of a relation r is
disjoin from its foreign keys, then r is a candidate entity. In this phase other
constraints can be added to the constraints, as well as more expressive names
to the relations. The resulting database?? schema is denoted by DB∗ = 〈R∗,Σ∗〉.

In our new schema, most of the relations generated already had an object
identifier, except for yearlyWine and wine. We introduced OIDs for these
relations and updated the associated relations and constraints. Our schema with
OIDs is shown in Figure 2.31. For the sample, the schema with new OIDs is
shown in Figure 2.32. We decided to drop also the dependencies (2.43) to (2.50)
which although supported by our data, conceptually were too strong. We wanted
to be able to model, for example, appellations from which no wine was made.
All the updated constraints for the new schema are shown in Appendix B

2.5.5 Generation the conceptual schema

The last phase of the methodology is the generation of the conceptual schema form
the database schema DB∗. To this purpose, the identities and the relationships
have to be identified?? from the relations in R∗. This is achieved using the
associations of the keys and foreign keys and the constraints in Σ∗. Each relation
r with key K and foreign key attributes FK is classified into one of the following
groups:

specific
if K is a single OID and a foreign key of r.

base
if either K is an OID and r is not a specific relation or K and FK are
disjoint.

relationship
if K has only foreign keys and the number of foreign keys is at least two.

multivalued
if FK is a proper subset of K

ambiguous
if none of the previous conditions hold.

Table 2.4 summarizes this classification. For the ambiguous relations, input
from the domain expert is required to disambiguate. Each kind of relation is
associated to a conceptual schema element. Base relations correspond to entities
and specific relations to sub-entities. Relationship relations are conceptual
relationships and multivalued relations correspond to multivalued attributes. The
attributes of the relations, naturally correspond to attributes of the conceptual
elements. Although the generate schema by David et al. [4] is an Entity-
Relationship (ER) schema, we generated an ORM2 model. We consider ORM2
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K⊗ FK |K| = 1 |K| > 1

FK = ∅ base base
K ∩ FK = ∅ base base
K ⊆ FK specific relation
K ⊃ FK - multivalued
any other case - ambiguous

Table 2.4: Classification of relations based on keys.

has a richer syntax for constraints and subtyping than ER, which at the end will
provide us with a richer ontology.

The classification of the relations in R∗ for our study is the following:

base appellation producer region wine productAttribute

varietalBlend wineType wineProduct yearlyWine

specific producerWithGeoLocation producerWithImage

productAttributeWithImage wineProductWithGeoLocation

relation hasAttribute

With these entities and relations we created the ORM2 diagram of Figure 2.33.
We added additional value constraints (Subsection 2.1.2.1) based on the data
available.
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appellation
ti AID AN RID

t1 4 Provence 2
t2 1 Veneto 1
t3 2 Piedmont 1

region
ti RID RN

t1 2 France
t2 1 Italy
t3 1 Italy

varietalBlend
ti VBID VBN TID

t1 100 Rosé 3
t2 3 Rosé 1
t3 4 Nebbiolo 2

producer
ti PID PN PU PIU PG

t1 1 La Bastide Blanche . . . /w=1 w1.jpg . . . /wnmap=1
t2 3 Lamberti . . . /w=3 w3.jpg
t3 2 Cascina Adelaide . . . /w=2

wine
ti WN PID

t1 La BBB Rosé 1
t2 Lamberti Rose Spumante 3
t3 C. Adelaide 2

wineType
ti TID TN

t1 3 Rosé Wine
t2 1 Sparkling
t3 2 Red Wines

yearlyWine
ti WN WPY AID VBID

t1 La BBB Rosé 2004 4 100
t2 Lamberti Rose Spumante NV 1 3
t3 C. Adelaide 2010 2 4

wineProduct
ti WPID WN WPY BT WPG

t1 1 La BBB Rosé 2004 750ml . . . /map=1
t2 2 Lamberti Rose Spumante NV 750ml
t3 3 C. Adelaide 2010 1.5L

wineProduct
ti WPU WPM WPX WPR WPT WPV

t1 . . . /detail=1 2.8 6.7 2.8 90 5
t2 . . . /detail=2 3.3 7.3 5.8 0 0
t3 . . . /detail=3 9.6 9.6 9.6 97 0

productAttribute
ti PAID PAIU PAN

t1
t2
t3 2 Bold

hasAttribute
ti WPID PAID

t1 1
t2 2
t3 3 2

Figure 2.29: Sample in 4NF
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appellation
ti AID AN RID

t1 4 Provence 2
t2 1 Veneto 1
t3 2 Piedmont 1

region
ti RID RN

t1 2 France
t2 1 Italy
t3 1 Italy

varietalBlend
ti VBID VBN TID

t1 100 Rosé 3
t2 3 Rosé 1
t3 4 Nebbiolo 2

producer
ti PID PN PU

t1 1 La Bastide Blanche . . . /w=1
t2 3 Lamberti . . . /w=3
t3 2 Cascina Adelaide . . . /w=2

wine
ti WN PID

t1 La BBB Rosé 1
t2 Lamberti Rose Spumante 3
t3 C. Adelaide 2

wineType
ti TID TN

t1 3 Rosé Wine
t2 1 Sparkling
t3 2 Red Wines

yearlyWine
ti WN WPY AID VBID

t1 La BBB Rosé 2004 4 100
t2 Lamberti Rose Spumante NV 1 3
t3 C. Adelaide 2010 2 4

wineProduct
ti WPID WN WPY BT

t1 1 La BBB Rosé 2004 750ml
t2 2 Lamberti Rose Spumante NV 750ml
t3 3 C. Adelaide 2010 1.5L

wineProduct
ti WPU WPM WPX WPR WPT WPV

t1 . . . /detail=1 2.8 6.7 2.8 90 5
t2 . . . /detail=2 3.3 7.3 5.8 0 0
t3 . . . /detail=3 9.6 9.6 9.6 97 0

productAttribute
ti PAID PAN

t3 2 Bold

hasAttribute
ti WPID PAID

t3 3 2

wineProductWithGeoLocation
ti WPID WPG

t1 1 . . . /map=1

producerWithGeoLocation
ti PID PG

t1 1 . . . /wnmap=1

producerWithImage
ti PID PIU

t1 1 w1.jpg
t2 3 w3.jpg

Figure 2.30: Sample after null processing
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wineProduct(WPID, YWID,BT ,WPU,WPM,WPX,WPR,WPT,WPV )

wineProductWithGeoLocation(WPID,WPG)

productAttributeWithImage(PAID,PAIU)

yearlyWine(YWID,WID,WPY ,AID, V BID)

appellation(AID,AN,RID)

hasAttribute(WPID,PAID)

producer(PID,PN,PU)

producerWithImage(PID,PIU)

producerWithGeoLocation(PID,PG)

productAttribute(PAID,PAN)

region(RID,RN)

varietalBlend(V BID, V BN, TID)

wine(WID,WN,PID)

wineType(TID, TN)

Figure 2.31: Final schema
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appellation
ti AID AN RID

t1 4 Provence 2
t2 1 Veneto 1
t3 2 Piedmont 1

region
ti RID RN

t1 2 France
t2 1 Italy
t3 1 Italy

varietalBlend
ti VBID VBN TID

t1 100 Rosé 3
t2 3 Rosé 1
t3 4 Nebbiolo 2

producer
ti PID PN PU

t1 1 La Bastide Blanche . . . /w=1
t2 3 Lamberti . . . /w=3
t3 2 Cascina Adelaide . . . /w=2

wine
ti WID WN PID

t1 1 La BBB Rosé 1
t2 2 Lamberti Rose Spumante 3
t3 3 C. Adelaide 2

wineType
ti TID TN

t1 3 Rosé Wine
t2 1 Sparkling
t3 2 Red Wines

yearlyWine
ti YWID WID WPY AID VBID

t1 y1 1 2004 4 100
t2 y2 2 NV 1 3
t3 y3 3 2010 2 4

wineProduct
ti WPID YWID BT

t1 1 y1 750ml
t2 2 y2 750ml
t3 3 y3 1.5L

wineProduct
ti WPU WPM WPX WPR WPT WPV

t1 . . . /detail=1 2.8 6.7 2.8 90 5
t2 . . . /detail=2 3.3 7.3 5.8 0 0
t3 . . . /detail=3 9.6 9.6 9.6 97 0

productAttribute
ti PAID PAN

t3 2 Bold

hasAttribute
ti WPID PAID

t3 3 2

wineProductWithGeoLocation
ti WPID WPG

t1 1 . . . /map=1

producerWithGeoLocation
ti PID PG

t1 1 . . . /wnmap=1

producerWithImage
ti PID PIU

t1 1 w1.jpg
t2 3 w3.jpg

Figure 2.32: Final schema for the sample tuples
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WineProduct
(wpid)

is of yearly wine YearlyWine
(ywid)

has attribute

ProductAttribute
(paid)

has max price

has min price

has detail url

is of bottle type

has retail price

has highest rating score

has highest review score

BottleType

Url

Price

Ratings
Score

Reviews
Score

is of varietal or blend

belongs to appellation

Appellation
(aid)

VarietalBlend
(vbid)

is of vintage year
Year

is of wine

Wine
(wid)

has wine name

created by producer

WineName

Producer
(pid)

corresponds to type of wine

has varietal or blend name

VarietalBlend
Name

WineType
(tid)

has wine type name

TypeName

has appellation name

corresponds to region

Appellation
Name

Region
(rid)

has region name

Region
Name

has producer name
Producer

Name

has producer url
Url

has attribute nameAttribute
Name

WineProduct
WithGeoLocation

has location url
Url

Producer
WithImagehas producer image url

ImageUrl ProducerWith
GeoLocation has map url

Url

ProductAttribute
WithImage

has image url
ImageUrl {’Red Wine’,’Rose Wine’,

’Champagne & Sparkling’,
’Dessert, Sherry & Port’,

’White Wine’,’Sake’ }

{0..}

{0..100}

{0..5}

Figure 2.33: Final ORM2 diagram



Chapter 3

From ORM2 to OWL 2

One the results of this thesis is an OWL ontology with data. This ontology
should preserve the semantics of the ORM2 conceptual model obtained from the
raw data. Therefore, we developed a semantics preserving mapping between
ORM2 and OWL 2.

To formalize this mapping we use as middle man description logics (DL).
How are these two knowledge representation tools related to DL? The semantics
of OWL2 are compatible with the description logic SROIQ(D) [29]. And for
ORM2 there exist attempts to formalize it into a DL [8, 20, 22, 24].

To automatize the mapping process, first we should adopt a textual syntax
for ORM2. Some syntaxes have been proposed [6, 8, 31, 33], but there is not yet
a standard syntax to our knowledge. Demey et al. [6] proposed a markup syntax
in XML. Pan and Liu [31] presented an update of this syntax, extending it to
support the new features of ORM2 and making it less redundant.

Pan and Liu also proposed an abstract syntax based in their metamodel for
ORM2 [32]. Franconi and Mosca [8] proposed a linear syntax with set-theoretic
semantics called ORM2plus which covers most of the introduced constructs and
constraints of an ORM2 model. We will adopt this syntax and use the defined
semantics to create a formal mapping from ORM2 to OWL 2.

One important requirement of the resulting ontology is to be compatible??
with Quelo. In Quelo queries can be posed to an ontology by forming a natural
language query via menus. Thus, our ontology should be verbalizable by the
Natural Language Generation engine of Quelo . That is, the names assigned to
the elements of the ontology should be descriptive.

Before describing ORM2plus syntax, we will briefly compare ORM2 with OWL 2
regarding the assumptions they make about the world, names and hierarchy
(Section 3.1). Afterwards we will ??describe?? Description Logics in Section 3.2.
Then we will then present the ORM2plus syntax, the core fragment ORM2zero

and the fragment ORM2bin in Section 3.3. In Section 3.4 we will describe the
DL semantics of ORM2bin. The functional syntax and semantics of OWL2 are
introduced?? in Section 3.5. In the last section, Section 3.6, we will provide the
mapping from the fragment ORM2bin to OWL 2.
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3.1 ORM2 vs OWL2 assumptions

3.1.1 World assumptions

Regarding the completeness of the data, ORM2 being a modelling tool for
databases, makes the Closed World Assumption (CWA) [27], i.e., anything that
cannot be proven true is assumed to be false. The data is considered to be
complete; therefore, only the available data is true. OWL on the other hand,
as the language for the Semantic Web, was designed to deal with incomplete
information. Instead of the CWA, OWL uses the Open World Assumption (OWA)
[28] where anything that cannot be proven true is not false but unknown. In
other words, the failure to prove something true does not imply it is false.

3.1.2 Name assumptions

Another difference between ORM2 and OWL2 is their assumption regarding
names. ORM2 also makes the Unique Name Assumption (UNA) where differ-
ent names refer to different individuals. OWL2 does not make the UNA [28]
and different names can refer to the same individual. UNA in OWL2 can be
axiomatized by explicitly declaring which individuals are different from which
others.

3.1.3 Hierarchy relation

ORM2 differs from OWL also in the implementation of hierarchy between object
types/classes, subtyping in ORM2 and subclassing in OWL 2. OWL 2 subclassing
is based in the semantics of RDFS which is based in the semantics of the subset
relation [19]. Therefore, subclassing in OWL2 is both reflexive and transitive,
which means that any class is a subclass of itself and for any classes A,B, and
C such that A is subclass of class B and B is subclass of C it holds that A is
subclass of C. However, in ORM2 subtyping is irreflexive and intransitive [14].

3.1.4 Some remarks about names

Up till now we have mainly discussed about the ORM2 elements; however, from
this section on, we will include the elements of DL and OWL2 and naming
clashes will ensue.

ORM2 divides the world into objects types, which can be entity or value types;
and roles, which are the basic unit to form predicates [12]. Object types and roles
are populated by instances. OWL 2 elements include entities : classes, datatypes,
properties, and named individuals; anonymous individuals; and literals [28].
Properties can be object properties, data properties, or annotation properties.
Finally, the elements of DL are concepts, roles, and individuals [1, chap. 2].
Table 3.1 shows an example of how the elements of the sentence “Jane is married
to a person born in the year 1810.” are modelled with these three formalisms.

3.2 Description Logics
Description Logics (DL) are a family of knowledge representation languages
which have logic based semantics [1, Chap. 2]. This formal semantics allows
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Example ORM2 OWL2 DL

Jane instance individual individual
is married to predicate object prop. role
a person entity type class concept
born in predicate data prop. role
the year value type datatype concept
1810 instance literal individual

Table 3.1: Model in ORM2, OWL 2, and DL.

one to reason over the described knowledge. Furthermore, DLs are a decidable
fragment of First-Order Logic.

