
The Algebra and the Logic for SQL Nulls

Enrico Franconi and Sergio Tessaris

Free University of Bozen-Bolzano, Italy
lastname @inf.unibz.it

Abstract The logic of nulls in databases has been subject of invest-
igation since their introduction in Codd’s Relational Model, which is
the foundation of the SQL standard. In the logic based approaches to
modelling relational databases proposed so far, nulls are considered as
representing unknown values. Such existential semantics fails to capture
the behaviour of the SQL standard. We show that, according to Codd’s
Relational Model, a SQL null value represents a non-existing value; as a
consequence no indeterminacy is introduced by SQL null values. We show
that the domain independent fragment of the extension of first-order logic
accounting for predicates with missing arguments is equivalent to Codd’s
relational algebra with SQL nulls. Moreover, we illustrate a faithful en-
coding of the logic into standard first-order logic. At the end, we show
how to capture in this framework the UNIQUE, PRIMARY KEY, and
FOREIGN KEY constraints as defined in the SQL:1999 standard.

1 Relational Databases and SQL Null Values

Consider a database instance with null values over the relational schema {R/2},
and an SQL query asking for the tuples in R being equal to themselves:

R :
1 2

a b
b N

SELECT * FROM R

WHERE R.1 = R.1 AND R.2 = R.2 ;
⇒ 1 | 2

---+---

a | b

(1 row)

Figure 1.

In SQL, the query above returns the table R if and only if the table R does not
have any null value, otherwise it returns just the tuples not containing a null
value, i.e., in this case only the first tuple 〈a, b〉. Informally this is due to the
fact that an SQL null value is never equal (or not equal) to anything, including
itself. How can we formally capture this behaviour?

We introduce a formal semantics for SQL null values in order to capture
exactly the behaviour of SQL queries and SQL constraints in presence of null
values. We restrict our attention to the first-order fragment of SQL – e.g., we do
not consider aggregates, and both queries and constraints should be set based
(as opposed to bag/multi-set based): this fragment can be expressed, in absence
of null values, into the standard relational algebra RA.

To the best of our knowledge, there has been no attempt to formalise in logic
a relational algebra with SQL null values. It is well known that SQL null values
require a special semantics. Indeed, if they were treated as standard database
constants, the direct translation in the standard relational algebra RA of the
above SQL query would be equivalent to the identity expression for R: σ1=1

σ2=2 R, giving as an answer the table R itself, namely the tuples {〈a, b〉, 〈b,N〉}.
However, we have seen that the expected answer to this query is different.

The most popular semantics in the literature for null values is the one in-
terpreting null values with an existential meaning, namely a null value denotes
an object which exists but has an unknown identity: this is the semantics of
naive tables (see [1]). It is easy to see that also with this semantics, the direct
translation of the above SQL query in the standard relational algebra RA over
naive tables would be equivalent to the identity expression for R: σ1=1 σ2=2 R,
giving as an answer the table R itself, namely the tuples {〈a, b〉, 〈b,N〉}. And
again, we have seen above that the expected answer to this query is different.

2 Database Instances with Null Values

We introduce the notions of tuple, relation, and database instance in presence of
null values. We consider the unnamed (positional) perspective for the attributes
of tuples: elements of a tuple are identified by their position within the tuple.

Given a set of domain values ∆, an n-tuple is a total function from integers
from 1 up to n (the position of the element within the tuple) into the set of
domain values ∆ augmented by the special term N (the null value): if we denote
the set {i ∈ N | 1 ≤ i∧i ≤ n}, possibly empty if n = 0, as [1 · · ·n], then an n-tuple
is a total function [1 · · ·n] 7→ ∆ ∪ {N}. Note that the zero-tuple is represented
by a constant zero-ary function that we call {}. For example, the tuple 〈b,N〉 is
represented as {1 7→ b, 2 7→ N}, while the zero-tuple 〈〉 is represented as {}. A
relation of arity n is a set of n-tuples; if we want to specify that n is the arity
of a given relation R, we write the relation as R/n. Note that a relation of arity
zero is either empty or it includes only the zero-tuple {}. A relational schema R
includes a set of relation symbols with their arities and a set of constant symbols
C. A database instance IN associates to each relation symbol R of arity n from
the relational schema R a set of n-tuples IN(R), and to each constant symbol
in C a domain value in ∆. Usually, in relational databases all constant symbols
are among the domain values and are associated in the database instance to
themselves – this is called the Standard Name Assumption. As an example of a
database instance IN consider Figure 2(a).

