
Description Logics for Conceptual Design,
Information Access, and Ontology Integration

Tutorial, 2002

Enrico Franconi

franconi@inf.unibz.it

http://www.inf.unibz.it/˜franconi

Faculty of Computer Science, Free University of Bozen-Bolzano

(1/68)

Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(2/68)

Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(3/68)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

(4/68)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

(4/68)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

(4/68)

What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a finite possible world

satisfying the constraints.

(4/68)

The role of a Conceptual Schema

Data Store

Logical
Schema

Conceptual
Schema

(5/68)

The role of a Conceptual Schema

Constraints

Data Store

Logical
Schema

Conceptual
Schema

(5/68)

The role of a Conceptual Schema

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(5/68)

The role of a Conceptual Schema

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(5/68)

The role of a Conceptual Schema

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(5/68)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

(6/68)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua and DAML+OIL).

(6/68)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua and DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

(6/68)

Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua and DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

• Entity-Relationship schemas and UML class diagrams can be considered

as ontologies.

(6/68)

UML Class Diagram

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

(7/68)

Entity-Relationship Schema

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

(8/68)

Semantics

In a specific world:

• A class is a set of instances;

• a n-ary relationship is a set of n-tuples of instances;

• an attribute is a set of pairs of an instance and a domain element.

Employee Project String

E1

E2

E3

E4

E5

P1

P2

P3

“P12a”

“P02b”

“P2a/1”

“P9”

(9/68)

Semantics

In a specific world:

• A class is a set of instances;

• a n-ary relationship is a set of n-tuples of instances;

• an attribute is a set of pairs of an instance and a domain element.

Works-for

Employee Project String

E1

E2

E3

E4

E5

P1

P2

P3

“P12a”

“P02b”

“P2a/1”

“P9”

(9/68)

Semantics

In a specific world:

• A class is a set of instances;

• a n-ary relationship is a set of n-tuples of instances;

• an attribute is a set of pairs of an instance and a domain element.

Works-for

Employee Project String

ProjectCode

E1

E2

E3

E4

E5

P1

P2

P3

“P12a”

“P02b”

“P2a/1”

“P9”

(9/68)

A world is described by sets of instances

E1

E2

E3

E4

E5

P1

P2

P3

〈E1,P1〉
〈E2,P1〉

〈E2,P2〉
〈E2,P3〉

〈E3,P1〉
〈E4,P2〉

〈E4,P3〉
〈E5,P3〉

Employee Project Works-for

(10/68)

The relational representation of a world

Employee

employeeId

E1

E2

E3

E4

E5

Project

projectId

P1

P2

P3

String

anystring

“P12a”

“P02b”

“P2a/1”

“P9”

· · ·

Works-for
employeeId projectId

E1 P1

E2 P1

E2 P2

E2 P3

E3 P1

E4 P2

E4 P3

E5 P3

ProjectCode

projectId pcode

P1 “P12a”

P2 “P02b”

P3 “P2a/1”

(11/68)

The graph representation of a world – e.g. RDF triples

Works-for

ProjectCode

E1:Employee

E2:Employee

E3:Employee

E4:Employee

E5:Employee

P1:Project

P2:Project

P3:Project

“P12a”:String

“P02b”:String

“P2a/1”:String

“P9”:String

(12/68)

Constraints introduced by Relationships

Employee ProjectWorks-for

(13/68)

Constraints introduced by Relationships

Employee ProjectWorks-for

Works-for ⊆ Employee × Project

(13/68)

Constraints introduced by Relationships

Employee ProjectWorks-for
A1 A2

Works-for ⊆ Employee × Project

(13/68)

Constraints introduced by Attributes

Project

ProjectCode : String

(14/68)

Constraints introduced by Attributes

Project

ProjectCode : String

Project ⊆ {p |](ProjectCode ∩ ({p} × String)) ≥ 1}

(14/68)

Constraints introduced by Cardinality Constraints

TopManager ProjectManagesmin..max

(15/68)

Constraints introduced by Cardinality Constraints

TopManager ProjectManagesmin..max

TopManager ⊆ {m | max ≥](Manages ∩ ({m} × Ω)) ≥ min}

(where Ω is the set of all instances)

(15/68)

Constraints introduced by Cardinality Constraints

TopManager ProjectManagesmin..max
A1 A2

TopManager ⊆ {m | max ≥](Manages ∩ ({m} × Ω)) ≥ min}

(where Ω is the set of all instances)

(15/68)