The basic elements of any DL are concepts, roles, and individuals; similar
to object types, predicates, and populations in ORM. The semantics of DL is
set-theoretic, thus each concept is interpreted as a set of individuals and each
role as a set of pairs of individuals. For example, to model the domain of book
writers the set of all authors can be represented by the concept Author and
the set of all books by the concept Book. The role wrote can connect Authors
with the Books they wrote. The individual melville which represents the author
Herman Melville will be in the class Author. And the tuple (melville, moby-dick)
should be part of the extension of the role wrote.

The representation of the world using DL is partial. DLs represent the world
with axioms, which are statements that are true in the description, but all the
rest is unknown, in agreement with the OWA.

These axioms are divided into three groups: terminological axioms, assertional
axioms and relational axioms. The terminological axioms, also called TBox
axioms, describe relations between concepts. The assertional axioms, or ABox
axioms, describe the relations between individuals and the concepts to which
they belong. Finally the relational axioms, RBox axioms, state the relations
between roles. Together these boxes for the knowledge base of a DL ontology.

Before introducing the constructors for the axioms, we introduce the con-
structors for concepts and roles.

3.2.1 Concept and role constructors

Within the attributive language (AL) DL one can create concepts using these
constructors:

C,D → A | > | ⊥ | ¬A | C uD | ∀R.C | ∃R.>,

where A is an atomic concept, R an atomic role and, C and D are concept
descriptions. So the possible concept descriptions for AL are atomic concepts;
>, the universal concept; ⊥, the bottom concept; atomic negation; intersection
of concepts; value restriction; and limited existential quantification.

The semantics of any DL is based in the notion of an interpretation I, which
is formed by a non empty set ∆I called the domain of the interpretation and
an interpretation function ·I . This function assigns to each atomic concept A
a set of elements of the domain and to each atomic role R a binary relation in



3.2 Description Logics 37

Name Syntax Semantics

U , union of concepts C tD CI ∪DI

C, full negation ¬C ∆I \ CI
E , full existential ∃R.C {x∈∆I | ∃y.(x, y) ∈ RI ∧ y∈CI}

quantification
N , number ≥ nR {x∈∆I | #{y∈∆I | (x, y) ∈ RI} ≥ n}

restrictions ≤ nR {x∈∆I | #{y∈∆I | (x, y) ∈ RI} ≤ n}
Q, qualified number ≥ nR.C {x∈∆I | #{y∈∆I | (x, y)∈RI ∧ y∈CI} ≥ n}

restrictions ≤ nR.C {x∈∆I | #{y∈∆I | (x, y)∈RI ∧ y∈CI} ≤ n}
Local reflexivity ∃R.Self {x | (x, x) ∈ RI

O, nominals {a} {aI}
I, inverse role R− {(y, x) | (x, y) ∈ RI}
role intersection R u S RI ∩ SI

Table 3.2: DL concept and role constructors

∆I ×∆I . Thus, the semantics of each of the AL constructors is the following:

>I = ∆I

⊥I = ∅
(¬A)I = ∆I \AI

(C uD) = CI ∪DI

(∀R.C)I = {x∈∆I | ∀y.(x, y) ∈ RI → y∈CI}
(∃R.>)I = {x∈∆I | ∃y.(x, y) ∈ RI}

The set of concept and role constructors characterize a DL. In Table 3.2 we
show the name, syntax, and semantics for some DL constructors. The symbol #
is used to denote the cardinality of a set. The name of each DL is roughly based
on the letters of its constructors. For example, the ALCQI DL includes, besides
the basic constructors of AL, the constructors for full negation (C), qualified
number restrictions (Q), and inverse roles (I).

3.2.2 Axioms
The axioms of the TBox are called general concept inclusion axioms (GCI) and
are of the form C v D, where C and D are complex concepts. If C v D, and
D v C hold in a TBox these axioms can be combined into a concept equivalence
axiom C ≡ D. An interpretation I satisfies an inclusion C v D if CI ⊆ DI ,
and satisfies an equivalence C ≡ D if CI = DI . For a TBox T , I satisfies T iff
I satisfies every axiom of T .

Assertional axioms are of two forms concept assertions, C(a), and role
assertions, R(b, c), where C is a concept, R a role and a, b, and c are individuals.
An interpretation I satisfies C(a) if aI ∈ CI , and satisfies R(b, c) if (bI , cI) ∈
RI . If every axiom of ABox A is satisfied by an interpretation I, then this
interpretation satisfies the ABox A.

Relational axioms include role inclusion, R v S and role equivalence, R ≡ S,
where R and S are atomic roles [25]. Role inclusions create role hierarchies,
and ontologies with role hierarchies add the letter H to their DL name. An
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interpretation I satisfies R v S if RI ⊆ SI , and satisfies R ≡ S if RI = RI . An
interpretation I satisfies a RBox R iff it satisfies all the axioms in R.

In the following section we will use these notions to stablish the formal se-
mantics for ORM2plus. Also the semantics of OWL 2 are based on the SROIQ(D)

DL and we use the notions of this section to introduce?? the OWL 2 syntax and
semantics.

3.3 ORM2plus syntax
While an ORM diagram is useful to visualize the conceptual schema, it is also
important to detect inconsistencies in the design. The verbalisation of the
diagram offers an insight of its meaning; however, to reason with the constraints
in the diagram, a formal specification of the ORM2 semantics is necessary. But,
before specifying the semantics, one should specify the syntax.

The linear syntax ORM2plus gives for each ORM2 construct one or more
predicates which have the same meaning [8]. The signature S of ORM2plus is a
tuple (E ,V,R,A,D,Λ,Λ(·), %, τ), where

∗ E is a set of entity type symbols,

∗ V is a set of value type symbols,

∗ R is a set of relation symbols1,

∗ A is a set of role symbols,

∗ D is a set of domain symbols,

∗ Λ is a set of pairwise disjoint sets of values,

∗ for each D ∈ D, Λ(·) : D → Λ is an injective extension function associating
each domain symbol D to an extension ΛD

∗ % ⊆ R×A is a binary relation linking role symbols to relation symbols.
Given a relation symbol R and a role symbol a the pair R.a is called a
localised role. For each R ∈ R, %R = {R.a | R.a ∈ %}
∗ for each R ∈ R, τR : %R → [1..|%R|] is a bijection mapping localised roles

to argument positions in a relation. We define τ =
⋃
R∈R τR

An ORM2plus conceptual schema ξ over a signature S is a tuple 〈E ,V,R, C〉
where E ,V , and R are the entity types, value types and relations in ξ and C is a
finite set of the following constructs. ℘(A) denotes the power set of A.

1. TYPE ⊆ %× (E ∪ V)

2. FREQ ⊆ ℘(%)× (℘(%)× ℘(%))× (N× (N ∪ {∞}))
3. MAND ⊆ ℘(%)× (E ∪ V)

4. R-SETH ⊆
(
℘(%)× (℘(%)× ℘(%))

)
×
(
℘(%)× (℘(%)× ℘(%))

)
× (µ : %→ %),

H = {Sub,Exc}
5. O-SETH ⊆ ℘(E ∪ V)× (E ∪ V), H = {Isa,Tot,Ex}
6. O-CARD ⊆ (E ∪ V)× (N× (N ∪ {∞}))
1In this section we use the term relation to denote ORM predicates.
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7. R-CARD ⊆ %× (N× (N ∪ {∞}))

8. OBJ ⊆ R× (E ∪ V)

9. RINGJ ⊆ %× %, J = {Irr,Asym,Trans, Intr, . . . }

10. V-VAL ⊆ V → ℘(ΛD) for some ΛD ∈ Λ

These ten constructs cover most of the ORM2 constraints introduced in Section 2.1.
TYPE binds the roles to its object type forming fact types. FREQ covers both
external and internal frequency constraints, and MAND the external and internal
mandatory constraints. The subset and set exclusion constraints are represented
with R-SETH. Subtyping, total subtypes, and exclusive subtypes are indicated
with O-SETH. O-CARD and R-CARD are for object cardinality constraints
and role cardinality constraints, respectively. The OBJ construct specifies
objectification and RINGJ is for all the ring constraints. Finally, V-VAL specifies
object value constraints.

Six ORM2 constraints are considered derived constraints, i.e., can be formu-
lated with combinations of the ten basic constructs. Uniqueness constraints,
internal and external, are obtained using the FREQ construct restricting the
maximum and minimum to one. Set equality constraints are two subset con-
straints which have the last parameter µ inverted. The exclusive-or constraint
can be obtained with the constructs R-SETExc and MAND. The subtypes parti-
tion constraint is the sum of exclusive and total subtypes; and we use O-SETTot
and O-SETEx to represent it. Lastly, role value constraints can be achieved
by introducing a new value type symbol V ∗ and using TYPE to link it to the
constrained role and V-VAL to constrain the role values.

The only constraint not considered in ORM2plus is the value comparison
constraint (Subsec. 2.1.4). The preferred unique constraint is not considered in
ORM2plus as it is contained in the semantics of unique (frequency) and mandatory
constraints.

In the linear syntax the sets E ,V , and R are explicitly listed in the constructs
ENTITYTYPES, VALUETYPES, and RELATIONS, respectively. For complete-
ness we also provide the extended Backus-Naur Form grammar for ORM2 in
Appendix C.

In the following subsection we will give examples for each of the constraints.
We omit the types and relations declaration for space reasons. We use some of
the examples introduced in Section 2.1, and we repeat here the figures for ease
of reference.

3.3.1 Value constraints

In Listing 3.1 we show the linear syntax for the ORM2 diagram of Figure 2.6.
The first two lines declare the association between the relation and the object
types of the fact type. Line 3 states the uniqueness constraint over the first role
of the relation. The object value constraint over Month is defined in line 4. To
represent the role value constraint first associate a new value type with the role
(line 6) and then we restrict this new value type (line 7).
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Winter
Resort

is open

Month

{Jan,Feb,Nov,Dec}

Figure 2.6: An ORM2 diagram with a role value constraint.

1 TYPE(isOpen.winterResort , WinterResort)
2 TYPE(isOpen.month , Month)
3 FREQ({ isOpen.winterResort },{},<1,1>)
4 V−VAL(Month) = {'Jan','Feb','Mar','Apr' ,...}
5 % WinterMonth is a new value type symbol
6 TYPE(isOpen.month , WinterMonth)
7 V−VAL(WinterMonth) = {'Jan','Feb','Nov','Dec'}

Listing 3.1: ORM2plus value constraints.

3.3.2 Cardinality constraints

The linear syntax construct for the example in Figure 2.5 is shown in Listing 3.2
line 1. On the RHS of the construct are the upper and lower bounds for the
cardinality of the object. Lines 2 and 3 of the same listing are the linear
representation of the diagram on Figure 2.7. Line 2 states the object type
associated with the role and line 3 the cardinality constraint.

Continent

#=5

Figure 2.5: An ORM2 object type with
a cardinality constraint.

Participant

#=1

is the winner

Figure 2.7: An ORM2 diagram with a
role cardinality constraint.

1 O−CARD(Continent)=(5,5)
2 TYPE(isTheWinner.participant ,Participant)
3 R−CARD(isTheWinner.participant)=(1,1)

Listing 3.2: ORM2plus cardinality constraints.

3.3.3 Mandatory and set-comparison constraints

For Figure 2.18, Listing 3.3 has the translation of the diagram into ORM2plus.
The first eight lines state the role associations and their frequency in the relations.
On line 10 we state the mandatory constraint over the first roles of both relations
and line 11 the exclusion set constraint for the same roles. Together they
construct the exclusive-or constraint.
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Student

attends

writes

Course

Thesis

Figure 2.18: An ORM2 diagram with an exclusive-or constraint.

1 TYPE(writes.thesis , Thesis)
2 TYPE(writes.student , Student)
3 TYPE(attends.course , Course)
4 TYPE(attends.student , Student)
5

6 FREQ({ writes.thesis},{},<1,1>)
7 FREQ({ writes.student },{},<1,1>)
8 FREQ({ attends.course , attends.student },{},<1,1>)
9 % exclusive -or constraint

10 MAND({ writes.student ,attends.student},Student)
11 R−SETExc(({ writes.student}, {}) ,({attends.student},

{}) ,{(writes.student ,attends.student)})

Listing 3.3: ORM2plus exclusive-or constraint.

3.3.4 Ring constraints
Figure 2.22c shows a fact type with an acyclic intransitive ring constraint which
in ORM2plus is described as shown in Listing 3.4.

Person

parent of

Figure 2.22c: An ORM2 diagram with an acyclic intransitive ring constraint.

1 TYPE(parentOf.sub ,Person)
2 TYPE(parentOf.obj ,Person)
3 FREQ({ parentOf.sub ,parentOf.obj},{},<1,1>)
4 % Acyclic intransitive ring constraint
5 RINGAcyclic(parentOf.sub , parentOf.obj)
6 RINGIntr(parentOf.sub , parentOf.obj)

Listing 3.4: ORM2plus ring constraint.

3.3.5 Subtyping and subtype constraints
Simple subtyping, as shown in Figure 2.23a is represented in ORM2plus with
the O-SETIsa construct (Listing 3.5 line 1). To construct a subtype partition
constraint as in Fig. 2.23d, we derive it from the constructs O-SETTot and
O-SETEx (Listing 3.5 lines 3, 4).
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Wine

Red
Wine

White
Wine

Figure 2.23a: An ORM2 diagram with
subtyping.

Wine

Red
Wine

White
Wine

Figure 2.23d: An ORM2 diagram with
subtype partition constraint.

1 O−SETIsa({RedWine , WhiteWine}, Wine)
2 % Subtype partition
3 O−SETTot({RedWine , WhiteWine}, Wine)
4 O−SETEx({RedWine , WhiteWine}, Wine)

Listing 3.5: ORM2plus subtyping.

3.3.6 Objectification
Listing 3.6 is the representation of the diagram in Figure 2.25. The construct
OBJ represents objectification in ORM2plus, as shown in line 5.

Person

“Review”

Product
reviewed

has rating

Number

Figure 2.25: An ORM2 diagram with objectification.

1 TYPE(reviewed.person , Person)
2 TYPE(reviewed.product , Product)
3 FREQ({ reviewed.person},{},<1,1>)
4 % Objectification
5 OBJ(reviewed , Review)
6 TYPE(hasRating.review , Review)
7 TYPE(hasRating.number , Number)
8 FREQ({ hasRating.review},{},<1,1>)
9 MAND({ hasRating.review}, Review)

Listing 3.6: ORM2plus objectification.

3.3.7 Join constraints
Up till now all of the examples contained simple external constraints, but for the
subset constraint in Figure 2.24, we need a join constraint. The translation of
this diagram to ORM2plus is Listing 3.7. The declaration of the subset constraint
in is line 15. Let is recall the formal definition of the R-SETH construct.