In our work we consider two alternative representations of a database instance
IN, where null values do not appear explicitly: Iε and I℘. We will show that
they are isomorphic to IN. The representations share the same constant symbols,
domain values, and mappings from constant symbols to domain values. The
differences are in the way null values are encoded within a tuple.

Compared with a database instance IN, a corresponding database instance
Iε differs only in the way it represents n-tuples: an n-tuple is a partial function

R/2 : {{1 7→ a, 2 7→ b},
{1 7→ b, 2 7→ N}}

(a) instance IN

R/2 : {{1 7→ a, 2 7→ b},
{1 7→ b}}

(b) instance Iε

R̃{1,2}/2 : {{1 7→ a, 2 7→ b}}

R̃{1}/1 : {{1 7→ b}}

R̃{2}/1 : {}

R̃{}/0 : {}

(c) instance I℘

Figure 2. The three representations of the database instance of Figure 1

from integers from 1 up to n into the set of domain values - the function is
undefined exactly for those positional arguments which are otherwise defined
and mapped to a null value in IN. As an example of a database instance Iε
consider Figure 2(b).

Compared with a database instance IN, a corresponding database instance
I℘ differs in the way relation symbols are interpreted: a relation symbol of arity n
is associated to a set of null-free tuples of dishomogeneous arities up to n. Given
a database instance IN defined over a relational schema R, the corresponding
database instance I℘ is defined over the decomposed relational schema R̃: for
each relation symbol R ∈ R of arity n and for each (possibly empty) subset of its

positional arguments A ⊆ [1 · · ·n], the decomposed relational schema R̃ includes

a predicate R̃A with arity |A|. The correspondence between IN and I℘ is based

on the fact that each |A|-tuple in the relation I℘(R̃A) corresponds exactly to the
n-tuple in IN(R) having non-null values only in the positional arguments in A,
with the same values and in the same relative positional order. This corresponds
to the notion of lossless horizontal decomposition in databases [2]. As an example
of a database instance I℘ consider Figure 2(c).

In absence of null values, the IN and Iε representations of a database instance
coincide, and they coincide also with the I℘ representation if we equate each
n-ary R relation symbol in IN and Iε with its corresponding R̃[1···n] relation

symbol in I℘ – indeed in absence of null values IN(R) = Iε(R) = I℘(R̃[1···n])

for every n-ary relation R, and I℘(R̃A) = ∅ for every relation of arity |A| < n.
Given the discussed isomorphisms, in the following – whenever the difference
in the representation of null values is not ambiguous – we will denote as I the
database instance represented in any of the above three forms IN, Iε, or I℘.

3 Relational Algebra with Null Values

We introduce in this Section the formal semantics of the relational algebra deal-
ing with null values, corresponding (modulo the zero-ary relations) to the first-
order fragment of SQL.

Let’s first recall the notation of the standard relational algebra RA (see, e.g.,
[3] for details). Standard relational algebra expressions over a relational schema
R are built according to the inductive formation rules in the boxed expressions of

Atomic relation - R - (where R ∈ R)

R(I) = IN(R).

Constant singleton - 〈v〉 - (where v ∈ C)

〈v〉(I) = {1 7→ v}.

Selection - σi=v e, σi=j e - (where v ∈ C, ` is the arity of e, and i, j ≤ `)

σi=v e(I) = {s is a `-tuple | s ∈ e(I) ∧ s(i) = v},
σi=j e(I) = {s is a `-tuple | s ∈ e(I) ∧ s(i) = s(j)}.

Projection - πi1,...,ike - (where ` is the arity of e, and {i1, . . . , ik} ⊆ [1 . . . `])

πi1,...,ike (I) = {s is a k-tuple | exists s′ ∈ e(I) s.t. for all 1 ≤ j ≤ k. s(j) = s′(ij)}.