The Cardinality Construct: An Example

Professor StudentSupervises2..3 1..1

A valid Database is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

(16/68)

The Cardinality Construct: An Example

Professor StudentSupervises2..3 1..1

An invalid Database is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

Alex Laura (17/68)

Constraints introduced by ISA

Employee

Manager

(18/68)

Constraints introduced by ISA

Employee

Manager

Manager ⊆ Employee

(18/68)

Disjoint and Total constraints

AreaManager TopManager

Manager

{disjoint,complete}

(19/68)

Disjoint and Total constraints

AreaManager TopManager

Manager

{disjoint,complete}

• ISA: AreaManager ⊆ Manager

• ISA: TopManager ⊆ Manager

• disjoint: AreaManager ∩ TopManager = ∅

• total: Manager ⊆ AreaManager ∪ TopManager
(19/68)

Constraints introduced by the initial diagram

Works-for ⊆ Employee × Project

Manages ⊆ TopManager × Project

Employee ⊆ {e |](PaySlipNumber ∩ ({e} × Integer)) ≥ 1}

Employee ⊆ {e |](Salary ∩ ({e} × Integer)) ≥ 1}

Project ⊆ {p |](ProjectCode ∩ ({p} × String)) ≥ 1}

TopManager ⊆ {m | 1 ≥](Manages ∩ ({m} × Ω)) ≥ 1}

Project ⊆ {p | 1 ≥](Manages ∩ (Ω × {p})) ≥ 1}

Project ⊆ {p |](Works-for ∩ (Ω × {p})) ≥ 1}

Manager ⊆ Employee

AreaManager ⊆ Manager

TopManager ⊆ Manager

AreaManager ∩ TopManager = ∅

Manager ⊆ AreaManager ∪ TopManager
(20/68)

Reasoning

Given an ontology – seen as a collection of constraints – it is possible that

additional constraints can be inferred.

• A class is inconsistent if it denotes the empty set in any legal world

description.

• A class is a subclass of another class if the former denotes a subset of the set

denoted by the latter in any legal world description.

• Two classes are equivalent if they denote the same set in any legal world

description.

• A stricter constraint is inferred – e.g., a cardinality constraint – if it holds in in

any legal world description.

• . . .

(21/68)

Simple reasoning example

Italian English

Person

Lazy LatinLover

{disjoint,covering}

Gentleman Hooligan

{disjoint}

(22/68)

Simple reasoning example

Italian English

Person

Lazy LatinLover

{disjoint,covering}

Gentleman Hooligan

{disjoint}

implies

LatinLover = ∅

Italian ⊆ Lazy

Italian ≡ Lazy
(22/68)

Reasoning by cases

LatinLoverLazy Mafioso ItalianProf

Italian

{disjoint,complete}

{disjoint}

(23/68)

Reasoning by cases

LatinLoverLazy Mafioso ItalianProf

Italian

{disjoint,complete}

{disjoint}

implies

ItalianProf ⊆ LatinLover

(23/68)

ISA and Inheritance

Employee

Salary:Integer

Manager

(24/68)

ISA and Inheritance

Employee

Salary:Integer

Manager

Salary:Integer

implies

Manager ⊆ {m |](Salary ∩ ({m} × Integer)) ≥ 1}

(24/68)

Infinite worlds

Supervisor

Employee

supervises

0..1

2..2

(25/68)

Infinite worlds

Supervisor

Employee

supervises

0..1

2..2

implies

“the classes Employee and Supervisor contain an infinite number of instances”.

Therefore, the schema is inconsistent.

(25/68)

Bijection

Natural Number

Even Number

rel

1..1

1..1

(26/68)

Bijection

Natural Number

Even Number

rel

1..1

1..1

implies

“the classes ’Natural Number’ and ’Even Number’ contain the same number of

instances”.

(26/68)

Bijection

Natural Number

Even Number

rel

1..1

1..1

implies

“the classes ’Natural Number’ and ’Even Number’ contain the same number of

instances”.

If the domain is finite: Natural Number ≡ Even Number

(26/68)

i•com: Intelligent Conceptual Modelling tool

• i•com allows for the specification of multiple UML (or EER) diagrams and

inter- and intra-schema constraints;

• Complete logical reasoning is employed by the tool using a hidden underlying

(description logic) inference engine;

• i•com verifies the specification, infers implicit facts and stricter constraints,

and manifests any inconsistencies during the conceptual modelling phase.

• www.cs.man.ac.uk/˜franconi/icom/

(27/68)

Ontologies in First Order Logic

• We have introduced ontology languages that specify a set of constraints that

should be satisfied by the world of interest.