R-SETH ⊆
( RA︷︸︸︷
℘(%)×

JA︷ ︸︸ ︷
(℘(%)× ℘(%))

)︸ ︷︷ ︸
A

×
( RB︷︸︸︷
℘(%)×

JB︷ ︸︸ ︷
(℘(%)× ℘(%))

)︸ ︷︷ ︸
B

× (µ : %→ %)︸ ︷︷ ︸
µ



3.3 ORM2plus syntax 43

Informally, this construct represents the constraint A ⊆ B. RA and RB contain
the list of roles involved in the constraint. JA and JB define how the roles in each
Ri are related. In this example, RA = {isCreatedIn.country, isFromRegion.region}.
These two localised roles are related via Wine, so JA contains the tuple 〈isCreatedIn.wine =
isFromRegion.wine〉. JB in the other hand, is empty as the roles in RB
are in the same relation and there is no need of joins. Finally, µ states
how these two lists of localised roles are related to each other, for this con-
straint which role is subset of which role. For our example µ has two tuples
(isCreatedIn.country, locatedIn.country) and (isFromRegion.region, locatedIn.region).
All these elements define a subset join constraint.

Country

located in country

Region

Wine

is created in is from region

Figure 2.24: An ORM2 diagram with a join subset constraint.

1 TYPE(locatedIn.region ,Region)
2 TYPE(locatedIn.country ,Country)
3 FREQ({ locatedIn.region},{},<1,1>)
4 MAND({ locatedIn.region}, Region)
5

6 TYPE(isCreatedIn.wine ,Wine)
7 TYPE(isCreatedIn.country ,Country)
8 FREQ({ isCreatedIn.wine},{},<1,1>)
9 MAND({ isCreatedIn.wine}, Wine)

10

11 TYPE(isFromRegion.wine ,Wine)
12 TYPE(isFromRegion.region ,Region)
13 FREQ({ isFromRegion.wine},{},<1,1>)
14 % Join subset constraint
15 R−SETSub(({ isCreatedIn.country ,isFromRegion.region

},{<isCreatedIn.wine=isFromRegion.wine >}),
({ locatedIn.country ,locatedIn.region },{}),
{( isCreatedIn.country ,locatedIn.country),
(isFromRegion.region ,locatedIn.region)})

Listing 3.7: ORM2plus join constraint.

3.3.8 ORM2zero syntax
Besides ORM2plus, Franconi and Mosca [8] identified a core fragment of ORM2
which can be encoded into the ExpTime-complete description logic (DL) ALCQI.
This fragment has these constructs:

1. TYPE

2. FREQ– ⊆ %× (N× (N ∪ {∞}))
3. MAND
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4. R-SET–
H ⊆ ℘(%)× ℘(%), H = {Sub,Exc}

5. O-SETH , H = {Isa,Tot,Ex}

6. OBJ

TYPE, MAND, O-SETH, and OBJ are defined as in ORM2plus. FREQ– is a
restriction of FREQ which can be applied only to single roles. R-SET–

H accepts
only two single roles or two whole relations of the same arity.

The semantics introduced by Franconi and Mosca [8] for ORM2zero use
reification to overcome the lack of n-ary relations in ALCQI, i.e., for each
relation R of arity n a new atomic entity AR and n functional roles τ(R.ai) are
introduced. An example of reification is shown in Figure 3.1.

Student
has grade . . . for course

Course

Grade

(a) Ternary relation.

Student
is of student

‘GradeCourse’
for course

Course

has grade

Grade

(b) Reified relation.

Figure 3.1: Reification.

To obtain clearer?? verbalizations in Quelo we want?? to avoid reification.
Reifing the relation makes the verbalizations repetitive and unnatural because
the generated names for the new entity and the functional roles are artificial
names not found originally in the conceptual model. Sometimes these names are
part of the UoD, but not always. These artificial names will reduce the fluency
of the verbalizations in Quelo. For example, a possible verbalization for the
reified relation in Figure 3.1b could be “I am looking for a grade course which
should be for a course.”. (What is a “grade course”?) Therefore, we propose a
new ORM2 fragment obtained?? by restricting ORM2zero to binary relations.
We call this fragment ORM2bin.

3.3.9 ORM2bin syntax

The allowed constructs for ORM2bin are the following:

1. TYPE

2. FREQ–

3. MAND

4. R-SET–
H , H = {Sub,Exc}

5. O-SETH , H = {Isa,Tot,Ex}

We disallow the OBJ construct as well because it generates the same naming
problems as reification. The semantics for this ORM2 fragment will be described
in the next section. We include the translation of our schema into ORM2bin

syntax in Appendix D.
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3.3.9.1 Preferred UC

We should note that ORM2plus considers the reference mode constraints as simple
uniqueness constraints. While the semantics of these constraints are covered by
the FREQ– and MAND constructs, that the designer of the conceptual schema
chose this specific relation as the preferred identifier should be represented in
the syntax as well. There may be more than one unique mandatory relations
for an entity, but just one is the reference mode. To indicate this choice we add
the construct PRIMARY ⊆ E × % to denote which role is the preferred identifier.
This construct is just a flag, and does not affect the semantics.

3.3.10 Names and labels

Most of the entities in the obtained ORM2 diagram have, besides the preferred
reference mode, a mandatory relation to its name, as in Figure 3.2. We add a
second construct LABEL ⊆ E × % to indicate which is the role which has the
name of the entity. We use this value as the rdfs:label annotation property for
each individual, which according to the OWL2 Structural Specification “can be
used to provide an IRI with a human-readable label” [28]. This decision provided
us with two benefits. First, our ontology is not polluted with repetitive relations
of the type hasXName, and therefore is more concise. And second, this label will
produce better verbalisations. It is important to note that annotations are not
included in the reasoning process [28]. However, the existence of these relation
is meaningful for the exploration of the ontology.

has name

Region
(regionId) Name

Figure 3.2: Entity with hasName

3.4 ORM2bin semantics

To create a semantics preserving mapping from ORM2 to OWL2 we need the
logic representation of the ORM2 schema.

In 1989 Halpin [11] gave the first full formalization for ORM using FOL-based
semantics. Since then the ORM has evolved and increased, but not so the
formalization. Others have proposed formalizations of the ORM diagrams into
diverse logics [8, 21, 22, 24]. Jarrar [21] and Keet [24] proposed a formalization
into the DLRifd description logic, which is a DL with n-ary relations. Jarrar
[22] also proposed a translation of ORM into SHOIN , the DL underlying OWL
DL.

Franconi and Mosca [8] provided for each of the constructs of ORM2plus set-
theoretic semantics based in relational algebra and also FOL semantics. For the
fragment ORM2zero they provided semantics in ALCQI and DLRifd. Based on
these semantics for ORM2plus and ORM2zero [8, 10], we obtain the DL semantics
for ORM2bin.

The DL semantics for ORM2bin use of the following SDL signature:
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Syntax Semantics

TYPE(R.a,O) ∃R̂a v O
FREQ–(R.a, 〈min,max〉) ∃R̂a v≥ min R̂a u ≤ max R̂a
MAND({R1.a1, . . . , R

k.ak}, O) O v ∃R̂1
a1 t · · · t ∃R̂kak

R-SET–
Sub({R.a1, R.a2}, {S.b1, S.b2}) R̂a1 v Ŝb1 where a1 6= a2, b1 6= b2

R-SET–
Exc({R.a1, R.a2}, {S.b1, S.b2}) R̂a1 v ¬Ŝb1 where a1 6= a2, b1 6= b2

R-SET–
Sub({R.a}, {S.b}) ∃R̂a v ∃Ŝb

R-SET–
Exc({R.a}, {S.b}) ∃R̂a v ¬∃Ŝb

O-SETIsa(O1, . . . , On, O) O1 t · · · tOn v O
O-SETTot(O1, . . . , On, O) O1 t · · · tOn v O

O v O1 t · · · tOn
O-SETEx(O1, . . . , On, O) O1 t · · · tOn v O

Oi v unj=i+1¬Oj for each i = 1, . . . , n

Table 3.3: ORM2bin semantics

∗ A set E1, E2, . . . , En of concepts for entity types;

∗ a set V1, V2, . . . , Vm of concepts for value types;

∗ a set D1, D2, . . . , Dl of concepts for domain symbols;

∗ a set R1, R2, . . . , Rk of roles2 for relation(predicate) symbols

This signature matches the signature of the linear syntax ORM2plus. Besides the
encoding of the ORM2plus constructs, we include three background axioms to
simulate?? the UNA made by ORM2. These axioms are the following:

Ei v ¬(D1 t · · · tDl) for i ∈ {1, . . . , n} (3.1)
Vi v Dj for i ∈ {1, . . . ,m}, and some j with 1 ≤ j ≤ l (3.2)

Di v ulj=i+1¬Dj for i ∈ {1, . . . , l} (3.3)

Axiom (3.1) states that entity types are disjoint from domain symbols. That
each value type is assigned a domain symbol is enforced by Axiom (3.2). The
disjointness of the domain symbols results from Axiom (3.3).

Given an ORM2plus localised role R.a we define the directed relation of R
with respect to a, denoted R̂a, as

R̂a =

{
R if a is the first ORM2 role of R
R− otherwise

With this definition, we encode the ORM2bin constructs into DL as shown in
Table 3.3 based on the FOL encoding for ORM2zero [8]. Given the DL constructs
present in the encoding, our encoding belongs to the ALCHIN DL which extends
the basic ALC DL with inverse roles (I), role hierarchies (H), and unqualified
number restrictions(N ).

2In this section, the term role will refer to DL roles unless otherwise specified.



3.5 OWL 2 47

OWL 2



Entites



Classes
Datatypes

Properties


Object Properties
Data Properties
Annotation Properties

Named Individuals

Anonymous Individuals
Literals

Figure 3.3: OWL 2 Elements

3.5 OWL 2

Ontologies are concrete descriptions of the world. OWL2, the Web Ontology
Language, is the standard Semantic Web language to define ontologies. It is
based in the SROIQ(D) DL, which besides the concept constructors of ALC
allows for complex role inclusions (R), nominals (O), inverse roles (I), qualified
number restrictions (Q), datatype properties ((D)), and other additional features
such local reflexivity of roles.

In this section we will describe the elements of OWL2 using the functional-
style syntax [28] and the direct semantics [29].

3.5.1 OWL2 elements

Figure 3.3 shows a schema of the elements of OWL 2. OWL 2 entities, as we already
mentioned, are classes, datatypes, properties, and named individuals. Classes
are collections of individuals and datatypes collections of data values. Properties
can be object properties, which interconnect individuals; or data properties,
which connect individuals with literals; or annotation properties, which add
nonlogical information to the ontology. The main difference between entities and
non entities is that entities are uniquely identified by an IRI (Internationalized
Resource Identifier) and non entities are not.

Anonymous individuals are individuals which exist but are not identified
by an IRI [19]. For instance, in the example of Subsection 3.1.4 the person to
which Jane is married is an anonymous individual. Although we ignore the name
of this individual, we know this individual should exist; therefore, we can talk
about it through its associations with other individuals.

Literals are the concrete values of the datatypes. Each literal has a lexical
form, which is the string representing the value; and a datatype, which gives the
meaning to the lexical form.

Two built-in classes are provided, owl:Thing, the set of all individuals; and
owl:Nothing, the empty set. Analogous to the built-in classes, there are two
built-in object properties: owl:topObjectProperty, which connects all possible
pairs of individuals; and owl:bottomObjectProperty, which connects no indi-
viduals; and their respective built-in data properties owl:topDataProperty and
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owl:bottomDataProperty.
Some examples of entities declaration using the OWL 2 functional-style syntax

are shown in Listing 3.8, as well as the declaration of the build-ins. In the
examples we create the atomic class :Writer, a named individual :a and a
datatype :ISBN. We define the data property :hasISBN and the object property
:writes as well.

1 Declaration ( Class (: Writer))
2 Declaration ( NamedIndividual (:a))
3 Declaration ( Datatype (:ISBN))
4 Declaration ( DataProperty (: hasISBN))
5 Declaration ( ObjectProperty (: writes))
6

7 Declaration ( Class ( o w l : T h i n g ))
8 Declaration ( Class ( o w l : N o t h i n g ))
9 Declaration ( ObjectProperty ( o w l : t o p O b j e c t P r o p e r t y ))

10 Declaration ( ObjectProperty ( o w l : b o t t o m O b j e c t P r o p e r t y
))

11 Declaration ( DataProperty ( o w l : t o p D a t a P r o p e r t y ))
12 Declaration ( DataProperty ( o w l : b o t t o m D a t a P r o p e r t y ))
13 Declaration ( Datatype ( r d f s : L i t e r a l ))

Listing 3.8: Functional-Style syntax OWL 2.

Besides these elements, OWL 2 provides expressions to create complex classes
and properties. Complex data types are built through data ranges. One can
One can state axioms about these elements, which are true statements of the
domain.

The semantics of OWL 2 are the semantics of SROIQ(D) DL. Therefore, we
will structure the following introduction of the OWL2 functional-style syntax
based on its relation to DL. OWL2 classes and datatypes are analogous to DL
concepts up to some point. Class expression and data ranges correspond to DL
concept constructors. Object properties and data properties are comparable
to DL simple roles, while object and data property expressions correspond to
DL role constructors. And OWL2 individuals and literals are parallel to DL
individuals.

First we will describe the available constructors in OWL2. Then we will
detail the terminological, relational, and assertional axioms. Finally, we will say
some words regarding annotation properties and annotation assertions.

For the following expressions and axioms we adopt the this convention:

∗ C denotes a class and C* a class expression;

∗ DT denotes a datatype and DR a data range;

∗ OP denotes an object property and OP* an object property expression;

∗ DP denotes a data property and DP* a data property expression;

∗ α denotes an individual;

∗ ` denotes a literal; and

∗ F denotes a constraining facet.
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3.5.2 OWL2 constructors
3.5.2.1 Datatype restriction

Datatypes are sets of data values identified by an IRI. The base data values in
OWL 2 are numbers, strings, booleans,time instants, IRIs, binary data, and XML
literals. The datatypes for numbers include owl:real, owl:rational, xsd:decimal,
xsd:interger, among others. For strings, the datatypes includes among other
xsd:string, xsd:normalizedString, and xsd:language. Facets restrict datatypes, such
as xsd:minInclusive, xsd:maxInclusive, xsd:minExclusive, and xsd:maxExclusive for
numbers. For strings, the facets comprise xsd:length, xsd:minLength, xsd:maxLength,
and xsd:pattern. A data range, is a set of tuples of literals. These tuples should
be of the same size, which is the arity of the data range. Under this definition,
datatypes are data ranges of arity 1.

