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Abstract

In contrast to the relatively complex information that can be expressed in DL
ABoxes (which we might call knowledge/information), databases and other sources
such as files, semi-structured data, and the World Wide Web provide rather sim-
pler data, which must however be managed effectively. This chapter surveys the
major classes of application of Description Logics and their reasoning facilities
to the issues of data management, including: (i) expressing the conceptual do-
main model/ontology of the data source, (ii) integrating multiple data sources, and
(iii) expressing and evaluating queries. In each case we utilize the standard proper-
ties of DLs, such as the ability to express ontologies at a level closer to that of human
conceptualization (e.g., representing conceptual schemas), determining consistency
of descriptions (e.g., determining if a query or the integration of some schemas
is consistent), and automatically classifying descriptions that are definitions (e.g.,
queries are really definitions, so we can classify them and determine subsumption
between them).

16.1 Introduction

According to [ElMasri and Navathe, 1994], a database is a coherent collection of
related data, which have some “inherent meaning”. Databases are similar to knowl-
edge bases because they are usually used to maintain models of some domain of
discourse (UofD). Of course, the purpose of such computer models is to support
end-users in finding out things about the world, and therefore it is important to
maintain an up-to-date and error-free model. The main difference between data
and knowledge bases is that while the former concentrate on manipulating large
and persistent models of relatively simple data, the latter provide more support for
inference—finding answers about the model which had not been explicitly told to
it—and involve fewer but more complex data.
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Following the functional view of Knowledge Bases advocated by Levesque, we
expect a number of operations that can be applied to the KB, such as define,
tell, and ask. Each of these operations involves one or more languages, such
as the schema/constraint language, the update language, the query language and
the answer language. In an earlier paper surveying the application of DLs to data
management [Borgida, 1995], it has been argued that DLs offer advantages for each
of these languages, as well as the internal processing of queries.

We begin by providing a review of the important notions involving databases,
their development and use, as preparation for examining the application of DLs in
these tasks.

First, one needs to describe the UofD about which the database will be knowl-
edgeable. This is a form of requirements specification, which is normally undertaken
using some high-level language, because the requirements will have to be under-
standable both to end-users and implementors, so they can agree on the goals.
In databases, the best known such language is the Entity-Relationship (ER) data
model1, but many other so-called semantic modeling languages have been proposed
[Hull and King, 1987]. The ER data model will be described in considerable de-
tail and precision in Section 16.2; for now, suffice it to say that it views the world
as populated by entities, which are related to each other by n-ary relationships,
and are described by attributes having atomic values. Note that a semantic model
may be concerned with the universe of discourse as well as the data to be stored
in the computer, and consists of mostly time-invariant generic information (e.g.,
“every department has exactly one manager”) as opposed to specific facts (e.g.,
“Edna manages the shipping department”.) The semantic model introduces the
terms to be used in talking about the domain, and captures their meaning by their
inter-relationships and constraints on them.

From this generic description of the UofD, the database designer develops a logical
schema, describing the structure of data stored in the database, including the data
types, interconnections, and constraints that must hold. Different data models are
used for this purpose, but the relational data model has become the logical model
of choice. While in the semantic modeling phase the emphasis was on a natural and
direct mapping to the UofD, in this case the driving force is the existence of large
software systems called Database Management Systems (DBMS), which support
the management of the data in the model. For example, the relational data model
views data as being stored in the form of tables/relations, with rows/tuples contain-
ing primitive data types (e.g., integers, strings). In this case, the schema contains,
among others, the name of each table, with its columns and their datatype. For
example, table Supplies may have columns for the material, the supplier, the recip-

1 The term “data model” refers to a language or set of concepts for describing a class of databases.
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ient, as well as the shipment date and the amount of material supplied. Relational
DBMS require that each table be given a subset of attributes (called a “key”) which
uniquely identifies each tuple. DBMS may offer additional ways to capture integrity
constraints—assertions distinguishing valid from invalid states of the data.

More recently, Object Oriented DBMS have been developed. These support the
management of persistent objects with intrinsic identity, which can be related to
(collections of) other objects, not just atomic values. Such OO-DBMS can be
used, among others, for providing persistence for object-oriented languages. Object-
oriented languages and databases also support the notion of “method”/procedure
attached to a class, as well as implementation encapsulation, but these aspects will
not be considered in this chapter.

The database is used of course to store facts about the (current) state of the
world. Databases make the so-called “closed world assumption”, which states that
a fact is false unless it has been explicitly stated as true. This assumption works well
with the restriction that the database represents only a very limited form of partial
information. In particular, databases do not allow the representation of disjunctive
information, and support only a very limited form of existential quantification: if
there is no information about an attribute, it is given the null value.

In order to provide access to the data stored in databases, DBMS support a
variety of query languages—languages for specifying declaratively what data is to
be retrieved. For relational databases, SQL is the practical query language of choice.
However, from the theoretical point of view, First Order Logic formulas with free
variables are a much more elegant form, based on the observation that tables can
be viewed as predicates. For example,

∃m, d1, d2. supplies(′intel′, r,m, d1) ∧ supplies(′intel′, r,m, d2) ∧ (d2 6= d1)

would be asking for recipients (values of the free variable r), who had received from
’intel’ shipments of the same material (m) on different dates (d1, d2).

Query languages of varying expressive power can be obtained by restricting or ex-
tending the above “standard”. For example, the so-called “conjunctive” or “select-
join-project” queries only allow formulas with existential quantifiers and conjunc-
tion, while Datalog is a query language that permits the use of intermediate tables
derived using Horn rules, and thereby supports recursion [Ullman, 1988]. For ex-
ample, if we want to describe when one company depends on another through a
chain of suppliers, we could state the rules1

dependsOn(x, y) ← supplies(x, y, m, d).

dependsOn(x, y) ← supplies(x, z, m, d, a) ∧ dependsOn(z, y,m2, d2, a2).
1 Variables appearing only on the right hand side of “→” are assumed to be existentially quantified.
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In many DBMS, the result of a query is another structure of the kind found in the
schema (e.g., relational queries return as answer tables). In some situations, either
because a query is asked frequently or because we want to restrict the access of some
users to a subset of the database, a query can be named, in which case it is called
a view. If a view is materialized, then its value is stored rather than recomputed on
demand, and it is kept correct after every update to the basic database.