Cartesian product - e× e′ - (where n,m are the arities of e, e′)

(e× e′)(I) = {s is a (n+m)-tuple | exists t ∈ e(I), t′ ∈ e′(I) s.t.

for all 1 ≤ j ≤ n. s(j) = t(j) ∧
for all 1 + n ≤ j ≤ (n+m). s(j) = t′(j − n)}.

Union/Difference - e ∪ e′ , e− e′ - (where ` is the arity of e and e′)

(e ∪ e′)(I) = {s is a `-tuple | s ∈ e(I) ∨ s ∈ e′(I)},
(e− e′)(I) = {s is a `-tuple | s ∈ e(I) ∧ s 6∈ e′(I)}.

Derived operators - where v ∈ C, ` ≤ min(m,n), m,n are the arities of e, e′,
i, j, i1, . . . , i` ≤ m, and k1, . . . , k` ≤ n

σi<>v e ≡ e− σi=v e,

σi<>j e ≡ e− σi=j e,

e 1
i1=k1
···

i`=k`

e′ ≡ π([1···m+n]\{m+k1,...,m+k`})σi1=m+k1 . . . σi`=m+k` (e× e′) .

Figure 3. The standard relational algebra RA

Figure 3. Also in Figure 3 the semantics of an algebra expression e is inductively
defined as the transformation of database instances I – with the Standard Name
Assumption – to a set of tuples e(I).

We extend the standard relational algebra to deal with SQL nulls; we refer
to it as Null Relational Algebra (RAN). In order to deal with null values in
the relational model, Codd [4] included the special null value in the domain and
adopted a three-valued logic having the third truth value unknown together with
true and false. The comparison expressions in Codd’s algebra are evaluated to
unknown if they involve a null value, while in set operations, tuples otherwise
identical but containing null values are considered to be different. SQL uses
this three-valued logic for the evaluation of WHERE clauses [5]. In order to define

Null singleton - 〈N〉 -
〈N〉(I) = {1 7→ N}.

Selection - σi=j e - (where ` is the arity of e, and i, j ≤ `)

σi=j e(I) = {s is a `-tuple | s ∈ e(I) ∧ s(i) = s(j) ∧ s(i) 6= N ∧ s(j) 6= N}.

Derived operators - where v ∈ C, ` ≤ min(m,n), m,n are the arities of e, e′,
i, j, i1, . . . , i` ≤ m, and k1, . . . , k` ≤ n

σi<>j e ≡ σi=i σj=j e− σi=j e,

σisNull(i) e ≡ e− σi=i e,

σisNotNull(i) e ≡ σi=i e,

σi=N e ≡ e− e,
σi<>N e ≡ e− e,
e 1
i1=k1
···

i`=k`

e′ ≡ (e 1
i1=k1
···

i`=k`

e′) ∪ (e− π1,...,m(e 1
i1=k1
···

i`=k`

e′))× (〈N〉 × · · · × 〈N〉︸ ︷︷ ︸
n−`

).

Figure 4. The null relational algebra RAN defined only in the parts different from RA

RAN from the standard relational algebra, we adopt the IN representation of a
database instance where null values are explicitly present as possible elements
of tuples, and with the Standard Name Assumption. All the RA expressions are
valid RAN expressions, and maintain the same semantics, with the only change
in the semantics of the selection expressions σi=j e and σi<>j e with equality or
inequality: in these cases the semantic definitions make sure that the elements
to be tested for equality (or inequality) are both different from the null value
in order for the equality (or inequality) to succeed. In other words, it is enough
to let equality (and inequality) fail whenever null values are involved, since its
evaluation would be unknown.

The syntax of RAN expressions extends the standard RA syntax only for the
additional null singleton expression 〈N〉 (and for the derived operators involving
null values). Figure 4 introduces the syntax and semantics of RAN expressed in
terms of its difference with RA, including the derived operators which are added
or defined differently in RAN. It is easy to show that the definition of the null
relational algebra exactly matches the (informal) definition given to SQL with
null values, and it generates the same practical behaviour [5].