The expression DatatypeRestriction(DT F1 `1. . .Fn `n) can constrain data
ranges. In Listing 3.9 we define a new datatype for wine bottle capacities by
restricting the valid strings using a regular expression.

1 DatatypeRestriction ( x s d : s t r i n g
2 x s d : p a t t e r n "(375|500|200|750) ?ml

|(1\.5|((1|3|5) (\.0)?))( |−)?(liter|l)"
3 )

Listing 3.9: DatatypeRestriction example

3.5.2.2 Concept intersection

To this constructor belong the class expression ObjectIntersectionOf(C*1 . . . C*n)
and the data range operation DataIntersectionOf(DR1 . . . DRn). Examples of
these expressions are in Listing 3.10, where the intersection of the classes :Plant
and :Carnivore may be used to define a carnivore plant and the data range of
person names such as “April”, “May”, and “June” is the intersection of :monthName
and :personName. For DataIntersectionOf, the data ranges should have the
same arity.

1 ObjectIntersectionOf (:Plant :Carnivore)
2 DataIntersectionOf (: monthName :personName)

Listing 3.10: IntersectionOf examples

3.5.2.3 Concept union

New concepts can also be created by concept union, in OWL2 represented
by ObjectUnionOf(C*1 . . . C*n) and DataUnionOf(DR1 . . . DRn). The individuals, or
literals, defined by this restriction should belong to all the class expression, or
data ranges.

3.5.2.4 Full negation

Class complement is expressed by ObjectComplementOf(C*) and data range com-
plement by DataComplementOf(DR). Because of the OWA, for an individual, or
data tuple, to be part of the set specified by this expression, it must be explicitly
specified that it is not part of the class expression C* , or the data range DR.
With these two constructors one identifies everything that is not a :Plant or
every data tuple which is not a :monthName as in Listing 3.11.
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1 ObjectComplementOf (:Plant)
2 DataComplementOf (: monthName)

Listing 3.11: ComplementOf examples

3.5.2.5 Nominals

Nominals constructors are also found both for classes and data ranges. For classes
OWL 2 provides ObjectOneOf(α1 . . . αn) and for data ranges DataOneOf(`1 . . . `n).
The set defined by this restriction contains exactly the listed individuals, or liter-
als. There are two more class expressions which use nominals: DataHasValue(DP* `)
and ObjectHasValue(OP* α). The first expression outlines the class whose indi-
viduals are associated to ` by DP*. The class outlined by the second expression
contains all the individuals related to α via OP*. Listing 3.12 shows Examples
for these constructors.

1 ObjectOneOf (:guava :mango :papaya)
2 DataOneOf ("May" "April" "June")
3 ObjectHasValue (: feedsOn :mango)
4 DataHasValue (: hasName "May")

Listing 3.12: OneOf and HasValue examples

3.5.2.6 Universal quantification

Given n data property expressions DP*1,. . . , DP*n and a tuple of literals (`1,. . . ,`n),
we say that an individual is n-connected by DP*1 . . . DP*n to the tuple if for all
1 ≤ i ≤ n this individual is connected by DP*i to `i.

Because OWL2 has two types of properties which give logical information,
there are two universal quantification expressions. This also holds for existential
quantification and the number restrictions.

A class can be universally quantified with ObjectAllValuesFrom(OP* C*) or
with the expression DataAllValuesFrom(DP*1 . . . DP*n DR). All individuals connected
to individuals of this class by OP* belong to the class defined by C*. And all
tuples n-connected to individuals of this class by DP*1,. . . ,DP*n belong to the data
range DR. In Listing 3.13 we have a model?? for the class of obligate carnivores,
organisms which feed only on animal tissue. However, because of the OWA, this
class also includes those individuals which do not feed at all. On line 2 we define
a class whose individuals have as first name only month names. But again, by
OWA this class also includes those individuals which do not have a first name.

1 ObjectAllValuesFrom (: feedsOn :AnimalTissue)
2 DataAllValuesFrom (: hasFirstName :monthName)

Listing 3.13: AllValuesFrom examples

3.5.2.7 Existential quantification

The existential quantification class expressions are ObjectSomeValuesFrom(OP* C*)
and DataSomeValuesFrom(DP*1 . . . DP*n DR). ObjectSomeValuesFrom defines a class
which has all the individuals related at least once via OP* to an individual of
C*. For ObjectSomeValuesFrom the individuals which belong to this class are
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n-connected by the data properties DP*1,. . . ,DP*n to at least one tuple in DR.
Listing 3.14 shows examples for these class expressions, the class of carnivores
and omnivores; and the class of individuals with at least one month name as
first name.

1 ObjectSomeValuesFrom ( :feedsOn :AnimalTissue )
2 DataSomeValuesFrom ( :hasFirstName :monthName )

Listing 3.14: SomeValuesFrom examples

3.5.2.8 Number restrictions

We group both qualified and unqualified number restrictions under qualified num-
ber restrictions, as unqualified number restrictions can be seen as been qualified
by the top or bottom concept. In these definitions n is a non negative integer. The
number restrictions using object properties are ObjectMinCardinality(n OP* [C*]),
ObjectMaxCardinality(n OP* [C*]), and ObjectExactCardinality(n OP* [C*]).
The analogous class expressions using data properties are DataMinCardinality(n DP* [DR]),
DataMaxCardinality(n DP* [DR]), and DataExactCardinality(n DP* [DR]). For
these expressions C* and DR are optional.

The class defined by an object cardinality expression has all the individuals
related to at least, at most, or exactly n different individuals by OP*. If C* is also
specified, then these n individuals should also belong to the class described by C*.
For the data cardinality expression the class has those individuals connected by
DP* to at least, at most, or exactly n different literals. If DR is defined, it should
be a unary data range and the n literals should belong to it. The examples in
Listing 3.15 outlines the class of individuals which have maximum three different
first names, and the class of individuals married to exactly one person.

1 DataMaxCardinality (3 :hasFirstName)
2 ObjectExactCardinality (1 :isMarried :Person)

Listing 3.15: Cardinality examples

3.5.2.9 Inverse roles

In OWL2 only object properties have inverse, as only entities?? can be in
the subject position of a property. The inverse of an object property is ob-
tained with the object property expression ObjectInverseOf(OP). For example,
given the object property :hasAuthor the inverse property is equivalent to
ObjectInverseOf(:hasAuthor).

3.5.2.10 Local reflexivity

The construct for local reflexivity or self restriction in OWL 2 is ObjectHasSelf(OP*)
All the connected individuals to themselves by OP* belong to the restricted class.
For instance, all the self-employed persons are defined by ObjectHasSelf(:employs).

3.5.3 Terminological axioms
3.5.3.1 Class expression axioms

Listing 3.16 shows an example for each of the class expression axioms. These
axioms are used to express subclassing, class disjointnes and class equivalence.
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1 SubClassOf (:Poet :Writer)
2 EquivalentClasses (: Person :HumanBeing)
3 DisjointClasses (: Person :Plant :Car)
4 DisjointUnion (: Person :Man :Woman)

Listing 3.16: Class expression axioms examples

Subclassing is stated with the axiom SubClassOf(C*1 C*2), which expresses that
C*1 is a subclass of C*2. EquivalentClasses(C*1 . . . C*n) states that all the classes
obtained by C*i have the same individuals. Class disjointness, a special form of sub-
classing where the superclass is⊥, is conveyed by the axiom DisjointClasses(C*1 . . . C*n),
where for all i, j, i 6= j the class C*i is disjoint with C*j. Finally, DisjointUnion(C C*1 . . . C

*
n)

states that the class C is equivalent to the union of C*1,. . . ,C*n and these classes
are disjoint.

3.5.3.2 Datatype definitions

DatatypeDefinition(DT DR). This axiom states that the datatype DT is equivalent
to the data range DR. Reusing the DatatypeRestriction example, we can define
the datatype :WineBottleCapacity as shown in Listing 3.17.

1 Declaration ( Datatype (: WineBottleCapacity))
2 DatatypeDefinition (: WineBottleCapacity
3 DatatypeRestriction ( x s d : s t r i n g
4 x s d : p a t t e r n "(375|500|200|750) ?ml

|(1\.5|((1|3|5) (\.0)?))( |−)?(liter|l)"
5 )
6 )

Listing 3.17: DatatypeDefinition example

3.5.4 Relational axioms
These axioms express characteristics of the properties such as disjointness,
subproperties, functional properties, reflexive properties, and more.

Subproperties, of object properties or data properties, are specified by the
axioms SubObjectPropertyOf(OP*1 OP*2) and SubDataPropertyOf(DP*1 DP*2). Any
pair of individuals connected by DP*1 are also connected by DP*2. And any pair of
individual, literal connected by DP*1 is also connected by DP*2. DP*2 and DP*2 may
contain more pairs besides of the ones in its subproperty.

A special case of subproperty is the one defined by SubObjectPropertyOf(
ObjectPropertyChain(OP*1 . . . OP*n) OP*). The statement ObjectPropertyChain(
OP*1 . . . OP

*
n) forms a new property by the composition of the properties OP*1,. . . ,OP*n.

This new property is the one that is a subproperty of OP*. Because literals cannot
be in the subject position of a property, property chains are only allowed to be
of object properties.

Formally,

∀y0, . . . , yn : (y0, y1) ∈ (OP*1)
OP ∧ · · · ∧ (yn−1, yn) ∈ (OP*n)

OP

→ (y0, yn) ∈ (OP*)OP

where ·OP is the part of the OWL2 interpretation I called the object property
interpretation function which assigns to each object property a subset of ∆I×∆I

[29]. ∆I is the object domain, the set of all individuals.
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If two or more properties are subproperties of each other then they have the
same pairs of elements and they are equivalent. This can be stated with the
axioms EquivalentObjectProperties(OP*1 . . . OP*n) or EquivalentDataProperties(
DP*1 . . . DP

*
n).

Properties, as classes, may also be disjoint, i.e., they share no pairs of elements.
Axioms DisjointObjectProperties(OP*1 . . . OP*n) and DisjointDataProperties(DP*1
. . . DP*n).

Listing 3.18 shows examples of these axioms. The property formed by the
property chain of properties :isWineOfRegion and :locatedInCountry is stated
a subproperty of isWineOfCountry. This means that any wine which is of a
region which is located in a country, is also a wine of this country. The properties
:wroteBook and :isAuthorOfBook are equivalent, any individual who wrote a
book is also the author of the same book.

1 SubObjectPropertyOf (
2 ObjectPropertyChain (: isWineOfRegion :

locatedInCountry )
3 :isWineOfCountry)
4 EquivalentDataProperties (: wroteBook :isAuthorOfBook

)

Listing 3.18: Subproperties and disjoint properties examples

That one property is the inverse of another is stated by InverseObjectProperties
(OP*1 OP*2) . This axiom conveys that OP*1 is an inverse of the object property
of OP*2. For all properties InverseObjectProperties(OP* ObjectInverseOf(OP*))
also holds. An example of this axiom is InverseObjectProperties(:isAuthorOfBook
:bookWrittenBy) where we state if someone is author of a book then this book

is written by this someone.

Besides axioms that relate properties with other properties OWL2 also has
axioms that state characteristics of each property. We can specify the kind of
individuals related with the property, the domain and range of the property.
The domain of a property is specified by ObjectPropertyDomain(OP* C*) for ob-
ject properties and DataPropertyDomain(DP* C*) for data properties. Ranges
are specified with the corresponding axioms ObjectPropertyRange(OP* C*) and
DataPropertyRange(DP* DR). The axioms in Listing 3.19 state that the data prop-
erty :hasCapacity has as domain the class :Wine and as range :WineBottleCapacity.
That means that if something is connected with a datatype by :hasCapacity, this
something is of class :Wine and the datatype is of the data range :WineBottleCapacity.

1 DataPropertyDomain (: hasCapacity :Wine)
2 DataPropertyRange (: hasCapacity :WineBottleCapacity)

Listing 3.19: Subproperties and disjoint properties examples

Other characteristics assigned to object property are functionality, inverse
functionality, reflexivity, irreflexivity, symmetry, asymmetry, and transitivity.
Only functionality can be stated regarding a data property. Listing 3.20 shows
the signature of the axioms to state each of these characteristics.

1 FunctionalObjectProperty (OP*)
2 FunctionalDataProperty (DP*)
3 InverseFunctionalObjectProperty (OP*)
4 ReflexiveObjectProperty (OP*)
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5 IrreflexiveObjectProperty (OP*)
6 SymmetricObjectProperty (OP*)
7 AsymmetricObjectProperty (OP*)
8 TransitiveObjectProperty (OP*)

Listing 3.20: Other properties axioms

3.5.4.1 Keys

OWL2 also provide the axiom HasKey(C* (OP*1 . . . OP
*
m) ( DP*1 . . . DP

*
n ) ) which

is similar to the database primary keys. Any two named individuals of class C* if
they are connected by OP*i to the same named individual αi for each 1 ≤ i ≤ m
and also are connected by DP*j to the same literal `j for each 1 ≤ j ≤ n are the
same individual. The direct semantics of this axiom are:

∀x, y, z1, . . . , zm, w1, . . . , wn :

x ∈ (C*)C ∧ x ∈ NAMED ∧ y ∈ (C*)C ∧ y ∈ NAMED

∧
m∧
i=1

(
(x, zi) ∈ (OP*i)

OP ∧ (y, zi) ∈ (OP*i)
OP ∧ zi ∈ NAMED

)
∧

n∧
j=1

(
(x,wj) ∈ (DP*j)

DP ∧ (y, wj) ∈ (DP*j)
DP
)

→ x = y

where ·OP is the object property interpretation function, ·DP the data property
interpretation function, which assigns to each data property a subset of ∆I ×∆D,
and NAMEDis the subset of ∆I which has all named individuals [29]. ∆D is the
data domain, the set of all literals.

3.5.5 Assertional axioms

OWL 2 assertions are the parallel of DL assertional axioms. These axioms allow
us to state facts about individuals. Two or more individuals are declared equal
with the assertion SameIndividual(α1 . . . αn). The counterpart of this axiom is
DifferentIndividuals(α1 . . . αn).

ClassAssertion(C* α) specifies that the individual α belongs to class C*. Simi-
larly, assertions ObjectPropertyAssertion(OP* α1 α2) and DataPropertyAssertion
(DP* α `) specify that the individual α1 is related to α2 by OP* and that the
individual α is related to ` by DP*. The negative form of the last two assertions are
NegativeObjectPropertyAssertion(OP* α1 α2) and NegativeDataPropertyAssertion
(DP* α `), respectively.

Listing 3.21 shows examples of these assertions. First we state that :mellvile
and :mobydick are different individuals. Then than :mobydick is of class :Book
and that :mellvile wrote the book :mobydick. Finally we declare that the title
of :mobydick is not "Moby Dick".