The DBMS performs a number of hidden functions, insulating users from the
considerable details of the physical level. For example, the DBMS places physically
the incoming data onto storage media, and provides data structures and other
information that permits efficient access of certain data at some later point of time.
In particular, given a query, the DBMS attempts to optimize the time in which it is
answered by looking at access structures available, statistical information and using
the ability to reformulate queries into other, equivalent ones.

Over time, additional, more complex kinds of databases and DBMS have ap-
peared. For example, distributed databases keep information at a variety of sites
connected by networks (e.g., so that data might be closer to where it is used most
frequently). Note however that the user is unaware of this detail, and perceives a
single database. Heterogeneous and federated databases are collections of indepen-
dent databases which choose to share information but are maintained autonomously.
In the extreme, users may be interested in obtaining information from all kinds of
sources, including non-databases such as files, etc. In such situations, a significant
problem is relating the logical schemas at the various sites in order to provide a
schema that can be presented to the user. The rest of the chapter is devoted to
showing a variety of roles that DLs (and reasoning with them) can play in database
management. In particular, in Section 16.2 we take a detailed look at their use in
semantic/conceptual modeling. We then examine the possible uses of DLs in query-
ing and query processing in Section 16.3, while in Section 16.4 we will consider the
utility of DLs in providing integrated access to multiple information sources. We
summarize the material in Section 16.5.

16.2 Data models and Description Logics

Recall that a “data model” is essentially a language or set of concepts for describing
a class of certain kinds of databases. This section attempts to answer some questions
about the relationship between data models and DLs:

What are some examples of such relationships? First, we will consider in
detail the translation of Entity-Relationship models into knowledge bases
expressed in the DLR description logic. In Section 16.2.5, we will consider
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more cursorily several other data models, such as OODB and semistructured
data.

How are relationships established? The answer is (i) formalizing the data
model (ER in this case), (ii) choosing an appropriate DL (DLR in this
case), (iii) defining a translation function from the former to the latter, and
(iv) proving that this translation is “information preserving” (not done here,
but detailed in [Calvanese et al., 1999e]).

What benefits can be derived from having established relationships?
Most significant is the use of automated DL reasoning services to support
the development and maintenance of correct models (Section 16.2.4). In
addition, since DLs are often more expressive, it is possible to suggest
extensions to database data models that allow further information about
the structure of the data to be captured (Section 16.2.3).

16.2.1 The Entity-Relationship model

In order to talk about the relationship between the Entity-Relationship (ER) model
and DLs, it is necessary first to introduce the reader to the ER data model (see also
Chapter 10). ER is the most widespread semantic data model, and it has become
a standard, extensively used in the design phase of commercial applications. The
ER Model was introduced in [Chen, 1976], with minor variants and extensions
proposed over the years (e.g., [Teorey, 1989; Batini et al., 1992; Thalheim, 1992;
1993]).

The basic elements of the ER Model are entities, relationships, and attributes.
An entity set (or simply entity) denotes a set of objects, called its instances, that
have common properties. Elementary properties are modeled through attributes,
whose values belong to one of several predefined domains, such as Integer, String, or
Boolean. Properties that are due to relations to other entities are modeled through
the participation of the entity in relationships. A relationship set (or simply rela-
tion) denotes a set of tuples (also called its instances), each of which represents an
association among a different combination of instances of the entities that partic-
ipate in the relationship. Since each entity can participate in a relationship more
than once (e.g., a company can be the recipient or sender in a “supply” relation-
ship), the notion of ER-role is introduced to represent such a participation, and to
which a distinguishing identifier within the relationship is assigned. The arity of a
relationship is the number of its ER-roles. We assume that, for each relationship of
arity n, the identifiers 1, . . . , n are assigned to the roles of the relationship.

An entity B is said to be a specialization/IS-A of another entity A, if all the
instances of B are also instances of A. Relationships can be similarly related by
IS-A. This induces an inheritance of the attributes of an entity to its sub-entities,
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Fig. 16.1. Example of an ER schema.

and of the roles of a relationship to its sub-roles. The ER schema produced as a
result of ER modeling is usually represented in a graphical notation, which is par-
ticularly useful for an easy visualization of the data dependencies. In the commonly
accepted notation, entities are represented as boxes, whereas relationships are rep-
resented as diamonds. An attribute is shown as a circle attached to the entity for
which it is defined. ER-roles are graphically depicted by connecting the relation-
ship to the participating entities, and labeling the edges with the corresponding role
identifier. An IS-A relation between two entities is denoted by an arrow from the
more specific to the more general entity (analogously for IS-A relations between two
relationships). Cardinality constraints can be attached to an ER-role in order to
restrict the number of times each instance of an entity is allowed to participate via
that ER-role in instances of the relationship.

Such constraints can be used to specify both existence dependencies and func-
tionality of relations [Cosmadakis and Kanellakis, 1986]. They are often used only
in a restricted form, where the minimum cardinality is either 0 or 1 and the max-
imum cardinality is either 1 or ∞. Cardinality constraints in the form considered
here have been introduced already in [Abrial, 1974], and subsequently studied in
[Grant and Minker, 1984; Lenzerini and Nobili, 1990; Ferg, 1991; Ye et al., 1994;
Thalheim, 1992; Calvanese and Lenzerini, 1994b].

An example of an ER schema is reported in Figure 16.1. Such a schema models
information, handled by an enterprise, about contracts between customers and de-
partments for services, and about registration of customers at departments. Some
customers may be registered at “promotion departments”.

