Description Logics

Structural Description Logics

Enrico Franconi

franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester
Description Logics

- A logical reconstruction and *unifying* formalism for the representation tools
 - Frame-based systems
 - Semantic Networks
 - Object-Oriented representations
 - Semantic data models
 - Ontology languages
 - ...

- A *structured* fragment of predicate logic

- Provide theories and systems for *expressing* structured information and for *accessing* and *reasoning* with it in a principled way.
Applications

Description logics based systems are currently in use in many applications.

- Configuration
- Conceptual Modeling
- Query Optimization and View Maintenance
- Natural Language Semantics
- I3 (Intelligent Integration of Information)
- Information Access and Intelligent Interfaces
- Terminologies and Ontologies
- Software Management
- Planning
A formalism

- Description Logics formalize many *Object-Oriented* representation approaches.

- As such, their purpose is to disambiguate many imprecise representations.
Frames or Objects

- Identifier
- Class
- Instance
- Slot (attribute)
 - Value
 - Identifier
 - Default
 - Value restriction
 - Type
 - Concrete Domain
 - Cardinality
 - Encapsulated method
Ambiguities: classes and instances

Person: AGE: Number,
 SEX: \(M, F\),
 HEIGHT: Number,
 WIFE: Person.

\[john\] : AGE: 29,
 SEX: \(M\),
 HEIGHT: 76,
 WIFE: \textit{mary}.
Ambiguities: incomplete information

\[29' \text{er}: \text{AGE}: 29, \]
\[\text{SEX}: M, \]
\[\text{HEIGHT}: \text{Number}, \]
\[\text{WIFE}: \text{Person}. \]

\[\text{john}: \text{AGE}: 29, \]
\[\text{SEX}: M, \]
\[\text{HEIGHT}: \text{Number}, \]
\[\text{WIFE}: \text{Person}. \]
Ambiguities: is-a

Sub-class:

Person: AGE: Number,
 SEX: M, F,
 HEIGHT: Number,
 WIFE: Person.

Male: AGE: Number,
 SEX: M,
 HEIGHT: Number,
 WIFE: Female.
Ambiguities: is-a

Instance-of:

Male: AGE: Number,
SEX: M,
HEIGHT: Number,
WIFE: Female.

john: AGE: 35,
SEX: M,
HEIGHT: 76,
WIFE: mary.
Ambiguities: is-a

Instance-of:

29'er: AGE: 29,
 SEX: M,
 HEIGHT: Number,
 WIFE: Person.

john: AGE: 29,
 SEX: M,
 HEIGHT: Number,
 WIFE: Person.
Ambiguities: relations

Implicit relation:

\[
\begin{align*}
john & : \text{AGE} : 35, \\
& \quad \text{SEX} : M, \\
& \quad \text{HEIGHT} : 76, \\
& \quad \text{WIFE} : mary.
\end{align*}
\]

\[
\begin{align*}
mary & : \text{AGE} : 32, \\
& \quad \text{SEX} : F, \\
& \quad \text{HEIGHT} : 59, \\
& \quad \text{HUSBAND} : john.
\end{align*}
\]
Ambiguities: relations

Explicit relation:

john : AGE : 35,
SEX : M,
HEIGHT : 76.

mary : AGE : 32,
SEX : F,
HEIGHT : 59.

m-j-family : WIFE : mary,
HUSBAND : john.
Ambiguities: relations

Special relation:

\[
\begin{align*}
\text{Car} & \xrightarrow{\text{HAS-PART}} \text{Engine} \\
\text{Engine} & \xrightarrow{\text{HAS-PART}} \text{Valve}
\end{align*}
\]

\[
\Rightarrow
\]

\[
\begin{align*}
\text{Car} & \xrightarrow{\text{HAS-PART}} \text{Valve}
\end{align*}
\]
Ambiguities: relations

Normal relation:

\[
\begin{align*}
&\text{John} \quad \text{HAS-CHILD} \quad \text{Ronald} \\
&\text{Ronald} \quad \text{HAS-CHILD} \quad \text{Bill} \\
\end{align*}
\]
Ambiguities: default

The *Nixon* diamond:

President

\[\begin{array}{c}
\text{Quaker} \\
\text{Republican}
\end{array}\]

\[\begin{array}{c}
nixon
\end{array}\]

Quakers are pacifist, Republicans are not pacifist.

\[\implies\text{Is Nixon pacifist or not pacifist?}\]
Ambiguities: quantification

What is the exact meaning of:

Frog \text{HAS-COLOR} \text{Green}

Frogs are typically green, but there may be exceptions.
Ambiguities: quantification

What is the exact meaning of:

- Every frog is just green
Ambiguities: quantification

What is the exact meaning of:

- Every frog is just green
- Every frog is also green
Ambiguities: quantification

What is the exact meaning of:

- Every frog is just green
- Every frog is also green
- Every frog is of some green
Ambiguities: quantification

What is the exact meaning of:

\[\text{Frog} \xrightarrow{\text{HAS-COLOR}} \text{Green}\]

- Every frog is just green
- Every frog is also green
- Every frog is of some green
- There is a frog, which is just green
- ...
Ambiguities: quantification

What is the exact meaning of:

- Every frog is just green
- Every frog is also green
- Every frog is of some green
- There is a frog, which is just green
- ...
- Frogs are typically green, but there may be exceptions
False friends

- The meaning of object-oriented representations is logically very ambiguous.