• The interpretation of an ontology is therefore defined as the collection of all

the legal world descriptions – i.e., all the (finite) relational structures which

conform to the constraints imposed by the ontology.

• An alternative way to define the interpretation: an ontology is mapped into a

set of First Order Logic (FOL) formulas.

• The legal world descriptions (i.e., the interpretation) of an ontology are all the

models of the FOL theory associated to it.

(28/68)

FOL: The Alphabet

The Alphabet of the FOL language will have the following set of Predicate

symbols:

• 1-ary predicate symbols: E1, E2, . . . , En for each Class (Entity);

D1, D2, . . . , Dm for each Basic Domain.

• binary predicate symbols: A1, A2, . . . , Ak for each Attribute.

• n-ary predicate symbols: R1, R2, . . . , Rp for each Association (Relation).

(29/68)

FOL Notation

• Vector variables indicated as x stand for an n-tuple of variables:

x = x1, . . . , xn

• Counting existential quantifier indicated as ∃≤n or ∃≥n.

∃≤nx. ϕ(x) ≡

∀x1, . . . , xn, xn+1. ϕ(x1) ∧ . . . ∧ ϕ(xn) ∧ ϕ(xn+1) →

(x1 = x2) ∨ . . . ∨ (x1 = xn) ∨ (x1 = xn+1) ∨

(x2 = x3) ∨ . . . ∨ (x2 = xn) ∨ (x2 = xn+1) ∨

. ∨ (xn = xn+1)

∃≥nx. ϕ(x) ≡

∃x1, . . . , xn. ϕ(x1) ∧ . . . ∧ ϕ(xn) ∧

¬(x1 = x2) ∧ . . . ∧ ¬(x1 = xn) ∧

¬(x2 = x3) ∧ . . . ∧ ¬(x2 = xn) ∧

. ∧ (xn−1 = xn) (30/68)

The Interpretation function

Interpretation : I = 〈D, ·I〉, where D is an arbitrary non-empty set such that:

• D = Ω ∪ B, where:

• B = ∪m
i=1BDi. BDi is the set of values associated with each basic

domain (i.e., integer, string, etc.); and BDi ∩ BDj = ∅, ∀i, j. i 6= j

• Ω is the abstract entity domain such that B ∩ Ω = ∅.

(31/68)

The Formal Semantics for the Atoms

I is the interpretation function that maps:

• Basic Domain Predicates to elements of the relative basic domain:

Di
I = BDi (e.g., StringI = BString).

• Entity-set Predicates to elements of the entity domain:

Ei
I ⊆ Ω.

• Attribute Predicates to binary relations such that:

Ai
I ⊆ Ω × B.

• Relationship-set Predicates to n-ary relations over the entity domain:

Ri
I ⊆ Ω × Ω . . . × Ω = Ωn.

(32/68)

The Relationship Construct

E1

. . .

EnR

• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

(33/68)

The Relationship Construct

E1

. . .

EnR

• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

• The FOL translation is the formula:

∀x1, . . . , xn. R(x1, . . . , xn) → E1(x1) ∧ . . . ∧ En(xn)

(33/68)

The Attribute Construct

E

A : D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω |](AI ∩ ({e} × BD)) ≥ 1}

(34/68)

The Attribute Construct

E

A : D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω |](AI ∩ ({e} × BD)) ≥ 1}

• The FOL translation is the formula:

∀x. E(x) → ∃y.A(x, y) ∧ D(y)

(34/68)

The Cardinality Construct

E1

Ei

En

p..q

R

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤](RI ∩ (Ω × {ei} × Ω)) ≤ q}

(35/68)

The Cardinality Construct

E1

Ei

En

p..q

R

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤](RI ∩ (Ω × {ei} × Ω)) ≤ q}

• The FOL translation is the formula:

∀xi. E(xi) → ∃≥px1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn) ∧

∃≤qx1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn)

(35/68)

The Cardinality Construct: An Example

Professor StudentSupervises2..3 1..1

• The FOL translation is:

∀x, y. Supervises(x, y) → Professor(x) ∧ Student(y)

∀x. Professor(x) → ∃≥2y. Supervises(x, y) ∧

∃≤3y. Supervises(x, y)
∀y. Student(y) → ∃=1x. Supervises(x, y)

(36/68)

ISA Relations

E

E1 . . . En

• The meaning of this constraint is:

Ei
I ⊆ EI , for all i = 1, . . . , n.