For the purpose of relating the ER Model to DLs it is better to have a more formal
description, which also abstracts out the most important common characteristics
present in the different variants.
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An ER schema S is constructed starting from pairwise disjoint sets of entity
symbols, relationship symbols, ER-role symbols, attribute symbols, and domain
symbols. Each domain symbol D has an associated predefined basic domain DBD ,
and we assume the basic domains to be pairwise disjoint. For each entity symbol, a
set of attribute symbols is defined, and to each such attribute a unique domain sym-
bol is associated. A relationship symbol of arity n has n associated ER-role symbols,
each with an associated entity symbol, and defines a relationship between these en-
tities. We assume that each ER-role symbol belongs to a unique relationship, thus
determining also a unique entity. The cardinality constraints are represented by
two functions cminS , from ER-role symbols to nonnegative integers, and cmaxS ,
from ER-role symbols to positive integers union the special symbol ∞. IS-A rela-
tions between entities and between relationships are modeled by means of a binary
relation �S . We do not need to make any special assumption on the form of �S ,
such as acyclicity or injectivity.

The semantics of an ER schema can be given by specifying which database states
are consistent with the information structure represented by the schema. Formally,
a database state B corresponding to an ER schema S is constituted by a nonempty
finite set ∆B, assumed to be disjoint from all basic domains, and a function ·B that
maps

• every domain symbol D to the corresponding basic domain DBD ,
• every entity E to a subset EB of ∆B,
• every attribute A to a set AB ⊆ ∆B ×

⋃

D∈DS DBD , and
• every relationship R to a set RB of labeled tuples over ∆B.

A labeled tuple over a domain ∆B is a function from a set of ER-roles to ∆B.
The labeled tuple T that maps ER-role Ui to oi, for i ∈ {1, . . . , n}, is denoted
〈U1: o1, . . . , Un: on〉. We also write T [Ui] to denote oi, and call it the Ui-component of
T . The elements of EB, AB, and RB are called instances of E, A, and R respectively.

A database state is considered acceptable if it satisfies all integrity constraints
that are part of the schema. This is captured by the notion of legal database state. A
database state B is legal for an ER schema S, if it satisfies the following conditions:

• For each pair of entities E1, E2 with E1 �S E2, it holds that EB
1 ⊆ EB

2 .
• For each pair of relationships R1, R2 with R1 �S R2, it holds that RB

1 ⊆ RB
2 .

• For each entity E, if E has an attribute A with domain D, then for each instance
e ∈ EB there is exactly one element a ∈ AB with e as first component, and the
second component of a is an element of DBD .

• For each relationship R of arity n between entities E1, . . . , En, to which R is
connected by means of ER-roles U1, . . . , Un respectively, all instances of R are of
the form 〈U1: e1, . . . , Un: en〉, where ei ∈ EB

i , i ∈ {1, . . . , n}.
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• For each ER-role U of relationship R associated with entity E, and for each
instance e of E, it holds that

cminS(U) ≤ |{r ∈ RB | r[U ] = e}| ≤ cmaxS(U).

16.2.2 Transforming Entity-Relationship schemas into DLR knowledge
bases

In order to represent ER Schemas in terms of Description Logics knowledge bases,
we make use of the DL DLR, which has been formally introduced in Chapter 5. We
recall here the syntax of DLR, which is a natural generalization of Description Log-
ics towards n-ary relations: in particular, atomic relations, of given arity between 2
and nmax, belong to the basic elements of DLR, and, besides concept expressions,
arbitrary relation expressions can be formed, according to the following syntax:

R := >n | P | ($i/n: C) | ¬R | R1 uR2

C := >1 | A | ¬C | C1 u C2 | ∃[$i]R | 6 k [$i]R

where P and R denote respectively atomic and arbitrary relations, i and j denote
components of relations, i.e., integers between 1 and nmax, n denotes the arity of a
relation, i.e., an integer between 2 and nmax, and k denotes a nonnegative integer. In
what follows, we abbreviate ($i/n: C) with ($i: C) when n is clear from the context.
Moreover, we use the following abbreviations:

∀[$i]R for ¬∃[$i]¬R,

> (k + 1) [$i]R for ¬(6 k [$i]R),

= k [$i]R for (6 (k + 1) [$i]R) u (> k [$i]R).

In DLR, n-ary relations are interpreted as sets of tuples of arity n, and the DLR
constructs generalize those of traditional DLs. In particular, besides the Boolean
constructs on concepts and relations, the construct ($i/n: C) denotes all tuples of
arity n in which the i-the component is an instance of concept C, and thus represents
a unary selection. The construct ∃[$i]R, denotes all objects that participate as i-
th component in an tuple of relation R, and thus represents a unary projection.
Finally 6 k [$i]R is a generalization of number restrictions to n-ary relations. We
refer to Chapter 5, Section 5.7, for the formal semantics of the DLR constructs.

We now show that the semantics of the ER Model can be captured in DLR by
defining a translation φ from ER schemas to DLR knowledge bases, and then estab-
lishing a correspondence between legal database states and models of the derived
knowledge base. In the following, for each relationship R of arity n in S, we de-
note with µR a mapping from the set of ER-roles associated with R to the integers
1, . . . , n.
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The knowledge base φ(S) derived from an ER schema S is defined as follows:

• The set of atomic concepts of φ(S) consists of the set of entity and domain symbols
in S.1

• The set of atomic relations of φ(S) is obtained from the set of relationship and
attribute symbols in S. More specifically:

– each symbol R in S, denoting a relationship of arity n, is mapped into a symbol
PR in φ(S), denoting a relation of arity n.

– each attribute symbol A in S is mapped into a symbol PA in φ(S), denoting
a relation of arity 2. Thus, each instance of the relation PA is a tuple such
that its first component corresponds to an entity, while the second component
denotes an element of the concept corresponding to the attribute domain.