Given a tuple t and aRAN expression e, we call models of the expression e with
the answer t all the database instances I such that t ∈ e(I). Sometimes an n-ary
algebra expression is intended to express a boolean statement over a database
instance in the form of a denial constraint : this is done by checking whether its
evaluation over the database instance returns the empty n-ary relation or not.
an n-ary denial constraint e can always be reduced into a zero-ary constraint,
whose boolean value is meant to be true if its evaluation contains the zero-tuple
{} and false if it is empty, by considering its zero-ary projection (π∅e).

Example 1. Consider the schema {R/2, S/2} with the following data and RAN

constraints:

R :
1 2
a b
b N

S :

1 2
a a
a N
N a
N N

– UNIQUE constraint for R.1: σ1=3 σ2 6=4 (R×R) = ∅;
– NOT-NULL constraint for R.1: σisNull(1) R = ∅;
– UNIQUE constraint for S.1: σ1=3 σ26=4 (S × S) = ∅,
– FOREIGN KEY constraint from S.2 to R.1:
π2σisNotNull(2) S − π1σisNotNull(1) R= ∅.

It is easy to see that these constraints are all satisfied: they behave in the same
way as the corresponding SQL constraints with null values. Similarly, the query
considered in the previous Section (σ1=1 σ2=2 R), now behaves as in SQL and
it returns correctly {〈a, b〉}.

4 First-order Logic with Null Values

The Null Relational Calculus (FOLε) is a first-order logic language with an
explicit symbol N representing the null value, and where predicates denote tuples
over subsets of the arguments instead of just their whole set of arguments. It
extends classical first-order logic in order to take into account the possibility
that some of the arguments of a relation might not exist.

Given a set of predicate symbols each one associated with an arity together
with the special equality binary predicate =, and a set C of constants – together
forming the relational schema (or signature) R – and a set of variable symbols,
terms of FOLε are variables, constants, and the special null symbol N, and
formulae of FOLε are defined by the following rules:

1. if t1, . . . , tn are terms and R is a predicate symbol in R (different from the
equality) of arity n, R(t1, . . . , tn) is an atomic formula;

2. if t1, t2 are terms different from N, =(t1, t2) is an atomic formula;
3. if ϕ and ϕ′ are formulae, then ¬ϕ, ϕ ∧ ϕ′ and ϕ ∨ ϕ′ are formulae;
4. if ϕ is a formula and x is a variable, then ∃xϕ and ∀xϕ are formulae.

The semantics of FOLε formulae is given in terms of database instances
of type Iε, called interpretations. As usual, an interpretation Iε includes an
interpretation domain ∆ and it associates each relation symbol R of arity n in
the signature to a set of n-tuples Iε(R) – i.e., a set of partial functions with
range in ∆ – and each constant symbol in C to a domain value in ∆ (we do
not consider here the Standard Name Assumption). The equality predicate is
interpreted as the classical equality over the domain ∆. It is easy to see that if
n-tuples were just total functions, then an interpretation Iε would correspond
exactly to a classical first-order interpretation.

The definition of satisfaction and entailment in FOLε is the same as in clas-
sical first-order logic with equality over the signature R, with the only difference
in the truth value of atomic formulae which use partial functions instead of total
functions, because of the possible presence of null values. As usual, an interpret-
ation Iε satisfying a formula is called a model of the formula.
An interpretation Iε and a valuation function for variable symbols α satisfy

an atomic formula – written Iε, α |=FOLε R(t1, . . . , tn) – iff there is an n-tuple
τ ∈ Iε(R) such that for each i ∈ [1 · · ·n]: τ(i) = Iε(c) if ti is a constant symbol
c, τ(i) = α(ti) if ti is a variable symbol, and τ(i) is undefined if ti = N. It is easy
to see that the satisfiability of a FOLε formula without any occurrence of the null
symbol N doesn’t depend on partial tuples; so its models can be characterised
by classical first-order semantics: in each model the interpretation of predicates
would include only tuples represented as total functions.

Example 2. The models of the FOLε formula R(a, b)∧R(b,N) are the interpret-
ations Iε such that Iε(R) includes the tuples {1 7→ a, 2 7→ b} and {1 7→ b}.