1 DifferentIndividuals (: melville :mobydick)
2 ClassAssertion (:Book :mobydick)
3 ObjectPropertyAssertion (:wrote :melville :mobydick)
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4 NegativeDataPropertyAssertion (: hasTitle :mobydick
"Moby Dick")

Listing 3.21: Assertion examples

3.5.6 Annotations
Finally the OWL2 functional-style syntax allows us to declare non logical in-
formation about the ontology, axioms and entities with annotations properties.
The annotation properties can have a domain, a range, and subproperties just
as data and object properties. Built-in annotation properties include rdfs:label
and rdfs:comment.

Entities or anonymous individuals are annotated using annotation assertions
AnnotationAssertion(AP AS AV ) where AP is an annotation property; AS is the
annotation subject, an entity or an anonymous individual; and AV is the value of
the annotation, an anonymous individual, an IRI, or a literal.

Axioms can also be annotated. Actually, all axioms already introduced have
an initial optional parameter: a list of annotations. These annotations are stated
by Annotation(AP AV)

Listings 3.22 shows examples of annotations. We annotate the individual
:melville with a label to give it a descriptive name "Herman Mellvile". The
ObjectPropertyChain axiom of Listing 3.18 is now annotated with a comment
to give a verbal explanation.

1 AnnotationAssertion ( r d f s : l a b e l :mellvile "Herman
Mellvile")

2 SubObjectPropertyOf (
3 Annotation ( r d f s : commen t "States that if a wine is

of a region which is located in a country ,
then the wine is of this country as well." )

4 ObjectPropertyChain (: isWineOfRegion :
locatedInCountry) :isWineOfCountry)

5 )

Listing 3.22: Annotations

3.6 Mapping ORM2bin to OWL 2
Now that we have all the background knowledge and the formal semantics of
both ORM2bin and OWL2, we can do the mapping. We based the mapping in
the OWL 2 Direct Semantics [29] and in the OWL 2 Structural Specification and
Functional-Style Syntax [28].

3.6.1 Entities declaration
The ORM2bin syntax includes the declaration of the entity types, value types
and relations. Entity types are mapped to OWL2 classes and value types
to datatypes. Relations correspond to properties, but first it is necessary to
differentiate between the relations which connect two entity types, mapped to
object properties, and the relations which connect an entity type with a value
type, mapped to data properties. We do not consider the relations which connect
two value types, as OWL 2 does not allow data values to be in the subject position



56 3 From ORM2 to OWL 2

ORM2bin Construct DL Semantics OWL 2 Axiom

TYPE(R.1, E) ∃R v E ObjectPropertyDomain( R E )
TYPE(R.2, E) ∃R− v E ObjectPropertyRange( R E )
TYPE(D.1, E) ∃D v E DataPropertyDomain( D E )
TYPE(D.2, V ) ∃D− v V DataPropertyRange( D V )

Table 3.4: TYPE mapping

of properties. If there is any relation connecting a value type with an entity
type, in this order, it is inverted by providing an alternate inverse predicate
reading and updating the diagram accordingly. The mapping of the entities in
Listing 3.23 is shown in Listing 3.24.

1 ENTITYTYPES: {WineProduct , Appellation}
2 VALUETYPES: {Year}
3 RELATIONS: {belongsToAppellation , hasVintage}

Listing 3.23: ORM2bin declarations

1 Declaration ( Class (: WineProduct))
2 Declaration ( Class (: Appellation))
3 Declaration ( Datatype (:Year))
4 Declaration ( ObjectProperty (: belongsToAppellation))
5 Declaration ( DataProperty (: hasVintage))

Listing 3.24: OWL 2 declarations

3.6.2 TYPE
To translate the construct TYPE(R.a,O) to OWL 2 we have to consider the four
cases shown in Figure 3.4.

YearlyWine
(wpid)

1 2

belongs to appellation

Appellation
(aid)

3 4

is of vintage year

Year
(Integer)

Figure 3.4: ORM2 diagram with the four TYPE cases

1. R is mapped to an object property and a is its first role

2. R is mapped to an object property and a is its second role

3. R is mapped to a data property and a is its first role

4. R is mapped to a data property and a is the second role

The semantics and mapping to OWL2 of each of these cases are shown in
Table 3.4.

Listing 3.25 shows the TYPE constructs of the diagram in Figure 3.4, and
Listing 3.26 the mapping into OWL 2.
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ORM2bin Syntax DL Semantics OWL 2 Axiom

FREQ–(R.1,〈n,m〉) ∃R v≥ nRu ≤ mR ObjectPropertyDomain(R
ObjectIntersectionOf(
ObjectMinCardinality(n R)
ObjectMaxCardinality(m R)))

FREQ–(R.2,〈n,m〉) ∃R− v≥ nR− u ≤ mR− ObjectPropertyRange(R
ObjectIntersectionOf (
ObjectMinCardinality(n R)
ObjectMaxCardinality(m R)))

FREQ–(D.1,〈n,m〉) ∃D v≥ nDu ≤ mD DataPropertyDomain(R
DataIntersectionOf(
DataMinCardinality(n R)
DataMaxCardinality(m R)))

FREQ–(D.2,〈n,m〉) ∃D− v≥ nD− u ≤ mD− Not mappable

Table 3.5: FREQ–mapping

TYPE(belongsToAppellation .1, YearlyWine)
TYPE(belongsToAppellation .2, Appellation)
TYPE(isOfVintageYear .1, YearlyWine)
TYPE(isOfVintageYear .2, Year)

Listing 3.25: ORM2bin TYPE cases

ObjectPropertyDomain (: belongsToAppellation :
WineVintage)

ObjectPropertyRange (: belongsToAppellation :
Appellation)

DataPropertyRange (: isOfVintage :Year)
DataPropertyDomain (: isOfVintage :YearlyWine)

Listing 3.26: OWL 2 TYPE cases

3.6.3 FREQ–

To map the FREQ– construct into OWL 2 we consider the same four cases as in
the mapping of TYPE. n is the minimum value and m the maximum.

The last case is not mappable as OWL2 literals are not OWL2 entities and
are not allowed in the subject position of a property. If m = n, the intersection
of cardinality expressions can be replaced by an ObjectExactCardinality(n R)
or DataExactCardinality(n D), respectively.

3.6.4 MAND

The MAND construct mapping is shown in Table 3.6. Each directed relation
R̂iai , is mapped as follows.

R̂iai is mapped to

{
Ri if a1 is the first ORM2 role of Ri

ObjectInverseOf(Ri) otherwise
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ORM2bin Syntax DL Semantics OWL 2 Axiom

MAND({ R1.a1,. . . ,
Rk.ak, O })

O v ∃R̂1
a1 t · · · t ∃R̂kak SubClassOf(O ObjectUnionOf(

RMinCardinality1(1 R̂1
a1 ) . . .

RMinCardinalityk(1 R̂kak )))

Table 3.6: MAND mapping

ORM2bin Syntax DL Semantics OWL 2 Axiom

R-SET–
Sub({R1.a11, R

1.a12},
{R2.a21, R

2.a22})

R̂1
a11 v R̂2

a21

a11 6= a12, a21 6= a22
RSubPropertyOf(R̂1

a11 R̂2
a21)

R-SET–
Exc({R1.a11, R

1.a12},
{R2.a21, R

2.a22})

R̂1
a11 v ¬R̂2

a21

a11 6= a12, a21 6= a22
RDisjointProperties(R̂1

a11

R̂2
a21)

Table 3.7: R-SETH for the whole relation mapping

Only object properties have inverse in OWL2; therefore, if Ri is a data
property and a1 is the second role of Ri, the set of pairs defined by R̂iai is not
definable in OWL2. For this constructor and the following we derive all the
possible cases and outline which ones are mappable to owl.

For this constructor, we add the restriction that for all R̂iai isRi is a data prop-
erty, then ai must be the first role of the relations. Otherwise we remove this con-
straint. If Ri is an object property, RMinCardinality is ObjectMinCardinality
otherwise it is DataMinCardinality.

3.6.5 R-SET–
H

Tables 3.7 and 3.9 show the mappings for the construct R-SET–
H in its two flavours.

If Ri is an object property, RSubPropertyOf is SubObjectPropertyOf and
RDisjointProperties is DisjointObjectProperties. Otherwise RSubPropertyOf
is SubDataPropertyOf and RDisjointProperties is DisjointDataProperties.
We consider eight cases derived by the kind of property of Ri (two cases) and
the index of ai1 (four cases) which are shown in Table 3.8.

Two cases are removed because literals cannot be compared with entities.
Although there is no inverse for data properties, the corner case when both
relations are data properties and for both ai1 is the second role of the relation,
can be modelled because we are considering the whole relation. In this case
R̂1

a11 v R̂2
a21 is equivalent to R̂1

a12 v R̂2
a22 and there is no need to obtain the

inverse of the data properties.
If Ri is an object property, RSomeValuesFromi is ObjectSomeValuesFrom

and rTopi is owl:Thing. Otherwise RSomeValuesFromi is DataSomeValuesFrom
and rTopi is rdfs:Literal.

There are sixteen possible cases depending on the kind of property of Ri (four
cases) and the index of ai (four cases). All these cases are shown in Table 3.10.
Six of these cases are ignored because literals cannot be compared with entities.
One last case remains unknown, when both Ri are data properties and the ai’s
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R1, R2 are object properties R1, R2 are data properties

Cases R̂1
a11 = R1 R̂1

a11 = R1− R̂1
a11 = R1 R̂1

a11 = R1−

R̂2
a21 = R2 OK OK OK X

R̂2
a21 = R2− OK OK X OK

Table 3.8: Cases for R-SET–
H for the whole relation

ORM2bin Syntax DL Semantics OWL 2 Axiom

R-SET–
Sub({R1.a1}, {R2.a2}) ∃R̂1

a1 v ∃R̂2
a2 SubClassOf( RSomeValuesFrom1( R̂1

a1 :

rTop1) RSomeValuesFrom2(R̂2
a2 :rTop2))

R-SET–
Exc({R1.a1}, {R2.a2}) ∃R̂1

a1 v ¬∃R̂2
a2 DisjointClasses(RSomeValuesFrom1( R̂1

a1

:rTop1) RSomeValuesFrom2(R̂2
a2 :rTop2)

)

Table 3.9: R-SET–
H for just one role mapping

are the second role of the relation. This case could be modelled using data
ranges; however, currently we ignore it in our mapping.

3.6.6 O-SETH

ORM2 subtyping is performed in object types [18], but in OWL2 only offers
subclasses. Therefore, for the following, O is an entity type mapped to a class.
Table 3.11 shows the mapping for the three subtype constructs O-SETIsa,O-
SETTot,O-SETEx, and for the partition subtyping which is the union of O-SETTot
and O-SETEx.

3.6.7 PRIMARY and LABEL
The ORM2bin syntax for the diagram in Figure 3.5 shown in Listing 3.27. The
direct translation to OWL 2 using the mapping just introduced is in Listing 3.28.
However, the actual information we use in the ontology for these diagram segment
is shown in Listing 3.29.

ENTITYTYPES: {Region}

R1 is an object property R1 is a data property

Cases R̂1
a1 = R1 R̂1

a1 = R1− R̂1
a1 = R1 R̂1

a1 = R1−

R2 is an object R̂2
a2 = R2 OK OK OK X

property R̂2
a2 = R2− OK OK OK X

R2 is a data Ŝ2
a2 = R2 OK OK OK X

property R̂2
a2 = R2− X X X ?

Table 3.10: Cases for R-SET–
H for just one role
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ORM2bin Syntax DL Semantics OWL 2 Axiom

O-SETIsa(O1, . . . , On, O) O1 t · · · tOn v O SubClassOf(ObjectUnionOf(O1 . . .
On) O)

O-SETTot(O1, . . . , On, O)
O1 t · · · tOn v O
O v O1 t · · · tOn

EquivalentClasses(
ObjectUnionOf(O1 . . . On) O)

O-SETEx(O1, . . . , On, O)
O1 t · · · tOn v O
Oi v unj=i+1¬Oj

for each i = 1, . . . , n

SubClassOf(ObjectUnionOf(O1 . . .
On) O) DisjointClasses(O1 . . .

On)

O-SETEx(O1, . . . , On, O)
O-SETTot(O1, . . . , On, O)

O1 t · · · tOn v O
O v O1 t · · · tOn
Oi v unj=i+1¬Oj

for each i = 1, . . . , n

DisjointUnion(O O1 . . . On)

Table 3.11: O-SETHmapping

Region

has name

Name

has id

RegionId

Figure 3.5: Extended Region diagram

VALUETYPES: {RegionName ,RegionId}
RELATIONS: {hasRegionId , hasRegionName}

TYPE(hasRegionId .1, Region)
TYPE(hasRegionId .2, RegionId)
TYPE(hasRegionName .1, Region)
TYPE(hasRegionName .2, RegionName)

FREQ−(hasRegionId .1, (0,1))
FREQ−(hasRegionId .2, (0,1))
FREQ−(hasRegionName .1, (0,1))
FREQ−(hasRegionName .2, (0,1))

MAND({ hasRegionId .1}, Region)
MAND({ hasRegionName .1}, Region)

PRIMARY(Region hasRegionId .2)
LABEL(Region , hasRegionName .2)

Listing 3.27: ORM2bin example

Declaration ( Class (: Region))
Declaration ( Datatype (: RegionId))
DatatypeDefinition (: RegionId x s d : i n t e g e r )
Declaration ( Datatype (: RegionName))
DatatypeDefinition (: RegionName x s d : s t r i n g )
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Regions
Region id Region name

10039 France - Rhône
105 Italy
109 Spain

Table 3.12: Region data

Declaration ( DataProperty (: hasRegionId))
Declaration ( DataProperty (: hasRegionName))

DataPropertyDomain (: hasRegionId :Region)
DataPropertyRange (: hasRegionId :RegionId)
DataPropertyDomain (: hasRegionName :Region)
DataPropertyRange (: hasRegionName :RegionName)

DataPropertyDomain (: hasRegionId DataIntersectionOf (
DataMinCardinality (0 :hasRegionId)

DataMaxCardinality (1 :hasRegionId)))
% FREQ-(hasRegionId.2, (0,1)) not mapped
DataPropertyDomain (: hasRegionName

DataIntersectionOf ( DataMinCardinality (0 :
hasRegionName) DataMaxCardinality (1 :
hasRegionName)))

% FREQ-(hasRegionName.2, (0,1)) not mapped

SubClassOf (: Region DataMinCardinality (1 :
hasRegionName ))

SubClassOf (: Region DataMinCardinality (1 :
hasRegionName ))

Listing 3.28: OWL 2 mapped example

% Actual OWL 2 ontology for Region
Declaration ( Class (: Region))

Listing 3.29: Actual OWL 2 ontology used

The relations linked to PRIMARY and LABEL in ORM2bin are not mapped to
their corresponding OWL 2 declarations. Instead, for each individual we use the
value of the role in PRIMARY as part of the individual’s IRI and the value of
the role in LABEL as the rdfs:label. We discard the properties :hasRegionId and
:hasRegionName as these concepts are not useful for Quelo, but the data linked
to these relations will be used in the individual assertions. Given the data3 in
Table 3.12, to add this data to the ontology in Listing 3.28 we would add the
declarations and assertions of Listing 3.30. In the actual ontology; however, we
add the ones shown in Listing 3.31. The number of assertions is lower and for
our purposes both provide the same data. Although in the second case we know
which is the preferred identifier and label for the class, and use them accordingly.