• The set of inclusion axioms of φ(S) consists of the following elements:

– For each pair of entities E1, E2 such that E1 �S E2, the inclusion axiom

E1 v E2

– For each pair of relationships R1, R2 such that R1 �S R2, the inclusion axiom

PR1 v PR2

– For each attribute A with domain D of an entity E, the inclusion axiom

E v (∀[$1](PA u ($2:D))) u=1 [$1]PA

– For each relationship R of arity n with ER-roles U1, . . . , Un in which each Ui is
associated with the entity Ei, the inclusion axiom

PR v ($µR(U1): E1) u · · · u ($µR(Un):En)

– For each ER-role U of relationship R associated with entity E, with cardinality
constraints m = cminS(U) and n = cmaxS(U),

◦ if m 6= 0, the inclusion axiom

E v > m [$µR(U)]PR

◦ if n 6= ∞, the inclusion axiom

E v 6 n [$µR(U)]PR

Based on the results presented in [Calvanese et al., 1999e], the correctness of the
translation presented above can be formally proved. More specifically, let S be an
ER schema. Then, there is a one-to-one correspondence between legal database
states of S and models of the DLR knowledge base φ(S). For example, an entity
1 For the sake of simplicity, we model domains of ER schemas as concepts in DLR.
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E can be populated in a legal database state for S if and only if φ(S) admits a
model in which E has a non-empty extension. This allows us to exploit reasoning
techniques developed for the logic DLR in order to reason on ER schemas.

For example, by applying the translation presented above to the ER schema in
Figure 16.1, presented earlier, we obtain the following DLR knowledge base:

CONTRACT v ($1:Client) u ($2: Service) u ($3: Department)

REG−AT v ($1: Client) u ($2:Department)

PROMOTION v REG−AT u ($2:PrDept)

Department v ∀[$1](LOCATION u ($2: String)) u= 1 [$1]LOCATION

PrDept v Department

16.2.3 Additions to the Entity-Relationship model

The ER Model does not provide several features which would prove useful in order
to represent complex dependencies between data. On the other hand, the richness
of constructs that is typical of Description Logics, and the correspondence between
the two formalisms established in the previous section, makes it possible to add such
constructs to the basic model and take them fully into account when reasoning on
a schema. We provide several examples of useful additions to the basic ER Model
that arise as a natural consequence of the correspondence with the Description Logic
DLR. We also consider a feature of the original ER Model that appears to force
DLR itself to be extended.

• Arbitrary Boolean constructs on entities. The only direct relationship between
entities that can be expressed in the basic ER Model is the IS-A relation. A
common extension is by so called generalization hierarchies (see e.g., [Batini et
al., 1992]), which allow one to express that the extension of an entity should be
the disjoint union of the extensions of other entities. Such construct can easily
be translated by making use of union and negation of DLR.

• Refinement of properties along an IS-A hierarchy. Another important extension
that should be considered is the possibility to specify more complex forms of re-
finement of properties of entities along IS-A hierarchies, than the mere addition of
attributes. This is already an essential feature of the more recent object-oriented
models. In particular, cardinality constraints could be refined by restricting the
range of values, and the participation in relationships can be restricted. One
may require for specific instances of an entity that the objects they are related to
via a certain relationship belong to a more specific entity than the one directly
associated to the ER-role. Such forms of constraints can be naturally expressed
in DLR by making use of universal quantification over relations.
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• Definitions of classes by means of complex properties. In the ER Model (and more
generally in Semantic Data Models) one can specify only necessary conditions that
the instances of entities (or more generally classes) must satisfy. This means that
in a database that conforms to the schema one cannot deduce that a certain object
is an instance of an entity unless this fact is explicitly stated. When modeling
a complex domain, however, in order to capture more precisely the intended
semantics, one would like to be able to define classes of objects through necessary
and sufficient conditions, or even to state just sufficient conditions for an object
to be an instance of a class. The former correspond in fact to views, which are
important parts of database schemas. By using the different types of axioms of
DLR, necessary and sufficient (and even just sufficient) conditions can be easily
imposed and become part of the schema.

• Key constraints. Because of their utility in physical database design, even the
original ER Model allowed the specification of key attributes/roles. Extending
DLs with key constraints (roles which uniquely identify objects) has been the
subject of several investigations [Borgida and Weddell, 1997]. In particular, Cal-
vanese et al. [2000b] have shown that reasoning about DLR augmented by key
constraints can be performed without increasing the worst-case computational
complexity.

• Temporal constraints. Recent efforts in the Conceptual Modeling community have
been devoted to properly capturing time-varying information, and several propos-
als of temporally enhanced Entity-Relationship (ER) exist. [Artale and Franconi,
1999; 2001; Artale et al., 2001] provide a DL-based logical formalization of the
various properties that characterize and extend different temporal ER models
which are found in literature. In particular, [Artale et al., 2001] define the DL
DLRUS , an extension of DLR with temporal constructs, and study decidability
and complexity of reasoning in such a logic.

16.2.4 Reasoning about Entity-Relationship schemas

Providing a formalization of the ER schema in terms of the logic DLR allows for
supporting several forms of reasoning on the ER schema. Typical reasoning tasks
at the conceptual level supporting the designer of an ER schema S (see [Calvanese
et al., 1998e]) include:

• Entity satisfiability, i.e., whether for every concept C, S admits a model in which
it has a nonempty extension. If C must always have an empty extension then
there is an inconsistency in its specification, or at the very least the concept is
inappropriately named since it is a synonym for “EmptyEntity”.
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• Relation satisfiability, i.e., whether S admits a model in which a certain relation
has a nonempty extension. (Similar to the above.)

• Consistency of the ER schema, i.e., whether S admits a finite model. Without
this, there is no database that satisfies the schema, which indicates that the to-
tality of the definitions is inconsistent or requires an infinite model, which is a
clear sign of incorrectness. Ideally, the reasoning system could provide expla-
nations [McGuinness and Borgida, 1995; Borgida et al., 2000] for the source of
inconsistencies, which could focus the search for modifications.

• Redundancy of the ER schema. Various forms of redundancy in the ER schema
can be detected: e.g., if A, B are entities and both A v B and B v A hold, we
can conclude that one of the entities is redundant.

• Stronger constraints on relationship roles. The concept and relationship specifica-
tions may combine to yield stronger cardinality or domain constraints than those
explicitly specified by the designer. (The simplest example is when we permit
(multiple) inheritance.)

