Description Logics

Description Logics and Logics

Enrico Franconi

franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester
Tense Logic: *(point ontology)*

- Tense logic is a propositional modal logic, interpreted over temporal structure $\mathcal{T} = (\mathcal{P}, <)$, where \mathcal{P} is a set of time points and $<$ is a strict partial order on \mathcal{P}.

- Mortal \sqsubseteq LivingBeing $\sqcap \forall$LIVES-IN.Place \sqcap

 $\text{LivesIN} \cup_{\text{livingbeing}}^\cup (\text{livingbeing} \cup \circlearrowright \text{livingbeing}))$

- Satisfiability in \mathcal{ALC}_{US} – the combination of tense logic with \mathcal{K}_m – over a linear, unbounded, and discrete temporal structure has the same complexity as its base (PSPACE-complete).

- Satisfiability in \mathcal{ALCQI}_{US} with ABox – the combination of tense logic with \mathcal{ALCQI} with ABox – over a linear, unbounded, and discrete temporal structure has the same complexity as its base (EXPTIME-complete).
HS: Interval Temporal Propositional Modal Logic

- **HS** is a propositional modal logic interpreted over an interval set $T^*_<$, defined as the set of all closed intervals $[u, v] = \{x \in P \mid u \leq x \leq v, u \neq v\}$ in some temporal structure T.

- **HS** extends propositional logic with modal formulæ $\langle R \rangle \phi$ and $[R] \phi$ – where R is a basic Allen’s algebra temporal relation:

 - before (i, j)
 - meets (i, j)
 - overlaps (i, j)
 - starts (i, j)
 - during (i, j)
 - finishes (i, j)

- Mortal \models LivingBeing $\land \langle \text{after} \rangle \dot{\neg}$LivingBeing

- Satisfiability **HS** is undecidable for the most interesting classes of temporal structures.

- Therefore, **HS** \cup **ALC** is undecidable.
Decidable Interval Temporal Description Logics

- \mathcal{HS}^*:
 - No universal quantification, or restricted to homogeneous properties:
 $\square(=, \text{starts}, \text{during}, \text{finishes}). \psi$
 - Allows for temporal variables:
 $\Diamond \vec{x} \ \text{TN}(\vec{x}). \psi$
 $\psi \@ x$
 - Global roles – denoting temporal *independent* properties.

- Logical implication in the combined language $\mathcal{HS}^* \cup \mathcal{ALC}$ is decidable (PSPACE-hard); satisfiability is PSPACE-complete.

- Logical implication in $\mathcal{HS}^* \cup \mathcal{F}$ is NP-complete.

- Useful for event representation and plan recognition.
The Block World Domain

Initial State

Grasp

Final State

Stack(OBJ1, OBJ2)

Clear-Block(OBJ1) Holding-Block(OBJ1) Clear-Block(OBJ1)

Clear-Block(OBJ2) ON(OBJ1, OBJ2)

Stack = \Diamond(x v y w) (\# finishes x)(\# meets y)(\# meets z)(v overlaps \#)(w finishes \#)(v meets w).

((*OBJECT2 : Clear-Block)@x \\False
((*OBJECT1 \circ ON = *OBJECT2)@y \False
((*OBJECT1 : Clear-Block)@v \\False
((*OBJECT1 : Holding-Block)@w \\False
((*OBJECT1 : Clear-Block)@z)
\[\mathcal{L}^n \] FOL fragments

- \[\mathcal{L}^n \] is the set of function-free FOL formulas with equality and constants, with only unary and binary predicates, and which can be expressed using at most \(n \) variable symbols.

- Satisfiability of \[\mathcal{L}^3 \] formulas is undecidable.

- Satisfiability of \[\mathcal{L}^2 \] formulas is NEXPTIME-complete.
The DL description logic

\[ALCI + \text{ propositional calculus on roles,} \]

\[+ \text{ the concept } (R \subseteq S). \]

- The DL description logic and \(\hat{\mathcal{L}}^3 \) are equally expressive.
- The \(DL^- \) description logic (i.e., DL without the composition operator) and \(\hat{\mathcal{L}}^2 \) are equally expressive.
- Open problem: relation between DL including cardinalities and \(\hat{\mathcal{L}}^n \) – adding counting quantifiers to \(\hat{\mathcal{L}}^n \).
Guarded Fragments of FOL

The *guarded fragment* GF of FOL is defined as:

1. Every relational atomic formula is in GF
2. GF is propositionally closed
3. If \(x, y \) are tuples of variables, \(\alpha(x, y) \) is atomic, and \(\psi(x, y) \) is a formula in GF, such that \(\text{free}(\psi) \subseteq \text{free}(\alpha) = \{x, y\} \), then the following formulae are in GF:
 - \(\exists y. \alpha(x, y) \land \psi(x, y) \)
 - \(\forall y. \alpha(x, y) \rightarrow \psi(x, y) \)

The guarded fragment contains the modal fragment of FOL (and Description Logics); a weaker definition (LGF) is needed to include temporal logics.
Properties of GF

- GF has the finite model property
- GF and LGF have the tree model property
- Many important model theoretic properties which hold for FOL and the modal fragment, do hold also for GF and LGF
- Satisfiability is decidable for GF and LGF (deterministic double exponential time complete)
- Bounded-variable or bounded-arity fragments of GF and LGF (which include Description Logics) are in EXPTIME.
- GF with fix-points is decidable.