Description Logics

Foundations of Propositional Logic

Enrico Franconi

franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester
Knowledge bases

<table>
<thead>
<tr>
<th>Inference engine</th>
<th>← domain-independent algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge base</td>
<td>← domain-specific content</td>
</tr>
</tbody>
</table>

- Knowledge base = set of *sentences* in a *formal* language = logical *theory*

- *Declarative* approach to building an agent (or other system):
 - TELL it what it needs to know

- Then it can Ask itself what to do—answers should follow from the KB

- Agents can be viewed at the *knowledge level*
 - i.e., what they know, regardless of how implemented

- Or at the *implementation level*
 - i.e., data structures in KB and algorithms that manipulate them
Logic in general

- **Logics** are formal languages for representing information such that conclusions can be drawn.
- **Syntax** defines the sentences in the language.
- **Semantics** define the “meaning” of sentences; i.e., define *truth* of a sentence in a world.

- E.g., the language of arithmetic

 \[x + 2 \geq y \] is a sentence; \[x^2 + y > \] is not a sentence

 \[x + 2 \geq y \] is true iff the number \(x + 2 \) is no less than the number \(y \)

 \[x + 2 \geq y \] is true in a world where \(x = 7, \ y = 1 \)

 \[x + 2 \geq y \] is false in a world where \(x = 0, \ y = 6 \)

 \[x + 2 \geq x + 1 \] is true in every world.
The *one and only* Logic?

- Logics of higher order
- Modal logics
 - epistemic
 - temporal and spatial
 - ...
- Description logic
- Non-monotonic logic
- Intuitionistic logic
- ...

But: There are “standard approaches”

→ propositional and predicate logic
Types of logic

- Logics are characterized by what they commit to as “primitives”
- Epistemological commitment: what states of knowledge?

<table>
<thead>
<tr>
<th>Language</th>
<th>Ontological Commitment (What exists in the world)</th>
<th>Epistemological Commitment (What an agent believes about facts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-order logic</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal logic</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability theory</td>
<td>facts</td>
<td>degree of belief 0…1</td>
</tr>
<tr>
<td>Fuzzy logic</td>
<td>degree of truth</td>
<td>degree of belief 0…1</td>
</tr>
</tbody>
</table>

Classical logics are based on the notion of TRUTH
Entailment – Logical Implication

\[KB \models \alpha \]

- Knowledge base \(KB \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(KB \) is true.

- E.g., the KB containing “Manchester United won” and “Manchester City won” entails “Either Manchester United won or Manchester City won”
Models

- Logicians typically think in terms of *models*, which are formally *structured worlds* with respect to which truth can be evaluated.

- We say m is a *model* of a sentence α if α is true in m.

- $M(\alpha)$ is the set of all models of α.

- Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$.

- E.g. $KB = \text{United won and City won}$

 $\alpha = \text{City won}$

 or

 $\alpha = \text{Manchester won}$

 or

 $\alpha = \text{either City or Manchester won}$
Inference – Deduction – Reasoning

\[KB \vdash_i \alpha \]

- \(KB \vdash_i \alpha \) = sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

- **Soundness**: \(i \) is sound if

 whenever \(KB \vdash_i \alpha \), it is also true that \(KB \models \alpha \)

- **Completeness**: \(i \) is complete if

 whenever \(KB \models \alpha \), it is also true that \(KB \vdash_i \alpha \)

- We will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
Propositional Logics: Basic Ideas

Statements:

The elementary building blocks of propositional logic are *atomic statements* that cannot be decomposed any further: *propositions*. E.g.,

- “The block is red”
- “The proof of the pudding is in the eating”
- “It is raining”

and logical connectives “and”, “or”, “not”, by which we can build *propositional formulas.*
Propositional Logics: Reasoning

We are interested in the questions:

• when is a statement **logically implied** by a set of statements, in symbols: $\Theta \models \phi$

• can we define **deduction** in such a way that deduction and entailment coincide?
Syntax of Propositional Logic

Countable alphabet Σ of atomic propositions: a, b, c, \ldots

$\phi, \psi \rightarrow a$ atomic formula

\bot false

\top true

$\neg \phi$ negation

$\phi \land \psi$ conjunction

$\phi \lor \psi$ disjunction

$\phi \rightarrow \psi$ implication

$\phi \leftrightarrow \psi$ equivalence

- **Atom**: atomic formula
- **Clause**: disjunction of literals
- **Literal**: (negated) atomic formula
Semantics: Intuition

- Atomic statements can be true T or false F.
- The truth value of formulas is determined by the truth values of the atoms (truth value assignment or interpretation).