• Entity subsumption, i.e., whether the extension of one concept B is a subset of
the extension of another concept A in every model of S. This property suggests
that the designer check for the possible omission of an explicit IS-A relationship
between B and A. Alternatively, if conceptually all B’s are not supposed to be
A’s, then something is wrong in the rest of the schema, since it is forcing an
undesired conclusion.

• Relation subsumption, i.e., whether the extension of one relation is a subset of
the extension of another relation in every model of S. (Similar to the above.)

Ideas such as the ones above have been been pursued, for example, within the
DWQ European Project [Bouzeghoub et al., 1999], where the DL system Fact
[Horrocks, 1998b] has been successfully used as reasoning tool supporting the anal-
ysis and the integration of diverse database conceptual schemas [Franconi and Ng,
2000].

16.2.5 Description Logics and other data models

Several other investigations have been carried out on the relationships between DLs
and database models:

• [Bergamaschi and Nebel, 1994; Artale et al., 1996a; Calvanese et al., 1999e] pro-
vide formal models of object-oriented DBMSs using DLs.

• [Borgida et al., 1989; Beck et al., 1989; Bergamaschi and Sartori, 1992] introduce
semantic data models based directly on DLs, which are different from ER and
previous database semantic data models.
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• More generally, class-based knowledge representation schemes, such as semantic
networks, conceptual structures and frames [Lehmann, 1992; Sowa, 1991] have
been considered as database models, or as ways to enrich the deductive capabili-
ties of data models. These are related to DLs as suggested in Chapter 4.

A recent important development in the field of data management has been the
need to represent data whose structure is less rigid and strict than that held in
conventional databases. Such semistructured data are important in many appli-
cation areas, such as web information systems, biological databases, and digital
libraries. Semistructured data is neither raw text, nor strictly typed as in conven-
tional database systems [Abiteboul, 1997]. In many recent formalisms, semistruc-
tured data is modeled by graphs with labeled edges, where the label keeps infor-
mation on both the values and the schema of the data. Many authors have noticed
that this model coincides with the ontology of DLs, where roles correspond to edges.
In [Calvanese et al., 1998c] it is shown that expressive DLs can not only capture
semistructured data schemas, but can also add the ability to express several new
kinds of constraints. The same kind of investigation has been carried out in [Cal-
vanese et al., 1999d] for the case of the XML language, which is currently a very
popular formalism for semistructured data on the web (see Chapter 4, Section 4.3.3
for more details).

16.3 Description Logics and database querying

We have seen that descriptions can be used to present the schema of a database. For
example, to emulate object-oriented databases, classes are equated with primitive
concepts, while type restrictions on attributes are presented as necessary conditions
that apply to these primitive classes in the form of role restrictions. In addition,
certain integrity constraints can be expressed as rules of the form “if C then D”, or
axioms C v D. On the other hand, since a concept description provides necessary
and sufficient conditions for objects to satisfy it, it is natural to treat it as a query.
So, in systems like Classic [Borgida et al., 1989] and Candide [Beck et al., 1989],
we have a unification of two traditionally distinct languages: the data definition
and data manipulation languages.

16.3.1 Description Logics as query languages

Once the query is viewed as a concept description, we can perform the standard
operations on it. For example, the query description can be compared to the in-
consistent description. If they are equivalent, this is almost surely a mistake on
the part of the user—who would want to ask a query that never returns an ob-
ject? The most likely reason for this is that the person asking the query is un-
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familiar with the application domain. Since the query can be quite complex, and
the schema quite large, a really helpful system would then assist the user in un-
derstanding the problem by isolating the specific parts of the query and of the
schema that are responsible for the contradiction. Such a tool can be built on top
of explanation facilities available for certain DLs [McGuinness and Borgida, 1995;
Borgida et al., 2000].

More generally, in situations where the query returns no individuals in the cur-
rent database, it has been argued that the query is “not interesting”, and should
be generalized until a non-empty answer set is returned. As suggested by Anwar
et al. [1992], this relaxation can be performed using the semi-lattice of descriptions
provided by the subsumption relationship, which can guide the systematic weaken-
ing of terms in the query.

The query can be classified with respect to the concepts in the schema. This can
be used to help users pose queries in an unfamiliar domain, as follows: if the answer
set contains unwanted values, the immediate subsumers and subsumees of the query
reveal other potentially relevant concepts, and through subsumption assertions in
the schema, roles as well, which the user may want to restrict in stating the query.
The result is a process of query specification by iterative refinement introduced by
Tou et al. [1982].

Queries can also be classified with respect to each other into a subsumption
hierarchy. In an environment where several people are asking exploratory questions
about the data over a long period of time (e.g., data mining by humans), it is very
useful to have the questions organized so that the results of previous related queries
can be reviewed [Brachman et al., 1992]. This prevents duplication of effort and,
again, helps the user to pose queries that are more precise.

Unfortunately, in exchange for a more expressive description of the schema, DLs
pay the price of a weaker than usual query language: queries can only return subsets
of existing objects, rather than creating new objects (as in standard SQL databases);
furthermore, the selection conditions are rather limited. In fact, it has been shown
[Borgida, 1996] that even the most expressive DLs discussed in the literature until
recently, could only express a variant of the “3-variable” subset of formulas of First
Order Logic—i.e., formulas that only use 3 variables, although allowing numeric
quantifiers, like “exists at least n”.

Given the expressive limitations of DL concepts alone as queries, it is reason-
able to consider extending standard queries (in Datalog) with DLs. Two dif-
ferent approaches have been pursued: In one, inspired by the work of Aı̈t-Kaci
and Nasr [1986] on Login, and exemplified by the AL-log language [Donini et
al., 1998b], descriptions are used essentially as type constraints on variables ap-
pearing in Horn clauses. In this case, a crucial condition is that concept and
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role names form a disjoint set from the relations used in expressing rules. The
second approach, exemplified by the Carin language [Levy and Rousset, 1996;
1998], treats concepts and roles as ordinary unary and binary predicates that can
also appear in query atoms. This is significant because it allows for the first time
conjunctive queries to be expressed over DL databases/Aboxes.