• The FOL translation is the formula:

∀x. Ei(x) → E(x), for all i = 1, . . . , n.

(37/68)

Disjoint and covering constraints

The encoding in FOL of disjoint and covering constraints is left as an exercise.

(38/68)

FOL encoding

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x, y. Works-for(x, y) → Employee(x) ∧ Project(y)

∀x, y. Manages(x, y) → Top-Manager(x) ∧ Project(y)

∀y. Project(y) → ∃x. Works-for(x, y)

∀y. Project(y) → ∃=1x. Manages(x, y)

∀x. Top-Manager(x) → ∃=1y. Manages(x, y)

∀x. Manager(x) → Employee(x)

∀x. Manager(x) → Area-Manager(x) ∨ Top-Manager(x)

∀x. Area-Manager(x) → Manager(x) ∧ ¬Top-Manager(x)

∀x. Top-Manager(x) → Manager(x)
(39/68)

Key constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Project(x) → ∃=1y. ProjectCode(x, y) ∧ String(y)

∀y. ∃x. ProjectCode(x, y) → ∃=1x. ProjectCode(x, y) ∧ Project(x)

(40/68)

Additional constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

(41/68)

Additional constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

1..?
Works-for

1..1

1..1

Manages

• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .
(41/68)

Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(42/68)

The DLR Description Logic – a fragment of FOL

• relationships: interpreted as sets of tuples of a given arity

R → >n | RN | ¬R | R1 u R2 | R1 t R2 | i/n : C

• classes: interpreted as sets of objects

C → > | CN | ¬C | C1 u C2 | C1 t C2 | ∃≶k[i]R

• conceptual schema : R v R′ | C v C ′ | R 6v R′ | C 6v C ′

Works-for v subj/2 : Employee u obj/2 : Project

TopManager v Manager u ∃=1[man]Manages

(43/68)

Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based ontology languages (e.g., DAML+OIL)

(44/68)

Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based ontology languages (e.g., DAML+OIL)

• Theorems prove that an ontology and its encoding as DL knowledge bases

constrain every world description in the same way – i.e., the models of the DL

theory correspond to the legal world descriptions of the ontology, and

vice-versa.

(44/68)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Works-for v emp/2 : Employee u act/2 : Project

Manages v man/2 : TopManager u prj/2 : Project

Employee v ∃=1[worker](PaySlipNumber u num/2 : Integer)u

∃=1[payee](Salary u amount/2 : Integer)
> v ∃≤1[num](PaySlipNumber u worker/2 : Employee)

Manager v Employee u (AreaManager t TopManager)

AreaManager v Manager u ¬TopManager

TopManager v Manager u ∃=1[man]Manages

Project v ∃≥1[act]Works-for u ∃=1[prj]Manages

· · · (45/68)

Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)

(46/68)

Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)

=⇒ For every project, there is at least one employee who is not a manager:

Project v ∃≥1[act](Works-for u emp : ¬Manager) (46/68)

Extensions of DLR

• DLRreg : regular expressions and recursive views (beyond FOL)

• DLRUS : temporal constructs to model temporal databases (temporal logic)

• DLRkey : general key constraints

(47/68)

Reasoning with Ontologies

• Exploit the DLR reasoning procedures for solving reasoning problems in the

ontology enriched with constraints.

• Logical implication and consistency for DLR knowledge bases is decidable

and EXPTIME-complete, and practical, proved correct and complete

algorithms exist in implemented systems.

(48/68)

Reasoning with Ontologies

• Exploit the DLR reasoning procedures for solving reasoning problems in the

ontology enriched with constraints.

• Logical implication and consistency for DLR knowledge bases is decidable

and EXPTIME-complete, and practical, proved correct and complete

algorithms exist in implemented systems.

• Ontology consistency checking with constraints and logical implication of

constraints in ontologies are all decidable EXPTIME-complete problems.

(48/68)

Reasoning with Ontologies

• Exploit the DLR reasoning procedures for solving reasoning problems in the

ontology enriched with constraints.

• Logical implication and consistency for DLR knowledge bases is decidable

and EXPTIME-complete, and practical, proved correct and complete

algorithms exist in implemented systems.

• Ontology consistency checking with constraints and logical implication of

constraints in ontologies are all decidable EXPTIME-complete problems.

• i•com is an implemented conceptual modelling tool using in the background a

DLR ontology server supporting the ontology design.