- The appeal of the graphical nature of object-oriented representation tools has led to forms of reasoning that do not fall into standard logical categories, and are not yet very well understood.

- It is unfortunately much easier to develop some algorithm that appears to reason over structures of a certain kind, than to justify its reasoning by explaining what the structures are saying about the domain.
A structured logic

- Any (basic) Description Logic is a fragment of FOL.
- The representation is at the *predicate level*: no variables are present in the formalism.
- A Description Logic theory is divided in two parts:
 - the definition of predicates (*TBox*)
 - the assertion over constants (*ABox*)
- Any (basic) Description Logic is a subset of \mathcal{L}_3, i.e. the function-free FOL using only at most *three* variable names.
Why not FOL

If FOL is directly used without additional restrictions then

- the structure of the knowledge is destroyed, and it can not be exploited for driving the inference;

- the expressive power is too high for obtaining decidable and efficient inference problems;

- the inference power may be too low for expressing interesting, but still decidable theories.
Structured Inheritance Networks: KL-ONE

- Structured Descriptions
 - corresponding to the complex relational structure of objects,
 - built using a restricted set of epistemologically adequate constructs

- distinction between conceptual (terminological) and instance (assertional) knowledge;

- central role of automatic classification for determining the subsumption – i.e., universal implication – lattice;

- strict reasoning, no defaults.
Types of the TBox Language

- **Concepts** – denote *entities*
 (unary predicates, classes)

 Example: Student, Married

 \[
 \{ x \mid \text{Student}(x) \},
 \{ x \mid \text{Married}(x) \}
 \]

- **Roles** – denote *properties*
 (binary predicates, relations)

 Example: FRIEND, LOVES

 \[
 \{ \langle x, y \rangle \mid \text{FRIEND}(x, y) \},
 \{ \langle x, y \rangle \mid \text{LOVES}(x, y) \}
 \]
Concept Expressions

Description Logics organize the information in classes – concepts – gathering homogeneous data, according to the relevant common properties among a collection of instances.

Example:

\[\text{Student} \sqcap \exists \text{FRIEND.Married} \]

\[
\{ x \mid \text{Student}(x) \land \\
\exists y. \text{FRIEND}(x, y) \land \text{Married}(y) \}\]
A note on λ’s

In general, λ is an explicit way of forming names of functions:

$$\lambda x. f(x)$$ is the function that, given input x, returns the value $f(x)$

The λ-conversion rule says that:

$$(\lambda x. f(x))(a) = f(a)$$

Thus, $\lambda x. (x^2 + 3x - 1)$ is the function that applied to 2 gives 9:

$$(\lambda x. (x^2 + 3x - 1))(2) = 9$$

We can give a name to this function, so that:

$$f_{231} \equiv \lambda x. (x^2 + 3x - 1)$$

$$f_{231}(2) = 9$$
\(\lambda \) to define predicates

Predicates are special case of functions: they are *truth* functions. So, if we think of a formula \(P(x) \) as denoting a truth value which may vary as the value of \(x \) varies, we have:

\[\lambda x. \ P(x) \] denotes a function from domain individuals to truth values.

In this way, as we have learned from FOL, \(P \) denotes exactly the set of individuals for which it is true. So, \(P(a) \) means that the individual \(a \) makes the predicate \(P \) true, or, in other words, that \(a \) is in the extension of \(P \).
For example, we can write for the **unary** predicate \(\text{Person} \):

\[
\text{Person} = \lambda x. \text{Person}(x)
\]

which is equivalent to say that \(\text{Person} \) denotes the **set** of persons:

\[
\begin{align*}
\text{Person} & \sim \{ x \mid \text{Person}(x) \} \\
\text{Person}^I & = \{ x \mid \text{Person}(x) \} \\
\text{Person}(john) & \iff john^I \in \text{Person}^I
\end{align*}
\]

In the same way for the **binary** predicate \(\text{FRIEND} \):

\[
\begin{align*}
\text{FRIEND} & = \lambda x, y. \text{FRIEND}(x, y) \\
\text{FRIEND}^I & = \{ (x, y) \mid \text{FRIEND}(x, y) \}
\end{align*}
\]
The functions we are defining with the λ operator may be parametric:

$$\text{Student} \sqcap \text{Worker} = \lambda x. (\text{Student}(x) \land \text{Worker}(x))$$

$$(\text{Student} \sqcap \text{Worker})^\mathcal{I} = \{x \mid (\text{Student}(x) \land \text{Worker}(x))\}$$

$$(\text{Student} \sqcap \text{Worker})^\mathcal{I} = \text{Student}^\mathcal{I} \sqcap \text{Worker}^\mathcal{I}$$