A second important distinction is between recursive and non-recursive Datalog
queries. For the non-recursive case (which covers a large portion of practically
useful queries), it seems possible to combine some expressive decidable DLs with
Datalog, while keeping query answering and even reasoning on queries decidable
(see Section 16.4). For the recursive case, undecidability arises sooner, but some
studies have identified suitable restrictions on the DL language and/or on the form
of Datalog rules, for preserving decidability of query answering.

Consider first AL-log. In the rule

happy(x) ← marriedTo(x, y) ∧ employedBy(y, z)
& Person(x) ∧ Person(y) ∧ StartUp(z)

the tests after the ampersand & are for concept membership, while those before it,
are for n-ary relations, as in relational databases. The processing of such queries
is complicated by the fact that the DL “type database” may contain disjunction or
be otherwise incomplete. Instead of the standard answers, one gets a “conditional
result”, with a side condition c describing necessary DL constraints on the variables
in the query. For example, for the above query one might get as answer

happy(ANNA) if Person(ANNA)

in a database containing

marriedTo(ANNA, JOE), employedBy(JOE, IBM), Person(JOE), StartUp(IBM).

Donini et al. [1998b] establish that answering queries in recursive AL-log is
decidable in the case when the DL used is ALC. The framework of AL-log is
further extended in [Rosati, 1999] to the case of disjunctive Datalog, i.e., Datalog
with negation as failure in rule bodies and disjunction in the head of rules.

The Carin approach is more general, but this increase in expressive power comes
at a price: for general Datalog rules, the query answering problem is now undecid-
able as soon as one allows ∀R.C or 6nR as concept constructors. (These appear in
most DLs.) However, if Datalog rules are restricted to avoid recursion, then query
answering is decidable even for the ALCNR DL. Numerous other results circum-
scribing the cases when query processing is decidable may be found in [Levy and
Rousset, 1998].
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16.3.2 Query optimization

In the case when queries can be classified (as when they are descriptions or when the
query implication problem is decidable), classification of queries has been proposed
as a technique for query processing and optimization. In [Beck et al., 1989], among
others, queries are classified with respect to schema concepts; if the query concept
Q is classified below concept C, then only instances of C need to be checked if they
satisfy the full query. Of course, in this classification process one uses the axioms
describing the schema of the database.

If the answers to previous queries are cached, then the query concepts can be
left in the classification hierarchy, together with the other concepts in the schema.
The result is a simple form of the query optimization technique known as “query
answering using cached views”: find the most specific views V that subsume the
query Q; check only the individual instances of V (which, recall, are locally avail-
able) to see if they satisfy the query. Potentially, this could provide considerable
savings, especially when gathering information from multiple sites, for example.

Buchheit et al. [1994b] elaborate on this by using a more powerful query language.
In particular, in order to achieve the expressiveness of full FOL, expressing a query
is viewed as a two phase process: as much of the query as possible is written in
the “query DL” (yielding the so-called “structural part”), and the remainder of the
query is written as a constraint in a first order logic notation (yielding the so-called
“dirty part”). For example, the following query asks for students, whose advisor is
the same as their committee chair, and the advisor is at least 5 years older:

QueryClass QueryStudent isa Student with
derived

I1 : advisor: Prof
I2 : committee.(chair: Thing)

where I1 = I2 constraint forall s/QueryStudent (s.age + 5 < s.advisor.age)

In this case, assuming that cached views only have structural conditions, the query
is classified using only its own structural conditions. Thereafter, only the instances
of the view are tested using both the structural and dirty parts of the query.

Finally, Bergamaschi et al. [1997] have investigated the use of DLs in optimizing
query evaluation in object-oriented DBMS by eliminating redundant terms, among
others. This is accomplished by first expanding the query as much as possible using
the information in the schema; for example, subsumption is used to test when the
antecedent of a rule can be applied to the query (subsumes it) so that its consequent
can be added to it. By repeatedly applying this process, an expanded query is
obtained. Then, all the query subterms that subsume the rest of the query (and
are therefore redundant) are eliminated one by one. The result is a semantically
equivalent description/query which may be more concise than the original one;
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hence it may have fewer tests to evaluate. Furthermore, the new expanded query
may be classified further down the pre-existing class/view hierarchy, providing more
efficient query evaluation, using the query classification technique described earlier.
These are forms of so-called “semantic query optimization”.

An issue related to efficient processing of large numbers of individuals, is the
situation where the user needs to query the conceptual model for DL instances,
while the data is presented in a relational database, say. In other words, we need
to obtain the proper ABox instances of the DL query (which involves concepts
and roles) from the database. The main problem is that processing hundreds of
thousands of individuals is not feasible with DL technology because in each case we
try to perform complex inferences. However, most of the data in the database is very
straightforward, and the corresponding individuals do not generate new inferences.
The solution proposed in [Borgida and Brachman, 1993], is to associate with the
primitive concepts (resp. roles) of the DL knowledge base unary (resp. binary)
view tables defined over the DBMS. One can then translate automatically complex
descriptions into complex SQL queries over these views. The important effect is that
one gets the full benefit of DBMS optimization for the SQL query, and if only a few
values satisfy the query, then only a few DL individuals need to be created. For
example, for a primitive DL class Student, we might take the values appearing in the
enrollee column of relational table Enrollment R, and use this subset of the Person R
table to generate appropriate individuals in a special view Student R, which has only
one column. (The generation of unique identifiers for these individuals is in itself
a research issue.) Similarly, for example, one would generate a two-column view
visitor R corresponding to the role visitor. Complex descriptions over Student and
visitor are then translated algorithmically into SQL queries over the corresponding
views. Additional optimizations turn out to be necessary to deal properly with
multiple queries and functional roles [Borgida and Brachman, 1993].

16.4 Data integration

Integrating different data sources is one of the fundamental problems faced in the
last decades by the database community [Batini et al., 1986]. Generally speaking,
the goal of a data integration system is to provide a uniform interface to various data
sources [Levy, 2000], so as to enable users to focus on specifying what they want.
As a result, the data integration system frees the users from tasks such as finding
the relevant data sources, interacting with each source in isolation, and selecting,
cleaning, and combining data from multiple sources.