(48/68)

Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(49/68)

The role of a Conceptual Schema – revisited

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Constraints

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

The role of a Conceptual Schema – revisited

Agent

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

(50/68)

Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary

(51/68)

Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary

• Solution: use a standard DB technology (e.g., SQL, datalog, etc)

(51/68)

Example

Manager

Employee Project1..?Works-for

(52/68)

Example

Manager

Employee Project1..?Works-for

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

(52/68)

Example

Manager

Employee Project1..?Works-for

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ { John } (52/68)

Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.

(53/68)

Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.

• Partial DB assumption: complete information about some term appearing in

the ontology

• Standard DB technologies do not apply

• The query answering problem in this context is inherently complex

(53/68)

Simple Example

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

(54/68)

Simple Example

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

(54/68)

Simple Example

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { (John, Prj-A), (Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

=⇒ { John, Paul, Mary }

(54/68)

Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

(55/68)

Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { (John, Andrea), (John, Mary) }

OfficeMate = { (Mary, Andrea), (Andrea, Paul) }

(55/68)

Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { (John, Andrea), (John, Mary) }

OfficeMate = { (Mary, Andrea), (Andrea, Paul) }

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

(55/68)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

(56/68)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

(56/68)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised(X, Y), TopManager(Y),

Officemate(Y, Z), AreaManager(Z)

(56/68)

Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised(X, Y), TopManager(Y),

Officemate(Y, Z), AreaManager(Z)

=⇒ { John }

(56/68)

View based query processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of views:

(57/68)

View based query processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology;

(57/68)

View based query processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology;

• an ER schema can be easily mapped to its corresponding relational

schema in normal form via a total GAV mapping.

(57/68)

View based query processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology;

• an ER schema can be easily mapped to its corresponding relational

schema in normal form via a total GAV mapping.

• LAV (local-as-view): a view over the ontology terms is given for each term in

the information source;

• GLAV : mixed from the above.

(57/68)

Total GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

(58/68)

Total GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode)

(58/68)

Total GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode)

Employee(X) :- NF-Employee(X,Y,Z)

Manager(X) :- NF-Employee(X,Y, true)

Salary(X,Y) :- NF-Employee(X,Y,Z)

Works-for(X,Y) :- NF-Works-for(X,Y)

Project(X) :- NF-Works-for(X,Y)

(58/68)

LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

(59/68)

LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode)

(59/68)

LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode)

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

NF-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

NF-Works-for(X,Y) :- Works-for(X,Y)

(59/68)

Queries with LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode)

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

NF-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

NF-Works-for(X,Y) :- Works-for(X,Y)

(60/68)

Queries with LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode)

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

NF-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

NF-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

(60/68)

Queries with LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode)

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

NF-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

NF-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ Q’(X) :- NF-Employee(X,Y, true), NF-Works-for(X,Z)
(60/68)

Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

(61/68)

Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

 INCONSISTENT QUERY!

(61/68)

Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

• Ontology Integration

(62/68)

Usefulness of View-based Query Processing

• In data integration, the views represent the only information sources

accessible to answer a query.

• A data warehouse can be seen as a set of materialised views, and, therefore,

query processing reduces to view-based query answering.

• In query optimisation, view-based query processing is relevant because using

the views may speed up query processing.

• Since the views provide partial knowledge on the database, view-based query

processing can be seen as a special case query answering with incomplete

information.

(63/68)

Mediator Architecture for Ontology Integration

Mediator

Result

Inter-schema Constraints

Query

Query

Conceptual
Global Schema

Database1

Logical
Schema1

Conceptual
Schema1

Databasen

Logical
Scheman

Conceptual
Scheman

· · ·

(64/68)

Local-as-view vs. Global-as-view

Local-as-view

• High modularity and reusability (when a source changes, only its view definition is changed).

• Relationships between sources can be inferred.

• Computationally more difficult (query reformulation).

Global-as-view

• Whenever the source changes or a new one is added, the view needs to be reconsidered.

• Needs to understand the relationships between the sources.

• Query processing sometimes easy (unfolding), when the ontology is very simple. Otherwise it

requires sophisticated query evaluation procedures.

(65/68)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• Local-as-view

• Full Ontology / Integrity Constraints

• Global-as-view

• Local-as-view

(66/68)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• Full Ontology / Integrity Constraints

• Global-as-view

• Local-as-view

(66/68)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Local-as-view

(66/68)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Requires sophisticated query evaluation procedures (involving deduction).
• Can express Ontology Integration needs.
• Not modular.

• Local-as-view

(66/68)

Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Requires sophisticated query evaluation procedures (involving deduction).
• Can express Ontology Integration needs.
• Not modular.