Example: \((a \lor b) \land c\)

- If \(a\) and \(b\) are wrong and \(c\) is true, then the formula is not true.
- Then logical entailment could be defined as follows:
 - \(\phi\) is implied by \(\Theta\), if \(\phi\) is true in all “states of the world”, in which \(\Theta\) is true.
Semantics: Formally

A truth value assignment (or interpretation) of the atoms in Σ is a function \mathcal{I}:

$$\mathcal{I}: \Sigma \rightarrow \{T, F\}.$$

Instead of $\mathcal{I}(a)$ we also write $a^\mathcal{I}$.

A formula ϕ is satisfied by an interpretation \mathcal{I} ($\mathcal{I} \models \phi$) or is true under \mathcal{I}:

$\mathcal{I} \models \top$
$\mathcal{I} \not\models \bot$
$\mathcal{I} \models a \iff a^\mathcal{I} = T$
$\mathcal{I} \models \neg \phi \iff \mathcal{I} \not\models \phi$
$\mathcal{I} \models \phi \land \psi \iff \mathcal{I} \models \phi \text{ and } \mathcal{I} \models \psi$
$\mathcal{I} \models \phi \lor \psi \iff \mathcal{I} \models \phi \text{ or } \mathcal{I} \models \psi$

$I \models \phi \rightarrow \psi \iff \text{ if } I \models \phi, \text{ then } I \models \psi$

$I \models \phi \leftrightarrow \psi \iff I \models \phi, \text{ if and only if } I \models \psi$
Example

\[\mathcal{I}: \left\{ \begin{array}{c}
a \iff T \\
b \iff F \\
c \iff F \\
d \iff T \\
\vdots
\end{array} \right. \]

\[((a \lor b) \leftrightarrow (c \lor d)) \land \neg(a \land b) \lor (c \land \neg d)). \]
Exercise

• Find an interpretation and a formula such that the formula is true in that interpretation (or: the interpretation satisfies the formula).

• Find an interpretation and a formula such that the formula is not true in that interpretation (or: the interpretation does not satisfy the formula).

• Find a formula which can’t be true in any interpretation (or: no interpretation can satisfy the formula).
Satisfiability and Validity

An interpretation \mathcal{I} is a **model** of ϕ:

$$\mathcal{I} \models \phi$$

A formula ϕ is

- **satisfiable**, if there is some \mathcal{I} that satisfies ϕ,
- **unsatisfiable**, if ϕ is not satisfiable,
- **falsifiable**, if there is some \mathcal{I} that does not satisfy ϕ,
- **valid** (i.e., a **tautology**), if every \mathcal{I} is a model of ϕ.

Two formulas are **logically equivalent** ($\phi \equiv \psi$), if for all \mathcal{I}:

$$\mathcal{I} \models \phi \text{ iff } \mathcal{I} \models \psi$$
Exercise

Satisfiable, tautology?

\[((a \land b) \leftrightarrow a) \rightarrow b\)
\[((\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi))\)
\[(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)\)

Equivalent?

\[(\phi \lor (\psi \land \chi)) \equiv ((\phi \lor \psi) \land (\psi \land \chi))\]
\[\neg(\phi \lor \psi) \equiv \neg \phi \land \neg \psi\]
Consequences

Proposition:

- ϕ is a tautology iff $\neg\phi$ is unsatisfiable
- ϕ is unsatisfiable iff $\neg\phi$ is a tautology.

Proposition: $\phi \equiv \psi$ iff $\phi \leftrightarrow \psi$ is a tautology.

Theorem: If ϕ and ψ are equivalent, and χ' results from replacing ϕ in χ by ψ, then χ and χ' are equivalent.
Entailment

Extension of the entailment relationship to sets of formulas \(\Theta \):

\[\mathcal{I} \models \Theta \quad \text{iff} \quad \mathcal{I} \models \phi \quad \text{for all} \quad \phi \in \Theta \]

Remember: we want the formula \(\phi \) to be implied by a set \(\Theta \), if \(\phi \) is true in all models of \(\Theta \) (symbolically, \(\Theta \models \phi \)):

\[\Theta \models \phi \quad \text{iff} \quad \mathcal{I} \models \phi \quad \text{for all models} \quad \mathcal{I} \quad \text{of} \quad \Theta \]
Propositional inference: Enumeration method

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$

Is it the case that $KB \models \alpha$?

Check all possible models – α must be true wherever KB is true

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$B \lor \neg C$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Propositional inference: Enumeration method

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$

Is it the case that $KB \models \alpha$?