The design of a data integration system is a very complex task, which comprises
several different aspects. Our goal in this chapter is to discuss the use of DLs in
two important aspects, namely:
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• The specification of the content of the various data sources.
• The process of computing the answer to queries posed to the data integration

system, based on the specification of the sources.

16.4.1 Specifying the content of data sources

The typical architecture of a data integration system allows one to explicitly model
data and information needs—i.e., a specification of the data that the system provides
to the user—at various levels:

• The conceptual level contains a conceptual representation of the sources and of
the reconciled integrated data, together with an explicit declarative account of
the relationships among their components.

• The logical level contains a representation of the sources in terms of a logical data
model.

The conceptual level As we have seen before, the conceptual level contains a
formal description of the concepts, the relationships between concepts, and the
information requirements that the integration application has to deal with. The
key feature of this level is that such a description is independent from any system
consideration, and is oriented towards the goal of expressing the semantics of the
application. In particular, we distinguish among the following elements:

• The Enterprise Conceptual Schema is a representation of the global concepts and
relationships that are of interest to the application. It corresponds roughly to
the notion of global conceptual schema in the traditional approaches to schema
integration and to the notion of world view, as introduced in [Levy et al., 1995;
Kirk et al., 1995].

• For an information source S, the Source Conceptual Schema of S is a conceptual
representation of the data residing in S.

• The term Domain Conceptual Schema is used to denote the union of both the
Enterprise Conceptual Schema and the various Source Conceptual Schemas, plus
possible inter-schema relationships [Catarci and Lenzerini, 1993].

We have seen in Section 16.2 that DLs are very well suited for data modeling at
the conceptual level, so it comes as no surprise that DLs have also been used in
data integration projects to represent Source and Enterprise Conceptual Schemas
[Catarci and Lenzerini, 1993; Arens et al., 1993; 1996; Levy et al., 1995; Goasdoue
et al., 2000]. In this section, following [Calvanese et al., 1998e], we will continue to
use the DLR DL for specifying these conceptual schemas.

As stated above, the Domain Conceptual Schema contains inter-schema relation-
ships. In particular, since the sources are of interest in the system, integration does
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not simply mean producing the Enterprise Conceptual Schema, but rather being
able to establish the correct interdependencies both between the Source Conceptual
Schemas and the Enterprise Conceptual Schema, and between the various Source
Conceptual Schema.

To specify inter-schema relationships, we make use of the special kinds of asser-
tions available in DL reasoning. In particular, following [Catarci and Lenzerini,
1993], one can use assertions of the following forms:

Li vext Lj

Li vint Lj

where Li and Lj are expressions of different schemas. In particular, Li and Lj

are either two relation expressions of the same arity, or two concept expressions.
Intuitively, the first assertion states that Li is extensionally included in Lj , which
means that every object that satisfies the expression Li in source i also satisfies the
expression Lj in source j. For example, if the designer knows that the set of students
stored in source 1 is a subset of those stored in source 2, then this knowledge is
captured by the inter-schema assertion

Student1 vext Student2

The second assertion states that the concept denoted by the expression Li in
source i is a subconcept of the one denoted by the expression Lj in source j, which
means that every object in source i satisfying Li also satisfies Lj in source j, provided
that it does appear in source j. For example, if the designer knows that the concept
of student in source 1 is a subconcept of person in source 2, then s/he can use the
inter-schema assertion

Student1 vint Person2

It is worth noting that the possibility of reasoning about DLR schemas allows
for sophisticated forms of reasoning on inter-schema assertions, e.g., for inferring
those extensional relationships between concepts that are implied by the knowledge
on the intensional interdependencies. More details about these forms of reasoning
can be found in [Catarci and Lenzerini, 1993; Calvanese et al., 1998e].

The logical level The logical level provides a description of the logical content
of each source, called the Source Schema. Typically, a Source Schema is provided
in terms of a set of relations using the relational logical model of data. So called
wrappers can be used to hide how the source actually stores its data, the data model
it adopts, etc., and presents the source as a set of relations.

The link between the logical representation of a source and the Domain Concep-
tual Schema can be specified in two different ways.
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• According to the so-called global-as-view approach, a query over the source re-
lations is associated to each concept in the Domain Conceptual Schema. Every
such concept is thus seen as a view over the sources.

• In the alternative local-as-view approach, one associates with each source relation
a query that describes its content in terms of the Domain Conceptual Schema.
In other words, the logical content of a source relation is described in terms of a
view over the Domain Conceptual Schema.

In [Levy, 2000], it is argued that the local-as-view approach has several advantages,
and we will follow this approach in the rest of the chapter.

To describe the content of the sources through views, one needs a notion of
query such as the union of conjunctive queries over the Domain Conceptual Schema.
Specifically, a source relation is described in terms of a query of the form

q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conjm(~x, ~ym)

where:

• The head q(~x) defines the schema of the relation in terms of a name, and the
number of columns.

• The body describes the content of the relation in terms of the Domain Conceptual
Schema.

In [Calvanese et al., 2001c], conj i(~x, ~yi) is a conjunction of atoms, and ~x, ~yi are
all the variables appearing in the conjunct (we use ~x to denote a tuple of variables
x1, . . . , xn, for some n). Each atom is of the form E(t), R(~t), or A(t, t′), where ~t, t,
and t′ are variables in ~x, ~yi or constants, and E, R, and A are respectively entities,
relationships, and attributes appearing in the Domain Conceptual Schema.