• Local-as-view

• View-based query processing under constraints.
• Can express Ontology Integration needs.
• Modular.

(66/68)

Current Practice

• Most implemented ontology based systems:

(67/68)

Current Practice

• Most implemented ontology based systems:

• either assume no Ontology or a very simple Ontology with a

global-as-view approach,

(67/68)

Current Practice

• Most implemented ontology based systems:

• either assume no Ontology or a very simple Ontology with a

global-as-view approach,

• or include an Ontology or Integrity Constraints in their framework, but

adopt a naive query evaluation procedure, based on query unfolding: no

correctness of the query answering can be proved.

(67/68)

Conclusions

(68/68)

Conclusions

Do you have an ontology in your application?

(68/68)

Conclusions

Do you have an ontology in your application?

Pay attention!

(68/68)

	@semtitle
	Summary
	Summary
	What is an Ontology
	What is an Ontology
	What is an Ontology
	What is an Ontology

	The role of a Conceptual Schema
	The role of a Conceptual Schema
	The role of a Conceptual Schema
	The role of a Conceptual Schema
	The role of a Conceptual Schema

	Ontology languages and Conceptual Data Models
	Ontology languages and Conceptual Data Models
	Ontology languages and Conceptual Data Models
	Ontology languages and Conceptual Data Models

	UML Class Diagram
	Entity-Relationship Schema
	Semantics
	Semantics
	Semantics

	A world is described by sets of instances
	The relational representation of a world
	The graph representation of a world -- e.g. RDF triples
	Constraints introduced by Relationships
	Constraints introduced by Relationships
	Constraints introduced by Relationships

	Constraints introduced by Attributes
	Constraints introduced by Attributes

	Constraints introduced by Cardinality Constraints
	Constraints introduced by Cardinality Constraints
	Constraints introduced by Cardinality Constraints

	The Cardinality Construct: An Example
	The Cardinality Construct: An Example
	Constraints introduced by ISA
	Constraints introduced by ISA

	emph {Disjoint} and emph {Total} constraints
	emph {Disjoint} and emph {Total} constraints

	Constraints introduced by the initial diagram
	Reasoning
	Simple reasoning example
	Simple reasoning example

	Reasoning by cases
	Reasoning by cases

	ISA and Inheritance
	ISA and Inheritance

	Infinite worlds
	Infinite worlds

	Bijection
	Bijection
	Bijection

	icom : Intelligent Conceptual Modelling tool
	Ontologies in First Order Logic
	FOL: The Alphabet
	FOL Notation
	The Interpretation function
	The Formal Semantics for the Atoms
	The Relationship Construct
	The Relationship Construct

	The Attribute Construct
	The Attribute Construct

	The Cardinality Construct
	The Cardinality Construct

	The Cardinality Construct: An Example
	ISA Relations
	Disjoint and covering constraints
	FOL encoding
	Key constraints
	Additional constraints
	Additional constraints

	Summary
	The DLR Description Logic -- a fragment of FOL
	Encoding ontologies in Description Logics
	Encoding ontologies in Description Logics

	Deducing constraints
	Deducing constraints

	Extensions of DLR
	Reasoning with Ontologies
	Reasoning with Ontologies
	Reasoning with Ontologies

	Summary
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited
	The role of a Conceptual Schema -- revisited

	Queries with Ontologies: the DB assumption
	Queries with Ontologies: the DB assumption

	Example
	Example
	Example

	Weakening the DB assumption
	Weakening the DB assumption

	Simple Example
	Simple Example
	Simple Example

	Andrea's Example
	Andrea's Example
	Andrea's Example

	Andrea's Example (cont.)
	Andrea's Example (cont.)
	Andrea's Example (cont.)
	Andrea's Example (cont.)

	View based query processing
	View based query processing
	View based query processing
	View based query processing

	Total GAV mapping
	Total GAV mapping
	Total GAV mapping

	LAV mapping
	LAV mapping
	LAV mapping

	Queries with LAV mapping
	Queries with LAV mapping
	Queries with LAV mapping

	Reasoning over queries
	Reasoning over queries

	Summary
	Usefulness of View-based Query Processing
	Mediator Architecture for Ontology Integration
	Local-as-view vs. Global-as-view
	Possible scenarios
	Possible scenarios
	Possible scenarios
	Possible scenarios
	Possible scenarios

	Current Practice
	Current Practice
	Current Practice

	Conclusions
	Conclusions
	Conclusions