Declaration ( NamedIndividual (: reg10039))
Declaration ( NamedIndividual (: reg105))

3Data obtained from Wine.com
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Declaration ( NamedIndividual (: reg109))
DataPropertyAssertion (: hasRegionId :reg10039 "10039

"^^ x s d : i n t e g e r )
DataPropertyAssertion (: hasRegionName :reg10039 "

France − Rhône"^^ x s d : s t r i n g )
DataPropertyAssertion (: hasRegionId :reg10039 "105"

^^ x s d : i n t e g e r )
DataPropertyAssertion (: hasRegionName :reg10039 "

Italy"^^ x s d : s t r i n g )
DataPropertyAssertion (: hasRegionId :reg10039 "109"

^^ x s d : i n t e g e r )
DataPropertyAssertion (: hasRegionName :reg10039 "

Spain"^^ x s d : s t r i n g )

Listing 3.30: OWL 2 assertions example

Declaration ( NamedIndividual (: reg10039))
Declaration ( NamedIndividual (: reg105))
Declaration ( NamedIndividual (: reg109))
AnnotationAssertion ( r d f s : l a b e l :reg10039 "France − 

Rhône")
AnnotationAssertion ( r d f s : l a b e l :reg105 "Italy")
AnnotationAssertion ( r d f s : l a b e l :reg109 "Spain")

Listing 3.31: OWL 2 assertions and annotations example

We include the taxonomy of the resulting ontology in Appendix E.



Chapter 4

Quelo: Querying Data in
Ontologies

In this chapter we will introduce Quelo, Section 4.1, and some of its extensions
and future work, Section 4.2. In Section 4.3 we explain the validation process
and our results.

4.1 Quelo

Disclaimer: most of the description of Quelo is from a previous report [23].
Quelo is a Natural Language Interface for ontologies which attempts to

cover the gap between the information stored in ontologies and the lay user
[9]. The main idea is to allow the user to construct a natural language query
according to an underlying ontology. The framework guides the user with menus
to create a query which is consistent with the ontology. Because Quelo is a
guided framework the user does not have to have any previous knowledge about
the ontology structure or the language used to execute the query. The text
shown to the user is automatically generated from the formal query language
of the ontology with a Natural Language Generation (NLG) process based on
templates. An example of such a query is shown in Figure 4.1.

Figure 4.1: Quelo query example
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Figure 4.2: Quelo results table

The query changes according to the choices of the user showing the ver-
balisation of the query in English. Given a query the user can extend it by
adding compatible concepts or new properties for an existing concept. The user
can also replace part of the query, or all of it, with a related concept; either a
super-concept, an equivalent concept, or a sub-concept. It is also possible to
delete a selection of the query. The user may also select one or more concepts as
the projected concepts for the query [35].

The current implementation of Quelo shows the results of the query, a list of
IRIs, in a modal window as a table, where each of the columns has as the label
of the concept as header. The answers for the query in Figure 4.1 can be seen in
Figure 4.2.

New extensions under development give better verbalisations based in Tree-
Adjoining Grammars [34] and provide descriptive headers for the results table
[23].

The next step is to include data values in the query. But any progress in
this direction requires an ontology with data compatible with Quelo’s query tool.
With an ontology with real world data these new features can be tested and
validated.

4.2 Quelo extensions
The current version of Quelo only queries the TBox of the ontology. The answers
given are from the assertions in the ABox, but there is no possibility to use the
values in the ABox to constraint the query. To test any further extension of
Quelo we need an ontology with data values.

Using the new ontology, for example, we can create a better results table, as
shown in Figure 4.3. Instead of just presenting the list of IRIs we provide links
to the description web page of each Appellation provided by Wine.com. The
rdfs:label value is used as the link name, and it gives a descriptive name to each
entry. The header helps the user know to which concepts all these names belong.
We are exploring other extensions to use the data already obtained such as the
one proposed by Ngo [30].

4.3 Ontology validation
To validate the ontology we created from the methodology and mapping just
described, we use Quelo Scramble feature. This feature creates a random query
from the ontology using the allowed operations of Quelo query tool and outputs
the verbalisation for each of them.
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Figure 4.3: Quelo appellations results

Figure 4.4: Quelo wine ontology query example

If an ontology is not correctly specified, Quelo will create valid queries accord-
ing to the specification, but incorrect according to the domain the ontology is
modelling. The generated verbalisations are queries any user can create from the
ontology using Quelo. If the query does not reflect the domain of the ontology
this defeats the purpose of the ontology specification.

We generated 36 random queries from our ontology, of which Quelo produced
176 unique verbalizations. Quelo produces several verbalisations per query, but
only displays the best one according to its ranking system. Of these verbalisations
all the best ones, the ones displayed, were correct with respect to the domain
modelled.

Some of the queries included up to seven different concepts, but the verbali-
sations were coherent. For example, the query shown in Figure 4.4 spans over
five concepts of the ontology and the verbalisation is fluid and unambiguous.

Some verbalisation improvements are still possible. Quelo creates a lexicon for
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Figure 4.5: Quelo generic relation

Figure 4.6: Quelo determiners discrepancy

classes and properties based on the fragment of the IRI and its annotations. One
of the relations was not classified in the lexicon; and therefore, no verbalisations
included this relation. This relation was “isOfVarietalOrBlend ” and, as shown
in Figure 4.5, Quelo treats it as a generic string in the menus. But because there
is no entry for it in the lexicon, no verbalisation are produced with it.

Another area of improvement are the determiners for many to many relations.
In the ontology Wine Product and Product Attribute are associate with a many
to many relation hasAttribute. However, in the verbalisation of Figure 4.6 the
pronoun used implies that there is only one Product Attribute assigned to each
Wine Product. A better verbalisation is “I am looking for a wine product with
geo location one of whose attributes should be . . . ”

We also produced 33 verbalisations from 13 random queries with the on-
tology, but keeping the hasName relations. Adding these relations produced
verbalisations as the following

∗ I am looking for a type name.
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∗ I am looking for a thing whose wine type name should be a type name.

∗ I am looking for a wine type whose wine type name should be a type name.

These queries hinder the exploration of the ontology. The only information we
obtain is that a Wine Type has a Type Name, which is expected. Everything
should have a name.

By removing these relations from the ontology, we remove this sort of queries.
With all the remaining queries new concepts and relations of the ontology may
be discovered. Therefore, removing these relations had a positive impact in the
exploration of the ontology.
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Conclusions

Data is useful as long as it is accessible. Ontologies remove the need to know
the whole structure of the data before querying. And tools like Quelo remove
the need to know the query language. So data in ontologies is fully accessible
and desirable.

In this thesis we described a methodology to port raw data into an ontology.
With this methodology any unstructured data can be made accessible to any
user. We also presented a mapping from a well defined subset of ORM2 into
OWL 2.

The ontology created is valid according to the specifications of Quelo for
which it was created. Therefore, we can use this ontology as a data source to
test new extensions of Quelo, particularly the ones which will include attributes
and constants to the query.

Although ORM2 and OWL2 come from different perspectives, they can
be used together to complement each other. ORM2 diagrams are useful to
communicate with the domain expert or just to visualize the concept model in
an concise form. ORM2 provides with a wide range of constructs to represent
data constraints. OWL2 gives all the possibilities of the Semantic Web. Data
in ontologies is reachable to anyone in the Web. One can also reason on the
ontology and extract inferences from the knowledge represented. The mapping
created in this thesis allows us to obtain the benefits of both representations.

5.1 Future work

Further development could be made to expand ORM2bin to cover other common
constructs of ORM2 such as value restrictions. However, to make a formal
mapping, first the construct should be given a DL semantics. The FOL and set
semantics for this and other constructs exists, but the encoding into DL, more
specifically SROIQ(D) DL which is the logic used by OWL2, is lacking. Once
the DL semantics for these constructs is formulated a mapping to the OWL2
direct semantics can be done.

Most of the cases involving a datatype as the second role of the relation
where ignored in the present mapping. We could explore reformulations of
these constraints using OWL2 data range expressions. As Quelo only creates
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queries regarding the terminology of the ontology, this omissions do not impact
the validation of the ontology using Quelo. However, these constraints may
be relevant to other applications and therefore they should be included in the
ontology if they were present in the conceptual model.
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Appendix A

Properties Descriptions

We changed the names of some of the properties and objects to remove ambiguous
terms. For example, we changed Year to VintageYear and Varietal to VarietalBlend .
The object Vineyard actually refers to the wine producer, and we changed the
name to Producer (See Table A.1). For the construction of the conceptual schema
we ignored some properties, like the URLs to other products. We also removed
the redundant the property Type. All the data was obtained from Wine.com.

Prod Id Product Name “Vineyard” [Id]

79426 Massolino Vigna Margheria Barolo 2000 Massolino[5244]
129221 Massolino Vigna Margheria Barolo 2007 Massolino[5244]
130527 Massolino Vigna Margheria Barolo 2009 Massolino[5244]

78390 Massolino Vigna Parafada Barolo 2000 Massolino[5244]
130528 Massolino Vigna Parafada Barolo 2009 Massolino[5244]

130532 Massolino Vigna Parussi Barolo 2009 Massolino[5244]

91543 Massolino Barolo Vigna Rionda Riserva 2000 Massolino[5244]
130536 Massolino Vigna Rionda Riserva Barolo 2007 Massolino[5244]

Table A.1: Vineyards are producers.

http://www.wine.com/
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Property Abbrv. Description
WineProduct_Id WPID A unique identifier for the wine product.
Name WPN The product name.
GeoLocation_Url WPG The URL to a map of the wine.
Url WPU The URL to the product detail web page.
PriceMin WPM The starting point for the price.
PriceMax WPX The maximum price point across all markets for this product.
PriceRetail WPR The suggested retail price for the product.
Ratings_HighestScore WPT The highest score given to the product. Ex: 0,1,..,100
Reviews_HighestScore WPV The highest review score given to the product. Ex: 0,1,..,5
Type WPT Identifies the type of product that is being described. For wines is always ’Wine’
VintageYear WPY The vintage year of the product or ‘Non-Vintage’. Can be null. Ex: 2013, 2014
Appellation_Id AID A unique identifier for the appellation to which the product belongs.
Appellation_Name AN The name of the appellation. Ex: Veneto, Tuscany
Appellation_Url AU The URL to the other products in the same appellation.
Region_Id RID A unique identifier for the region that corresponds to the appellation.
Region_Name RN The name of the region. Ex: Italy, France - Bordeaux
Region_Url RU The URL to the other products in the same region.
VarietalBlend_Id VBID A unique identifier for the varietal that the product belongs to.
VarietalBlend_Name VBN The name of the varietal. Ex: Merlot, Bordeaux Red Blends, Other Red Blends
VarietalBlend_Url VBU The URL to other products that have the same varietal.
WineType_Id TID A unique identifier for the type of wine that the varietal corresponds to.
WineType_Name TN The name of the type of wine. Ex: White Wines, Red Wines, Champagne & Sparkling
WineType_Url TU The URL to other products that have the same wine type.
Producer_Id PID A unique identifier for the producer that creates the product.
Producer_Name PN The name of the producer. Ex: Moet & Chandon, Frescobaldi
Producer_Url PU The URL to the description of the producer.
Producer_ImageUrl PIU The URL to an image of the producer.
Producer_GeoLocation_Url PG The URL to a map of the producer.
ProductAttribute_Id PAID The unique id for the attribute of the product.
ProductAttribute_Name PAN The name, or description, of the attribute. Ex: Boutique Wines
ProductAttribute_Url PAU The URL to other products that have the same attribute. Can be null.
ProductAttribute_ImageUrl PAIU The URL to the image representing this attribute. Can be null.

Table A.2: Wine.com properties
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Wine Schema Dependencies

B.1 Functional dependencies

wineProduct : {WPID} → {YWID,WPU,WPM,WPX,WPR,WPT,WPV,BT}

(B.1)

wineProductWithGeoLocation : {WPID} → {WPG} (B.2)
wineProduct : {YWID,BT} → {WPID} (B.3)
appellation : {AID} → {AN,RID} (B.4)

region : {RID} → {RN} (B.5)
varietalBlend : {V BID} → {V BN, TID} (B.6)

wineType : {TID} → {TN} (B.7)
producer : {PID} → {PN,PU} (B.8)

producerWithImage : {PID} → {PIU} (B.9)
producerWithGeoLocation : {PID} → {PG} (B.10)

productAttribute : {PAID} → {PAN} (B.11)
productAttributeWithImage : {PAID} → {PAIU} (B.12)

wine : {WID} → {WPN,PID} (B.13)
wine : {WPN} → {WID} (B.14)

yearlyWine : {YWID} → {WID,WPY,AID, V BID}
(B.15)

yearlyWine : {WPN,WPY } → {YWID} (B.16)

B.2 Multivalued dependencies

hasAttribute : {WPID}� {PAID} (B.17)
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B.3 Inclusion dependencies

appellation[RID] ⊆ region[RID] (B.18)
hasAttribute[PAID] ⊆ productAttribute[PAID] (B.19)
hasAttribute[WPID] ⊆ wineProduct[WPID] (B.20)
producerWithGeoLocation[PID] ⊆ Producer[PID] (B.21)
producerWithImage[PID] ⊆ producer[PID] (B.22)
productAttributeWithImage[PAID] ⊆ productAttribute[PAID] (B.23)
varietalBlend[TID] ⊆ wineType[TID] (B.24)
wine[PID] ⊆ producer[PID] (B.25)
wineProduct[YWID] ⊆ yearlyWine[YWID] (B.26)
wineProductWithGeoLocation[WPID] ⊆ wineProduct[WPID] (B.27)
yearlyWine[AID] ⊆ appellation[AID] (B.28)
yearlyWine[V BID] ⊆ varietalBlend[V BID] (B.29)
yearlyWine[WID] ⊆ wine[WID] (B.30)
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EBNF Grammars for ORM*