(Verify as exercise)
Concept Expressions

\[(\text{Student} \cap \exists \text{FRIEND. Married})^I\]

=

\[(\text{Student})^I \cap (\exists \text{FRIEND. Married})^I\]

=

\[\{x \mid \text{Student}(x)\} \cap \{x \mid \exists y. \text{FRIEND}(x, y) \land \text{Married}(y)\}\]

=

\[\{x \mid \text{Student}(x) \land \exists y. \text{FRIEND}(x, y) \land \text{Married}(y)\}\]
Objects: classes

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
</tr>
<tr>
<td>name: [String]</td>
</tr>
<tr>
<td>address: [String]</td>
</tr>
<tr>
<td>enrolled: [Course]</td>
</tr>
</tbody>
</table>

\[
\{ x \mid \text{Student}(x) \} = \{ x \mid \text{Person}(x) \land \\
(\exists y. \text{NAME}(x, y) \land \text{String}(y)) \land \\
(\exists z. \text{ADDRESS}(x, z) \land \text{String}(z)) \land \\
(\exists w. \text{ENROLLED}(x, w) \land \text{Course}(w)) \}
\]

\[
\text{Student} \vdash \text{Person} \Box \\
\exists \text{NAME}.\text{String} \Box \\
\exists \text{ADDRESS}.\text{String} \Box \\
\exists \text{ENROLLED}.\text{Course}
\]
Objects: instances

<table>
<thead>
<tr>
<th>s1: Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>name: “John”</td>
</tr>
<tr>
<td>address: “Abbey Road...”</td>
</tr>
<tr>
<td>enrolled: cs415</td>
</tr>
</tbody>
</table>

\[
\text{Student}(s1) \wedge \\
\text{NAME}(s1, “john”) \wedge \text{String}(“john”) \wedge \\
\text{ADDRESS}(s1, “abbey-road”) \wedge \text{String}(“abbey-road”) \wedge \\
\text{ENROLLED}(s1, cs415) \wedge \text{Course}(cs415)
\]
Semantic Networks

∀x. Student(x) →
 ∃y. ENROLLED(x, y) ∧ Course(y)

Student ⊆ ∃ENROLLED.Course

∀x. Professor(x) →
 ∃y. TEACHES(x, y) ∧ Course(y)

Professor ⊆ ∃TEACHES.Course

∀x. Working-student(x) →
 Student(x) ∧ Professor(x)

Working-student ⊆ Student

Working-student ⊆ Professor
Quantification

\[
\begin{array}{c}
\text{Frog} \xrightarrow{\text{HAS-COLOR}} \text{Green}
\end{array}
\]

- \(\text{Frog} \subseteq \exists \text{HAS-COLOR.\text{Green}}\):
 Every frog is also green

- \(\text{Frog} \subseteq \forall \text{HAS-COLOR.\text{Green}}\):
 Every frog is just green

- \(\text{Frog} \subseteq \forall \text{HAS-COLOR.\text{Green}}\)
 \(\text{Frog}(x), \text{HAS-COLOR}(x, y)\):
 There is a frog, which is just green
Quantification: existential

Every frog is also green

\(\forall x. \text{Frog}(x) \rightarrow \exists y. (\text{HAS-COLOR}(x, y) \land \text{Green}(y))\)

Exercise: is this a model?

\(\text{Frog}(\text{oscar}), \text{Green}(\text{green}), \text{HAS-COLOR}(\text{oscar,green}), \text{Red}(\text{red}), \text{HAS-COLOR}(\text{oscar,red}).\)
Quantification: universal

Every frog is only green

Frog ⊆ ∀HAS-COLOR.Green

∀x. Frog(x) →

∀y. (HAS-COLOR(x, y) → Green(y))

Exercise: is this a model? and this?

Frog(oscar), Green(green), Frog(sing),
HAS-COLOR(oscar,green), A G E N T (sing,oscar).
Red(red),
HAS-COLOR(oscar,red).
Analytic reasoning (intuition)

Person

subsumes

(Person *with every* male friend *is a* doctor)

subsumes

(Person *with every* friend *is a*

(Doctor *with a* specialty *is surgery*)
Analytic reasoning (intuition)

Person

subsumes

(Person with *every* male friend *is a* doctor)

subsumes

(Person with *every* friend *is a*

 (Doctor with *a* specialty *is* surgery))

(Person with ≥ 2 children)

subsumes

(Person with ≥ 3 male children)
Analytic reasoning (intuition)

Person

\textit{subsumes}

(Person \textbf{with every} male friend \textbf{is a} doctor)

\textit{subsumes}

(Person \textbf{with every} friend \textbf{is a}

\hspace{1cm} (Doctor \textbf{with a} specialty \textbf{is} surgery))

(Person \textbf{with} \geq 2 children)

\textit{subsumes}

(Person \textbf{with} \geq 3 male children)

(Person \textbf{with} \geq 3 young children)

\textit{disjoint}

(Person \textbf{with} \leq 2 children)