4.1 Characterisation in classical First-order Logic

Given a signature R, let’s consider a classical first-order logic language with
equality (FOL) over the decomposed signature R̃, as it has been defined in Sec-
tion 2; FOL has a classical semantics with models of type I℘ and it does not
deal with null values directly. In this Section we show that FOLε over R and

FOL over R̃ are equally expressive, namely that for every formula in FOLε over
the signature R there is a corresponding formula in FOL over the decomposed
signature R̃, such that the two formulae have isomorphic models, and that for
every formula in FOL over the decomposed signature R̃ there is a correspond-
ing formula in FOLε over the signature R, such that the two formulae have
isomorphic models. As we discussed before, the isomorphism between the inter-
pretations IN and I℘ is based on the fact that each |A|-tuple in the relation

I℘(R̃A) corresponds exactly to the n-tuple in IN(R) having non-null values only
in the positional arguments specified in A, with the same values and in the same
relative positional order.

In order to relate the two logics, we define a bijective translation function
Ωf (·) (and its inverse Ω−1f (·)) which maps FOLε formulae into FOL formulae
(and vice-versa).

Definition 1 (Bijective translation Ωf).
Ωf (·) is a bijective function from FOLε formulae over the signature R to FOL
formulae over the signature R̃, defined as follows.

– Ωf (R(t1, . . . , tn)) = R̃{i1,...,ik}(ti1 , . . . , tik),
where R ∈ R an n-ary relation, {i1, . . . , ik} = {j ∈ [1 · · ·n] | tj is not N}.
Obviously: Ω−1f (R̃{i1,...,ik}(ti1 , . . . , tik)) = R(t′1, . . . , t

′
n),

where {i1, . . . , ik} ⊆ [1 · · ·n] and tij = t′j for j = 1, . . . , k , and t′j is N for
j ∈ [1 · · ·n] \ {i1, . . . , ik}.
In both the direct and inverse cases we assume i1, . . . , ik in ascending order.

– The translation of equality atoms and non atomic formulae is the identity
transformation inductively defined on top of the above translation of atomic
formulae.

Example 3. The FOLε formula ∃x.R(a, x)∧R(x,N)∧R(N,N) over the signature

R is translated as the FOL formula ∃x.R̃{1,2}(a, x) ∧ R̃{1}(x) ∧ R̃{} over the

decomposed signature R̃, and vice-versa.

The above bijective translation preserves the models of the formulae, modulo
the isomorphism among models presented in Section 2.

Theorem 1. Let ϕ be a FOLε formula over the signature R, and ϕ̃ a FOL
formula over the signature R̃. Then for any (database) instance I:

Iε, α |=FOLε ϕ if and only if I℘, α |=FOL Ωf (ϕ).

4.2 Domain Independent fragment of FOLε with Standard Names

In this Section we introduce the domain independent fragment of FOLε with the
Standard Name Assumption, and we analyse its properties.

Definition 2 (Domain Independence). A FOLε closed formula ϕ is domain
independent if for every two interpretations I = 〈∆I , I(·)〉 and J = 〈∆J ,J (·)〉,
which agree on the interpretation of relation symbols and constant symbols – i.e.
I(·) = J (·) – but disagree on the interpretation domains ∆I and ∆J :

I |= ϕ if and only if J |= ϕ.

The domain independent fragment of FOLε includes only the FOLε domain in-
dependent formulae.

It is easy to see that the domain independent fragment of FOLε can be char-
acterised with the safe-range syntactic fragment of FOLε: intuitively, a formula
is safe-range if and only if its variables are bounded by positive predicates or
equalities – for the syntactical definition see, e.g., [3]. Due to the strong semantic
equivalence expressed in Theorem 1 and to the fact the the bijection Ωf (·) pre-
serves the syntactic structure of the formulae, we can reuse the results about
safe-range transformations and domain independence holding for classical FOL.

Theorem 2. Any safe-range FOLε formula is domain independent, and any
domain independent FOLε formula can be transformed into a logically equivalent
safe-range FOLε formula.