C.1 ORM2plus grammar
〈Schema〉 ::= 〈Entities〉 〈Values〉 〈Relations〉 〈Constraint〉*

〈Entities〉 ::= 'ENTITYTYPES:{' 〈EntityName〉( ',' 〈EntityName〉)* '}'

〈Values〉 ::= 'VALUETYPES:{' 〈ValueName〉( ',' 〈ValueName〉)* '}'

〈Relations〉 ::= 'RELATIONS:{' 〈RelationName〉( ',' 〈RelationName〉)* '}'

〈EntityName〉 ::= 〈Identifier〉

〈ValueName〉 ::= 〈Identifier〉

〈RelationName〉 ::= 〈Identifier〉

〈Identifier〉 ::= [a-zA-Z][a-zA-Z_]*

〈Constraint〉 ::= 〈Type〉 | 〈Freq〉 | 〈Mand〉 | 〈RSet〉 | 〈OSet〉 | 〈OCard〉 | 〈RCard〉
| 〈Obj 〉 | 〈Ring〉 | 〈VVal〉

〈Type〉 ::= 'TYPE(' 〈LocRole〉 ',' 〈ObjectName〉 ')'

〈LocRole〉 ::= 〈RelationName〉 '.' (〈Int〉 | 〈ObjectName〉)

〈ObjectName〉 :: = 〈EntityName〉 | 〈ValueName〉

〈Freq〉 ::= 'FREQ(' 〈LocRoleSet〉 ',' 〈Joins〉 ',〈' 〈MinVal〉 ',' 〈MaxValInf 〉 '〉)'

〈LocRoleSet〉 ::= '{' 〈LocRole〉( ',' 〈LocRole〉)* '}'

〈Joins〉 ::= '{' 〈LocRoleJoin〉( ',' 〈LocRoleJoin〉)* '}'

〈LocRoleJoin〉 ::= '〈' 〈LocRole〉 '=' 〈LocRole〉 '〉'

〈MinVal〉 ::= 〈Int〉
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〈MaxValInf 〉 ::= 〈Int〉 | 'inf'

〈Mand〉 ::= 'MAND(' 〈LocRoleSet〉 ',' 〈ObjectName〉 ')'

〈RSet〉 ::= 'R-SET' 〈RSetType〉 '((' 〈LocRoleSet〉 ',' 〈Joins〉 '),(' 〈LocRoleSet〉
',' 〈Joins〉 '),{' 〈LocRoleTuple〉( ',' 〈LocRoleTuple〉)* '})'

〈RSetType〉 ::= 'Exc' | 'Sub'

〈LocRoleTuple〉 ::= '(' 〈LocRole〉 ',' 〈LocRole〉 ')'

〈OSet〉 ::= 'O-SET' 〈OSetType〉 '({' 〈ObjectName〉( ',' 〈ObjectName〉)* '},' 〈ObjectName〉
')'

〈OSetType〉 ::= 'Isa' | 'Ex' | 'Tot'

〈OCard〉 ::= 'O-CARD(' 〈ObjectName〉 ') = (' 〈MinVal〉 ',' 〈MaxValInf 〉 ')'

〈RCard〉 ::= 'R-CARD(' 〈LocRole〉 ') = (' 〈MinVal〉 ',' 〈MaxValInf 〉 ')'

〈Obj 〉 ::= 'OBJ(' 〈RelationName〉 ',' 〈ObjectName〉 ')'

〈Ring〉 ::= 'RING' 〈RingType〉 '(' 〈LocRole〉 ',' 〈LocRole〉 ')'

〈RingType〉 ::= 'Irr' | 'Asym' | 'Trans' | 'Intr' | 'Antisym' | 'Acyclic' | 'Sym' |
'Ref' | . . .

〈VVal〉 ::= 'V-VAL(' 〈ValueName〉 ') = {' (〈Int〉( ',' 〈Int〉)* | 〈QuotedString〉(
',' 〈QuotedString〉)*) '}'

〈Int〉 ::= [1-9][0-9]*

〈QuotedString〉 ::= ' ‘' [^’]+ '’ '

C.2 ORM2zero grammar

Two production rules are defined for the constructs FREQ– and R-SET–. Also
〈Constraint〉 is redefined.

〈FreqMinus〉 ::= 'FREQ–(' 〈LocRole〉 ',〈' 〈MaxVal〉 ',' 〈MaxValInf 〉 '〉)'

〈RSetMinus〉 ::= 'R-SET –' 〈RSetType〉 '(' 〈LocRoleSet〉 ',' 〈LocRoleSet〉 ')'

〈Constraint〉 ::= 〈Type〉 | 〈FreqMinus〉 | 〈Mand〉 | 〈RSetMinus〉 | 〈OSet〉 | 〈Obj 〉

C.3 ORM2bin grammar

The main difference between ORM2zero and ORM2bin is the redefinition of
〈Constraint〉 to remove 〈Obj〉 and add 〈Primary〉 and 〈Label〉 .
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〈Constraint〉 ::= 〈Type〉 | 〈FreqMinus〉 | 〈Mand〉 | 〈RSetMinus〉 | 〈OSet〉 | 〈Primary〉
| 〈Label〉

〈Primary〉 ::= 'PRIMARY(' 〈ObjectName〉 ',' 〈LocRole〉 ')'

〈Label〉 ::= 'LABEL(' 〈ObjectName〉 ',' 〈LocRole〉 ')'
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Wine Schema in ORM2bin

Syntax

1 RELATIONS: {hasProducerUrl ,hasMinPrice ,hasDetailUrl
,hasProducerName ,hasAttributeName ,hasRetailPrice
,hasVarietalOrBlendName ,hasMaxPrice ,
isOfVarietalOrBlend ,hasWineTypeName ,hasImageUrl ,
belongsToAppellation ,isOfWine ,
hasHighestRatingScore ,isOfVintageYear ,
hasRegionName ,hasAppellationName ,hasMapUrl ,
hasProducerImageUrl ,createdByProducer ,
hasAttribute ,correspondsToTypeOfWine ,hasWineName
,hasHighestReviewScore ,isOfBottleType ,
isOfYearlyWine ,hasLocationUrl ,
correspondsToRegion}

2 ENTITYTYPES: {Producer ,WineProductWithGeoLocation ,
VarietalBlend ,ProductAttribute ,WineProduct ,
ProductAttributeWithImage ,Appellation ,YearlyWine
,Wine ,WineType ,ProducerWithImage ,Region ,
ProducerWithGeoLocation}

3 VALUETYPES: {Url ,VarietalBlendName ,Year ,ImageUrl ,
TypeName ,Price ,ReviewsScore ,RegionName ,
ProducerName ,AttributeName ,AppellationName ,
RatingsScore ,BottleType ,WineName ,ImageUrl}

4

5 FREQ−(belongsToAppellation .1, <1,1>)
6 FREQ−(correspondsToRegion .1, <1,1>)
7 FREQ−(correspondsToTypeOfWine .1, <1,1>)
8 FREQ−(createdByProducer .1, <1,1>)
9 FREQ−(hasAppellationName .1, <1,1>)

10 FREQ−(hasAttributeName .1, <1,1>)
11 FREQ−(hasDetailUrl .1, <1,1>)
12 FREQ−(hasHighestRatingScore .1, <1,1>)
13 FREQ−(hasHighestReviewScore .1, <1,1>)
14 FREQ−(hasImageUrl .1, <1,1>)
15 FREQ−(hasLocationUrl .1, <1,1>)
16 FREQ−(hasMapUrl.1, <1,1>)
17 FREQ−(hasMaxPrice .1, <1,1>)
18 FREQ−(hasMinPrice .1, <1,1>)
19 FREQ−(hasProducerImageUrl .1, <1,1>)
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20 FREQ−(hasProducerName .1, <1,1>)
21 FREQ−(hasProducerUrl .1, <1,1>)
22 FREQ−(hasRegionName .1, <1,1>)
23 FREQ−(hasRetailPrice .1, <1,1>)
24 FREQ−(hasVarietalOrBlendName .1, <1,1>)
25 FREQ−(hasWineName .1, <1,1>)
26 FREQ−(hasWineTypeName .1, <1,1>)
27 FREQ−(isOfBottleType .1, <1,1>)
28 FREQ−(isOfVarietalOrBlend .1, <1,1>)
29 FREQ−(isOfVintageYear .1, <1,1>)
30 FREQ−(isOfWine.1, <1,1>)
31 FREQ−(isOfYearlyWine .1, <1,1>)
32

33 MAND({ belongsToAppellation .1}, YearlyWine)
34 MAND({ correspondsToRegion .1}, Appellation)
35 MAND({ correspondsToTypeOfWine .1}, VarietalBlend)
36 MAND({ createdByProducer .1}, Wine)
37 MAND({ hasAppellationName .1}, Appellation)
38 MAND({ hasAttributeName .1}, ProductAttribute)
39 MAND({ hasDetailUrl .1}, WineProduct)
40 MAND({ hasHighestRatingScore .1}, WineProduct)
41 MAND({ hasHighestReviewScore .1}, WineProduct)
42 MAND({ hasImageUrl .1}, ProductAttributeWithImage)
43 MAND({ hasLocationUrl .1}, WineProductWithGeoLocation

)
44 MAND({ hasMapUrl .1}, ProducerWithGeoLocation)
45 MAND({ hasMaxPrice .1}, WineProduct)
46 MAND({ hasMinPrice .1}, WineProduct)
47 MAND({ hasProducerImageUrl .1}, ProducerWithImage)
48 MAND({ hasProducerName .1}, Producer)
49 MAND({ hasProducerUrl .1}, Producer)
50 MAND({ hasRegionName .1}, Region)
51 MAND({ hasRetailPrice .1}, WineProduct)
52 MAND({ hasVarietalOrBlendName .1}, VarietalBlend)
53 MAND({ hasWineName .1}, Wine)
54 MAND({ hasWineTypeName .1}, WineType)
55 MAND({ isOfBottleType .1}, WineProduct)
56 MAND({ isOfVarietalOrBlend .1}, YearlyWine)
57 MAND({ isOfVintageYear .1}, YearlyWine)
58 MAND({ isOfWine .1}, YearlyWine)
59 MAND({ isOfYearlyWine .1}, WineProduct)
60

61 TYPE(belongsToAppellation .1, YearlyWine)
62 TYPE(belongsToAppellation .2, Appellation)
63 TYPE(correspondsToRegion .1, Appellation)
64 TYPE(correspondsToRegion .2, Region)
65 TYPE(correspondsToTypeOfWine .1, VarietalBlend)
66 TYPE(correspondsToTypeOfWine .2, WineType)
67 TYPE(createdByProducer .1, Wine)
68 TYPE(createdByProducer .2, Producer)
69 TYPE(hasAppellationName .1, Appellation)
70 TYPE(hasAppellationName .2, AppellationName)
71 TYPE(hasAttribute .1, WineProduct)
72 TYPE(hasAttribute .2, ProductAttribute)
73 TYPE(hasAttributeName .1, ProductAttribute)
74 TYPE(hasAttributeName .2, AttributeName)
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75 TYPE(hasDetailUrl .1, WineProduct)
76 TYPE(hasDetailUrl .2, Url)
77 TYPE(hasHighestRatingScore .1, WineProduct)
78 TYPE(hasHighestRatingScore .2, RatingsScore)
79 TYPE(hasHighestReviewScore .1, WineProduct)
80 TYPE(hasHighestReviewScore .2, ReviewsScore)
81 TYPE(hasImageUrl .1, ProductAttributeWithImage)
82 TYPE(hasImageUrl .2, ImageUrl)
83 TYPE(hasLocationUrl .1, WineProductWithGeoLocation)
84 TYPE(hasLocationUrl .2, Url)
85 TYPE(hasMapUrl.1, ProducerWithGeoLocation)
86 TYPE(hasMapUrl.2, Url)
87 TYPE(hasMaxPrice .1, WineProduct)
88 TYPE(hasMaxPrice .2, Price)
89 TYPE(hasMinPrice .1, WineProduct)
90 TYPE(hasMinPrice .2, Price)
91 TYPE(hasProducerImageUrl .1, ProducerWithImage)
92 TYPE(hasProducerImageUrl .2, ImageUrl)
93 TYPE(hasProducerName .1, Producer)
94 TYPE(hasProducerName .2, ProducerName)
95 TYPE(hasProducerUrl .1, Producer)
96 TYPE(hasProducerUrl .2, Url)
97 TYPE(hasRegionName .1, Region)
98 TYPE(hasRegionName .2, RegionName)
99 TYPE(hasRetailPrice .1, WineProduct)

100 TYPE(hasRetailPrice .2, Price)
101 TYPE(hasVarietalOrBlendName .1, VarietalBlend)
102 TYPE(hasVarietalOrBlendName .2, VarietalBlendName)
103 TYPE(hasWineName .1, Wine)
104 TYPE(hasWineName .2, WineName)
105 TYPE(hasWineTypeName .1, WineType)
106 TYPE(hasWineTypeName .2, TypeName)
107 TYPE(isOfBottleType .1, WineProduct)
108 TYPE(isOfBottleType .2, BottleType)
109 TYPE(isOfVarietalOrBlend .1, YearlyWine)
110 TYPE(isOfVarietalOrBlend .2, VarietalBlend)
111 TYPE(isOfVintageYear .1, YearlyWine)
112 TYPE(isOfVintageYear .2, Year)
113 TYPE(isOfWine.1, YearlyWine)
114 TYPE(isOfWine.2, Wine)
115 TYPE(isOfYearlyWine .1, WineProduct)
116 TYPE(isOfYearlyWine .2, YearlyWine)
117

118 O−SET_Isa({ ProducerWithGeoLocation ,
ProducerWithImage}, Producer)

119 O−SET_Isa({ ProductAttributeWithImage},
ProductAttribute)

120 O−SET_Isa({ WineProductWithGeoLocation}, WineProduct
)

121

122 % Not allowed in ORM Zero
123 % FREQ({isOfBottleType.2, isOfYearlyWine.2}, {<

isOfBottleType.1=isOfYearlyWine.2>}, <1, 1>)
124 % FREQ({isOfVintageYear.2, isOfWine.2}, {<

isOfVintageYear.1=isOfWine.1>}, <1, 1>)
125
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126 % V-VAL(Price)={0,..,inf}
127 % V-VAL(RatingsScore)={0,..,100}
128 % V-VAL(ReviewsScore)={0,..,5}
129 % V-VAL(TypeName)={ Red Wine, Rose Wine, Champagne