Check all possible models – α must be true wherever KB is true

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>$A \lor C$</td>
<td>$B \lor \neg C$</td>
<td>KB</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Propositional inference: Enumeration method

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$

Is it the case that $KB \models \alpha$?

Check all possible models – α must be true wherever KB is true

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$B \lor \neg C$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Propositional inference: Enumeration method

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$

Is it the case that $KB \models \alpha$?

Check all possible models – α must be true wherever KB is true

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$B \lor \neg C$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Propositional inference: Enumeration method

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$

Is it the case that $KB \models \alpha$?

Check all possible models – α must be true wherever KB is true

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A \lor C</th>
<th>B \lor \negC</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Properties of Entailment

- $\Theta \cup \{\phi\} \models \psi$ iff $\Theta \models \phi \rightarrow \psi$
 (Deduction Theorem)

- $\Theta \cup \{\phi\} \models \neg \psi$ iff $\Theta \cup \{\psi\} \models \neg \phi$
 (Contraposition Theorem)

- $\Theta \cup \{\phi\}$ is unsatisfiable iff $\Theta \models \neg \phi$
 (Contradiction Theorem)
Equivalences (I)

Commutativity
\[\phi \lor \psi \equiv \psi \lor \phi \]
\[\phi \land \psi \equiv \psi \land \phi \]
\[\phi \leftrightarrow \psi \equiv \psi \leftrightarrow \phi \]

Associativity
\[(\phi \lor \psi) \lor \chi \equiv \phi \lor (\psi \lor \chi) \]
\[(\phi \land \psi) \land \chi \equiv \phi \land (\psi \land \chi) \]

Idempotence
\[\phi \lor \phi \equiv \phi \]
\[\phi \land \phi \equiv \phi \]

Absorption
\[\phi \lor (\phi \land \psi) \equiv \phi \]
\[\phi \land (\phi \lor \psi) \equiv \phi \]

Distributivity
\[\phi \land (\psi \lor \chi) \equiv (\phi \land \psi) \lor (\phi \land \chi) \]
\[\phi \lor (\psi \land \chi) \equiv (\phi \lor \psi) \land (\phi \lor \chi) \]
Equivalences (II)

- **Tautology**
 \[\phi \lor \top \equiv \top \]

- **Unsatisfiability**
 \[\phi \land \bot \equiv \bot \]

- **Negation**
 \[\phi \lor \neg \phi \equiv \top \]
 \[\phi \land \neg \phi \equiv \bot \]

- **Neutrality**
 \[\phi \land \top \equiv \phi \]
 \[\phi \lor \bot \equiv \phi \]

- **Double Negation**
 \[\neg \neg \phi \equiv \phi \]

- **De Morgan**
 \[\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi \]
 \[\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi \]

- **Implication**
 \[\phi \rightarrow \psi \equiv \neg \phi \lor \psi \]
Normal Forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms.

Conjunctive Normal Form (CNF)

\[\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m} l_{i,j} \right) \]

*conjunction of disjunctions of literals:

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

Disjunctive Normal Form (DNF)

\[\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m} l_{i,j} \right) \]

*disjunction of conjunctions of literals:

E.g., \((A \land B) \lor (A \land \neg C) \lor (A \land \neg D) \lor (\neg B \land \neg C) \lor (\neg B \land \neg D)\)
Normal Forms, cont.

Horn Form (restricted)

conjunction of Horn clauses (clauses with \(\leq 1 \) positive literal)

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

Often written as set of implications:

\[B \Rightarrow A \text{ and } (C \land D) \Rightarrow B \]

Theorem For every formula, there exists an equivalent formula in CNF and one in DNF.
Why Normal Forms?

• We can transform propositional formulas, in particular, we can construct their CNF and DNF.

• DNF tells us something as to whether a formula is satisfiable. If all disjuncts contain \perp or complementary literals, then no model exists. Otherwise, the formula is satisfiable.

• CNF tells us something as to whether a formula is a tautology. If all clauses (= conjuncts) contain \top or complementary literals, then the formula is a tautology. Otherwise, the formula is falsifiable.

But:

• the transformation into DNF or CNF is expensive (in time/space)

• it is only possible for finite sets of formulas
Summary: important notions

- Syntax: formula, atomic formula, literal, clause
- Semantics: truth value, assignment, interpretation
- Formula satisfied by an interpretation
- Logical implication, entailment
- Satisfiability, validity, tautology, logical equivalence
- Deduction theorem, Contraposition Theorem
- Conjunctive normal form, Disjunctive Normal form, Horn form