We observe that an interpretation is a model of a formula in the domain
independent fragment of FOLε with the Standard Name Assumption if and only
if the interpretation which agrees on the interpretation of relation and constant
symbols but with the interpretation domain equal to the set of standard names
C is a model of the formula. Therefore, in the following when dealing with the
domain independent fragment of FOLε with the Standard Name Assumption we
can just consider interpretations with the interpretation domain equal to C.

We can weaken the Standard Name Assumption by assuming Unique Names
instead. An interpretation I satisfies the Unique Name Assumption if I(a) 6=
I(b) for any different a, b ∈ C. An interpretation is a model of a FOLε formula
with the Standard Name Assumption if and only if the interpretation obtained
by homomorphically transform the standard names with arbitrary domain ele-
ments is a model of the formula; this latter interpretation satisfies the Unique

Name Assumption. It is possible therefore to interchange the Standard Name
and the Unique Name Assumptions; this is of practical advantage, since the
Unique Name Assumption can be encoded in first-order logic and it is natively
present in most description logic reasoners.

5 Equivalence of Algebra and Calculus

We show that the RAN relational algebra with nulls and the domain independent
fragment of FOLε with the Standard Name Assumption are equally expressive.
The notion of equal expressivity is captured by the following two theorems.

Theorem 3. Let e be an arbitrary RAN expression of arity n, and t an arbitrary
n-tuple as a total function with values taken from the set C ∪ {N}. There is a
function Ω(e, t) translating e with respect to t into a closed safe-range FOLε

formula, such that for any instance I with the Standard Name Assumption:

t ∈ e(IN) if and only if Iε |=FOLε Ω(e, t).

Theorem 4. Let ϕ be an arbitrary safe-range FOLε closed formula. There is
a RAN expression e, such that for any instance I with the Standard Name As-
sumption:

Iε |=FOLε ϕ if and only if e(IN) 6= ∅.

This means that there exists a reduction from the membership problem of
a tuple in the answer of a RAN expression over a database instance with null
values into the satisfiability problem of a closed safe-range FOLε formula over the
same database (modulo the isomorphism among database instances presented
in Section 2); and there exists a reduction from the satisfiability problem of a
closed safe-range FOLε formula over a database instance with null values into
the emptiness problem of the answer of a RAN expression over the same database
(modulo the isomorphism among database instances).

This is the translation mapping RAN expressions into safe-range FOLε for-
mulae.

Definition 3 (From RAN to safe-range FOLε). Let e be an arbitrary RAN

expression, and t an arbitrary tuple of the same arity as e, as a total function
with values taken from the set C ∪{N}∪V, where V is a countable set of variable
symbols. The function Ω(e, t) translates e with respect to t into a FOLε formula
according to the following inductive definition:

– for any R/` ∈ R, Ω(R, t) ; R(t(1), . . . , t(`))

– Ω(〈v〉, t) ;

{
=(t(1), v) if t(1) 6= N

false otherwise

– Ω(〈N〉, t) ;

{
false if t(1) 6= N

true otherwise

– Ω(σi = v e, t) ;

{
Ω(e, t) ∧=(t(i), v) if t(i) 6= N

false otherwise

– Ω(σi = j e, t) ;

{
Ω(e, t) ∧=(t(i), t(j)) if t(i), t(j) 6= N

false otherwise

– Ω(πi1···ike, t) ; ∃x1 · · ·xn
∨

H⊆{1···n}\{i1···ik}Ω(e, tH)

where xi are fresh variable symbols and tH is a sequence of n terms defined
as:

tH(i)
.
=


t(i) if i ∈ {i1, . . . , ik}
N if i ∈ H
xi otherwise

– Ω(e1 × e2, t) ; Ω(e1, t
′) ∧Ω(e2, t

′′)
where n1, n2 are the arity of e1, e2 respectively,
where t′ is a n1-ary tuple function s.t. t′(i) = t(i) for 1 ≤ i ≤ n1,
and t′′ is a n2-ary tuple function s.t. t′′(i) = t(n1 + i) for 1 ≤ i ≤ n2