\&amp; Sparkling , Dessert, Sherry \&amp; Port,
White Wine, Sake,}

130

131 % Frequency constraints in ORM Plus syntax
132 % FREQ({belongsToAppellation.1}, {}, <1, 1>)
133 % FREQ({correspondsToRegion.1}, {}, <1, 1>)
134 % FREQ({correspondsToTypeOfWine.1}, {}, <1, 1>)
135 % FREQ({createdByProducer.1}, {}, <1, 1>)
136 % FREQ({hasAppellationName.1}, {}, <1, 1>)
137 % FREQ({hasAttributeName.1}, {}, <1, 1>)
138 % FREQ({hasDetailUrl.1}, {}, <1, 1>)
139 % FREQ({hasHighestRatingScore.1}, {}, <1, 1>)
140 % FREQ({hasHighestReviewScore.1}, {}, <1, 1>)
141 % FREQ({hasImageUrl.1}, {}, <1, 1>)
142 % FREQ({hasLocationUrl.1}, {}, <1, 1>)
143 % FREQ({hasMapUrl.1}, {}, <1, 1>)
144 % FREQ({hasMaxPrice.1}, {}, <1, 1>)
145 % FREQ({hasMinPrice.1}, {}, <1, 1>)
146 % FREQ({hasProducerImageUrl.1}, {}, <1, 1>)
147 % FREQ({hasProducerName.1}, {}, <1, 1>)
148 % FREQ({hasProducerUrl.1}, {}, <1, 1>)
149 % FREQ({hasRegionName.1}, {}, <1, 1>)
150 % FREQ({hasRetailPrice.1}, {}, <1, 1>)
151 % FREQ({hasVarietalOrBlendName.1}, {}, <1, 1>)
152 % FREQ({hasWineName.1}, {}, <1, 1>)
153 % FREQ({hasWineTypeName.1}, {}, <1, 1>)
154 % FREQ({isOfBottleType.1}, {}, <1, 1>)
155 % FREQ({isOfVarietalOrBlend.1}, {}, <1, 1>)
156 % FREQ({isOfVintageYear.1}, {}, <1, 1>)
157 % FREQ({isOfWine.1}, {}, <1, 1>)
158 % FREQ({isOfYearlyWine.1}, {}, <1, 1>)
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Wine.com Ontology

Prefix( x s d :=<http ://www.w3.org /2001/ XMLSchema#>)
Prefix( o w l :=<http ://www.w3.org /2002/07/ o w l #>)
Prefix (:=<http ://www.semanticweb.org/xikjc /2015/3/

WineCom. o w l #>)
Prefix(xml:=<http ://www.w3.org/XML /1998/ namespace >)
Prefix(rdf:=<http ://www.w3.org/1999/02/22−rdf−

syntax−ns#>)
Prefix( r d f s :=<http ://www.w3.org /2000/01/rdf−schema

#>)

Ontology(<http ://www.semanticweb.org/xikjc /2015/3/
WineCom. ow l >

Declaration ( Class (: Appellation))
SubClassOf (: Appellation ObjectMinCardinality (1 :

correspondsToRegion))
Declaration ( Class (: Producer))
SubClassOf (: Producer DataMinCardinality (1 :

hasProducerUrl))
Declaration ( Class (: ProducerWithGeoLocation))
SubClassOf (: ProducerWithGeoLocation :Producer)
SubClassOf (: ProducerWithGeoLocation

DataMinCardinality (1 :hasMapUrl))
Declaration ( Class (: ProducerWithImage))
SubClassOf (: ProducerWithImage :Producer)
SubClassOf (: ProducerWithImage DataMinCardinality (1

:hasProducerImageUrl))
Declaration ( Class (: ProductAttribute))
Declaration ( Class (: ProductAttributeWithImage))
SubClassOf (: ProductAttributeWithImage :

ProductAttribute)
SubClassOf (: ProductAttributeWithImage

DataMinCardinality (1 :hasImageUrl))
Declaration ( Class (: Region))
Declaration ( Class (: VarietalBlend))
SubClassOf (: VarietalBlend ObjectMinCardinality (1 :

correspondsToTypeOfWine))
Declaration ( Class (:Wine))
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SubClassOf (:Wine ObjectMinCardinality (1 :
createdByProducer))

Declaration ( Class (: WineProduct))
SubClassOf (: WineProduct ObjectMinCardinality (1 :

isOfYearlyWine))
SubClassOf (: WineProduct DataMinCardinality (1 :

hasDetailUrl))
SubClassOf (: WineProduct DataMinCardinality (1 :

hasHighestRatingScore))
SubClassOf (: WineProduct DataMinCardinality (1 :

hasHighestReviewScore))
SubClassOf (: WineProduct DataMinCardinality (1 :

hasMaxPrice))
SubClassOf (: WineProduct DataMinCardinality (1 :

hasMinPrice))
SubClassOf (: WineProduct DataMinCardinality (1 :

hasRetailPrice))
SubClassOf (: WineProduct DataMinCardinality (1 :

isOfBottleType))
Declaration ( Class (: WineProductWithGeoLocation))
SubClassOf (: WineProductWithGeoLocation :WineProduct

)
SubClassOf (: WineProductWithGeoLocation

DataMinCardinality (1 :hasLocationUrl))
Declaration ( Class (: WineType))
Declaration ( Class (: YearlyWine))
SubClassOf (: YearlyWine ObjectMinCardinality (1 :

belongsToAppellation))
SubClassOf (: YearlyWine ObjectMinCardinality (1 :

isOfVarietalOrBlend))
SubClassOf (: YearlyWine ObjectMinCardinality (1 :

isOfWine))
SubClassOf (: YearlyWine DataMinCardinality (1 :

isOfVintageYear))
Declaration ( ObjectProperty (: belongsToAppellation))
ObjectPropertyDomain (: belongsToAppellation :

YearlyWine)
ObjectPropertyDomain (: belongsToAppellation

ObjectMinCardinality (0 :belongsToAppellation))
ObjectPropertyDomain (: belongsToAppellation

ObjectMaxCardinality (1 :belongsToAppellation))
ObjectPropertyRange (: belongsToAppellation :

Appellation)
Declaration ( ObjectProperty (: correspondsToRegion))
ObjectPropertyDomain (: correspondsToRegion :

Appellation)
ObjectPropertyDomain (: correspondsToRegion

ObjectMinCardinality (0 :correspondsToRegion))
ObjectPropertyDomain (: correspondsToRegion

ObjectMaxCardinality (1 :correspondsToRegion))
ObjectPropertyRange (: correspondsToRegion :Region)
Declaration ( ObjectProperty (: correspondsToTypeOfWine

))
ObjectPropertyDomain (: correspondsToTypeOfWine :

VarietalBlend)
ObjectPropertyDomain (: correspondsToTypeOfWine

ObjectMinCardinality (0 :correspondsToTypeOfWine)
)



Appendix E. Wine.com Ontology E Wine.com Ontology

ObjectPropertyDomain (: correspondsToTypeOfWine
ObjectMaxCardinality (1 :correspondsToTypeOfWine)
)

ObjectPropertyRange (: correspondsToTypeOfWine :
WineType)

Declaration ( ObjectProperty (: createdByProducer))
ObjectPropertyDomain (: createdByProducer :Wine)
ObjectPropertyDomain (: createdByProducer

ObjectMinCardinality (0 :createdByProducer))
ObjectPropertyDomain (: createdByProducer

ObjectMaxCardinality (1 :createdByProducer))
ObjectPropertyRange (: createdByProducer :Producer)
Declaration ( ObjectProperty (: hasAttribute))
ObjectPropertyDomain (: hasAttribute :WineProduct)
ObjectPropertyRange (: hasAttribute :ProductAttribute

)
Declaration ( ObjectProperty (: isOfVarietalOrBlend))
ObjectPropertyDomain (: isOfVarietalOrBlend :

YearlyWine)
ObjectPropertyDomain (: isOfVarietalOrBlend

ObjectMinCardinality (0 :isOfVarietalOrBlend))
ObjectPropertyDomain (: isOfVarietalOrBlend

ObjectMaxCardinality (1 :isOfVarietalOrBlend))
ObjectPropertyRange (: isOfVarietalOrBlend :

VarietalBlend)
Declaration ( ObjectProperty (: isOfWine))
ObjectPropertyDomain (: isOfWine :YearlyWine)
ObjectPropertyDomain (: isOfWine ObjectMinCardinality

(0 :isOfWine))
ObjectPropertyDomain (: isOfWine ObjectMaxCardinality

(1 :isOfWine))
ObjectPropertyRange (: isOfWine :Wine)
Declaration ( ObjectProperty (: isOfYearlyWine))
ObjectPropertyDomain (: isOfYearlyWine :WineProduct)
ObjectPropertyDomain (: isOfYearlyWine

ObjectMinCardinality (0 :isOfYearlyWine))
ObjectPropertyDomain (: isOfYearlyWine

ObjectMaxCardinality (1 :isOfYearlyWine))
ObjectPropertyRange (: isOfYearlyWine :YearlyWine)
Declaration ( DataProperty (: hasDetailUrl))
DataPropertyDomain (: hasDetailUrl :WineProduct)
DataPropertyDomain (: hasDetailUrl DataMinCardinality

(0 :hasDetailUrl))
DataPropertyDomain (: hasDetailUrl DataMaxCardinality

(1 :hasDetailUrl))
DataPropertyRange (: hasDetailUrl :Url)
Declaration ( DataProperty (: hasHighestRatingScore))
DataPropertyDomain (: hasHighestRatingScore :

WineProduct)
DataPropertyDomain (: hasHighestRatingScore

DataMinCardinality (0 :hasHighestRatingScore))
DataPropertyDomain (: hasHighestRatingScore

DataMaxCardinality (1 :hasHighestRatingScore))
DataPropertyRange (: hasHighestRatingScore :

RatingsScore)
Declaration ( DataProperty (: hasHighestReviewScore))
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DataPropertyDomain (: hasHighestReviewScore :
WineProduct)

DataPropertyDomain (: hasHighestReviewScore
DataMinCardinality (0 :hasHighestReviewScore))

DataPropertyDomain (: hasHighestReviewScore
DataMaxCardinality (1 :hasHighestReviewScore))

DataPropertyRange (: hasHighestReviewScore :
ReviewsScore)

Declaration ( DataProperty (: hasImageUrl))
DataPropertyDomain (: hasImageUrl :

ProductAttributeWithImage)
DataPropertyDomain (: hasImageUrl DataMinCardinality

(0 :hasImageUrl))
DataPropertyDomain (: hasImageUrl DataMaxCardinality

(1 :hasImageUrl))
DataPropertyRange (: hasImageUrl :ImageUrl)
Declaration ( DataProperty (: hasLocationUrl))
DataPropertyDomain (: hasLocationUrl :

WineProductWithGeoLocation)
DataPropertyDomain (: hasLocationUrl

DataMinCardinality (0 :hasLocationUrl))
DataPropertyDomain (: hasLocationUrl

DataMaxCardinality (1 :hasLocationUrl))
DataPropertyRange (: hasLocationUrl :Url)
Declaration ( DataProperty (: hasMapUrl))
DataPropertyDomain (: hasMapUrl :

ProducerWithGeoLocation)
DataPropertyDomain (: hasMapUrl DataMinCardinality (0

:hasMapUrl))
DataPropertyDomain (: hasMapUrl DataMaxCardinality (1

:hasMapUrl))
DataPropertyRange (: hasMapUrl :Url)
Declaration ( DataProperty (: hasMaxPrice))
DataPropertyDomain (: hasMaxPrice :WineProduct)
DataPropertyDomain (: hasMaxPrice DataMinCardinality

(0 :hasMaxPrice))
DataPropertyDomain (: hasMaxPrice DataMaxCardinality

(1 :hasMaxPrice))
DataPropertyRange (: hasMaxPrice :Price)
Declaration ( DataProperty (: hasMinPrice))
DataPropertyDomain (: hasMinPrice :WineProduct)
DataPropertyDomain (: hasMinPrice DataMinCardinality

(0 :hasMinPrice))
DataPropertyDomain (: hasMinPrice DataMaxCardinality

(1 :hasMinPrice))
DataPropertyRange (: hasMinPrice :Price)
Declaration ( DataProperty (: hasProducerImageUrl))
DataPropertyDomain (: hasProducerImageUrl :

ProducerWithImage)
DataPropertyDomain (: hasProducerImageUrl

DataMinCardinality (0 :hasProducerImageUrl))
DataPropertyDomain (: hasProducerImageUrl

DataMaxCardinality (1 :hasProducerImageUrl))
DataPropertyRange (: hasProducerImageUrl :ImageUrl)
Declaration ( DataProperty (: hasProducerUrl))
DataPropertyDomain (: hasProducerUrl :Producer)
DataPropertyDomain (: hasProducerUrl

DataMinCardinality (0 :hasProducerUrl))
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DataPropertyDomain (: hasProducerUrl
DataMaxCardinality (1 :hasProducerUrl))

DataPropertyRange (: hasProducerUrl :Url)
Declaration ( DataProperty (: hasRetailPrice))
DataPropertyDomain (: hasRetailPrice :WineProduct)
DataPropertyDomain (: hasRetailPrice

DataMinCardinality (0 :hasRetailPrice))
DataPropertyDomain (: hasRetailPrice

DataMaxCardinality (1 :hasRetailPrice))
DataPropertyRange (: hasRetailPrice :Price)
Declaration ( DataProperty (: isOfBottleType))
DataPropertyDomain (: isOfBottleType :WineProduct)
DataPropertyDomain (: isOfBottleType

DataMinCardinality (0 :isOfBottleType))
DataPropertyDomain (: isOfBottleType

DataMaxCardinality (1 :isOfBottleType))
DataPropertyRange (: isOfBottleType :BottleType)
Declaration ( DataProperty (: isOfVintageYear))
DataPropertyDomain (: isOfVintageYear :YearlyWine)
DataPropertyDomain (: isOfVintageYear

DataMinCardinality (0 :isOfVintageYear))
DataPropertyDomain (: isOfVintageYear

DataMaxCardinality (1 :isOfVintageYear))
DataPropertyRange (: isOfVintageYear :Year)
Declaration ( Datatype (: BottleType))
DatatypeDefinition (: BottleType x s d : s t r i n g )
Declaration ( Datatype (: ImageUrl))
DatatypeDefinition (: ImageUrl x s d : s t r i n g )
Declaration ( Datatype (:Price))
DatatypeDefinition (:Price x s d : d e c i m a l )
Declaration ( Datatype (: RatingsScore))
DatatypeDefinition (: RatingsScore x s d : i n t e g e r )
Declaration ( Datatype (: ReviewsScore))
DatatypeDefinition (: ReviewsScore x s d : i n t e g e r )
Declaration ( Datatype (:Url))
DatatypeDefinition (:Url x s d : s t r i n g )
Declaration ( Datatype (:Year))
DatatypeDefinition (:Year x s d : i n t e g e r )
DisjointClasses (: Appellation :Producer :

ProductAttribute :Region :VarietalBlend :Wine :
WineProduct :WineType :YearlyWine)

)
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