– Ω(e1 ∪ e2, t) ; Ω(e1, t) ∨Ω(e2, t)
– Ω(e1 − e2, t) ; Ω(e1, t) ∧ ¬Ω(e2, t)

Example 4. Given some database instance, checking whether the tuple 〈a, b〉 or
the tuple 〈b,N〉 are in the answer of the RAN query σ1=1 σ2=2 R (discussed in
Section 1) corresponds to check the satisfiability over the database instance of
the FOLε closed safe-range formula R(a, b) in the former case, or of the formula
false in the latter case. You can observe that, as expected, also when translated
in first-order logic, it turns out that the tuple 〈b,N〉 is not in the answer of the
query σ1=1 σ2=2 R for any database.

Example 5. Let’s consider the ”UNIQUE constraint for R.1” from Example 1
expressed in RAN as σ1=3 σ26=4 (R×R) = ∅. The RAN expression is translated
as the closed safe-range FOLε formula: ∀x, y, z. R(x, y)∧R(x, z)→ y = z, which
corresponds to the way to express a unique constraint in first-order logic.

Let’s see the translation in three steps from safe-range FOLε formulae toRAN

expressions. First, the FOLε formula over the signature R is first translated into

a safe-range FOL formula over the signature R̃, as explained in Section 4.1.
Then, the safe-range FOL formula over the signature R̃ is translated into a
RA expression over the signature R̃, using the classical translation of classical
relational algebra into safe-range first-order logic [3]. Finally, the RA expression

over the signature R̃ is translated into a RAN expression over the signature R,

where each basic relation R̃{i1,...,ik} with R of arity n is substituted according
to the rule:

R̃{i1,...,ik} ; πi1,...,ik(σisNotNull({i1,...,ik}) (σisNull([1···n]\{i1,...,ik}) R))

where σisNull(i1,...,ik) e is a shorthand for σisNull(i1) . . . σisNull(ik) e.

Example 6. The safe-range closed FOLε formula ∃x.R(x,N) is translated as the
zero-ary RAN statement σisNotNull(1) σisNull(2) R 6= ∅.

Example 7. Let’s consider what would be the classical way to express the “FOR-
EIGN KEY from S.2 to R.1” constraint from Example 1 in first-order logic:

∀x, y. S(x, y)→ ∃z. R(y, z) ≡ ¬∃y. (∃x. S(x, y)) ∧ ¬(∃z. R(y, z)).

The formula is translated as theRAN statement: π2σisNotNull(2) S − π1σisNotNull(1) R =

∅, which is the RAN statement we considered in Example 1.

6 Semantic Integrity with Null Values in SQL:1999

In this Section we consider the main integrity constraints involving a specific
behaviour for null values as defined in the ANSI/ISO/IEC standard SQL:1999,
and we show how these can be naturally captured using FOLε. We focus on
unique and primary key constraints and on foreign key constraints as defined in
[6]. We will see how the actual definitions of the unique, primary key, and foreign
key constraints are a bit more involved than we have seen before: this is because
more complex cases than the simple examples above may happen involving null
values.

Unique and primary key constraints. As specified in [6], a uniqueness
constraint UNIQUE(u1, . . . , un) holds for a table R of arity m > n in a database
if and only if there are no two rows r1, r2 in R such that the values of all their
uniqueness columns ui match and are not null. More formally, in tuple-relational
calculus with explicit null values in the domain (fixing the incomplete definition
in [6]):

∀r1, r2 ∈ R.

(
r1 6= r2 ∧

n∧
i=1

r1.ui 6= N ∧ r2.ui 6= N

)
→

(
n∨

i=1

r1.ui 6= r2.ui

)
.

In FOLε this constraint can be written as:

∀x.

(∧
{i1···ik}⊆{1···m}\{u1···un}

∀y, z. (Πu1,...,un,i1,...,ikR(x, y) ∧Πu1,...,un,i1,...,ikR(x, z))→ y = z

)
∧

∀x.

(∧
{i1···ik}⊆{1···m}\{u1···un}

∃y. Πu1,...,un,i1,...,ikR(x, y)

)
→ ⊥

where Πi1,...,ikR(t1, . . . , tk) is a shorthand for R(t′1, . . . , t
′
m) where t′j = tj for

j = i1 . . . ik and t′j = N for all other j.

A primary key constraint is a combination of a uniqueness constraint and one
or more not null constraints. A constraint PRIMARY KEY(u1, . . . , un) holds
for a table R if and only if the following holds, in tuple-relational calculus with
explicit null values in the domain (fixing the incomplete definition in [6]):

∀r ∈ R.

(
n∧

i=1

r.ui 6= N

)
∧ ∀r1, r2 ∈ R. r1 6= r2 →

(
n∨

i=1

r1.ui 6= r2.ui

)
.

Note that no column shall occur more than once within the same unique/primary
key definition; furthermore, each table can have at most one primary key.
In FOLε this constraint can be written as the conjunction of a uniqueness con-
straint as above and a not null constraint as follows for each key attribute ui:

¬

 ∨
{i1···ik}⊆{1···m}\{ui}

∃y. Πi1,...,ikR(y)

 .

Foreign key constraints. Foreign key constraints (or referential constraints)
express dependencies among (portions of) rows in tables. Given a referenced (or
parent) table and a referencing (or child) table, a subset fi, . . . , fk of the columns
of the referencing table builds the foreign key and refers to the unique/primary
key columns uj , . . . , ul of the referenced table. As specified in [6], the simple
match is the default foreign key constraint implemented by all DBMS vendors.
For each row r of the referencing table R (child table), either at least one of the
values of the referencing columns f1, . . . , fn is a null value or the value of each
referencing columns fi, 1 ≤ i ≤ n, is equal to the value of the corresponding
referenced column ui for some row s of the referenced table S. More formally, in
tuple-relational calculus with null values in the domain [6]:

∀r ∈ R.

(
n∧

i=1

r.fi 6= N

)
→ ∃s ∈ S.

(
n∧

i=1

r.fi = s.ui

)
.

In FOLε this constraint can be written as:

∀x.

(∨
{i1···ik}⊆{1···m}\{u1···un}

∃y. Πu1,...,un,i1,...,ikS(x, y)

)
→(∨

{i1···ik}⊆{1···m}\{u1···un}
∃y. Πu1,...,un,i1,...,ikR(x, y)

)
.

We observe that, if the database does not contain null values, the SQL:1999
definitions of unique, not null, and foreign key constraints (with simple match)
involving null values reduce to the well known classical FOL definitions of these
constraints without null values.

7 Conclusions

Since their inception, SQL null values have been at the centre of long discussions
about their real meaning and their formal semantics (see, e.g., [7]). The vast

majority of logic based approaches consider nulls as values with an unknown
interpretation (i.e., a value exists but it is not known) and they model them
as existential variables (e.g. naive tables [1] and the works inspired by [8]). In
spite of the fact that these works have their merits and provide a well founded
characterisation of incomplete information in databases, they diverge from SQL
standard. We have shown that null values – when defined as in SQL with the
three-valued logic – should be interpreted as nonexistent values, and that such
null values do not introduce any incompleteness in the data. In this paper we
extend Codd’s theorem stating the equivalence of the relational algebra with
the relational calculus, to the case in which SQL null values are added to the
language.

References

1. Imieliński, T., Lipski, Jr., W.: Incomplete information in relational databases. J.
ACM 31(4) (September 1984) 761–791

2. Date, C.J., Darwen, H.: Database Explorations: Essays on the Third Manifesto and
Related Topics. Trafford Publishing (2010)

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

4. Codd, E.F.: Extending the database relational model to capture more meaning.
ACM Trans. Database Syst. 4(4) (1979) 397–434

5. Date, C.: An Introduction to Database Systems. 8 edn. Addison-Wesley (2003)
6. Türker, C., Gertz, M.: Semantic integrity support in SQL:1999 and commercial

(object-)relational database management systems. The VLDB Journal 10(4) (2001)
241–269

7. Grant, J.: Null values in SQL. SIGMOD Rec. 37(3) (September 2008) 23–25
8. Zaniolo, C.: Database relations with null values. Journal of Computer and System

Sciences 28(1) (1984) 142–166

	The Algebra and the Logic for SQL Nulls