The semantics of queries is as follows. Given a database that satisfies the Do-
main Conceptual Schema, a query q of arity n is interpreted as the set of n-tuples
(d1, . . . , dn), with each di an object of the database, such that, when substituting
each di for xi, the formula

∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym)

evaluates to true.
Analogously to the case of the conceptual level, it is interesting to perform several

reasoning tasks on the DL representation of the sources, for example for inferring
redundancies and/or inconsistencies among data stored in different sources. Since
queries that include atoms from the Conceptual Schema are more expressive, new
algorithms are required to answer the following problems:

• Query containment. Given two queries q1 and q2 (of the same arity n), check
whether q1 is contained in q2, i.e., check if the set of tuples denoted by q1 is
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contained in the set of tuples denoted by q2 in every database satisfying the
Conceptual Schema. Papers that contain results relating to this question include
[Levy and Rousset, 1998; Calvanese et al., 1998a; Goasdoue and Rousset, 2000].

• Query consistency. Check if a query q over the Conceptual Schema is consistent,
i.e., check if there exists a database satisfying the Conceptual Schema in which
the set of tuples denoted by q is not empty.

• Query disjointness. Check whether two queries q1 and q2 (of the same arity)
over the Conceptual Schema are disjoint, i.e., check if the intersection of the set
of tuples denoted by q1 and the set of tuples denoted by q2 is empty, in every
database satisfying the Conceptual Schema.

16.4.2 Query answering

The ultimate goal of a data integration system is to allow the user to pose queries
over the global view, and to answer the queries by accessing the sources in a trans-
parent way. The mechanism for answering queries differs depending on the approach
adopted for specifying the sources. The possibility of reasoning about queries can
provide useful support in both the global-as-view and the local-as-view approaches.
As in the previous section, here we focus on the local-as-view approach, that is the
one in which query answering is most complex.

In the local-as-view approach, relations at the sources are modeled as views over
the virtual database represented by the Domain Conceptual Schema. Since the
database is virtual, in order to answer a query Q formulated over the Domain Con-
ceptual Schema, we can only use the source views. In other words, query processing
cannot simply be done by looking at a set of relations, as in traditional databases,
but requires reasoning on both the form of the query, and the content of the source
views. This motivates the idea that query answering in data integration becomes
the problem of view-based query processing. There are two approaches to view-based
query processing, called query rewriting and query answering, respectively.

In the former approach, we are given a query Q and a set of view definitions, and
the goal is to reformulate the query into an equivalent expression that refers only
to the views available, and provides the answer to Q.

In the latter approach, besides Q and the view definitions, we also take into
account the extensions of the views, and the goal is to compute the set of tuples
that are implied by these extensions, i.e., the set of tuples t such that t satisfies Q
in all the databases that are consistent with the views.

Notice the difference between the two approaches. In query rewriting, query
processing is divided in two steps, where the first re-expresses the query in terms
of a given query language over the alphabet of the view names, and the second
step evaluates the rewriting over the view extensions. In query answering, we do
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not pose any limit on query processing, and the only goal is to exploit all possible
information, including view extensions, to compute the answer to the query.

View-based query processing has been extensively investigated by the database
community [Levy, 2000]. Only recently has the problem been studied for the case
where the Domain Conceptual Schema is expressed in DLs. For example, [Baader
et al., 2000] addresses the problem of rewriting queries that are concepts in terms
of concepts in the conceptual schema. Query rewriting for to more general queries
(e.g., ones involving conjunctions of atoms) has been studied in [Beeri et al., 1997;
Levy and Rousset, 1998; Goasdoue et al., 2000; Calvanese et al., 2001c], in some
cases taking into consideration complex constraints expressed in DL as part of the
Conceptual Schema. One issue that must be addressed here is that the original query
Q may not be rewritable as an expression over the views because of limitations
of the language for combining views. In this case, one must find heuristic best-
effort approximations. Another issue is finding a minimum-cost rewriting (e.g., by
eliminating unnecessary look-ups in some of the views).

Finally, we mention that Goasdoue et al. [2000] describe an implemented infor-
mation integration system, which uses a combination of global-as-view and limited
local-as-view approach applied to the ALN DL and non-recursive Horn rules.

Among the pioneering attempts at solving the query answering problem is the In-
formation Manifold system [Levy et al., 1996; 1995], which has detailed algorithms
for query rewriting. In the context of heterogeneous databases, Mena et al. [2000]
propose that each source has its own conceptual schema/ontology expressed in a
DL, and these are inter-related by adding “hyponym” (subsumption) relationships
between concepts in each. (This is reminiscent of the approach in [Catarci and Lenz-
erini, 1993].) One of the interesting features of this system is that it takes seriously
the approximations resulting from the fact that some queries may not be express-
ible in terms of the combined ontologies. Among others, they study the notions
of “precision” and “accuracy” of recall to quantify this approximation. A solution
to the query answering approach is presented in [Calvanese et al., 2000a], which,
among others, illustrates the relationship between view-based query answering and
ABox reasoning in DLs.

16.5 Conclusions

We have reviewed a number of ways in which DLs can be useful in the development
and utilization of databases.

Probably the most successful applications are in areas where the conceptual model
of the UofD is required. This includes the initial development stage, as well as access
to heterogeneous data sources.

Concerning the initial conceptual modeling: First, DLs are powerful enough to
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capture the domain semantics represented by various entity-relationship data mod-
els, as well as other data models introduced in the database literature. In fact, with
most DLs, one can represent additional constraints. Second, because DLs have a
clear semantics, the meaning of the DL model is unambiguous and precise. Third,
not only can information be represented, but it can also be reasoned with: one can
look for inconsistent class/entity definitions (ones that cannot have any individual
instances) and more generally, one can check for the consistency of the entire model.
Both of these are signs to the developer that there are modeling errors. Arguably,
it is this third aspect, concerning reasoning with the model, that is the greatest
advantage of DL models.

DL descriptions can be viewed as necessary and sufficient conditions, and hence as
queries (or views!) for a database. DLs are somewhat less successful in this regard
(at least in their pure form), because they have limited expressive power compared
to the standard calculi known from relational databases, and because they cannot
generate new objects—only select subsets of existing objects.

However, if one accepts a DL as a data model, then DL queries can be classi-
fied with respect to schema concepts and previous queries, supporting query by
refinement and data exploration. The subsumption relationship can also be used
for semantic query optimization.

Combining DLs with Datalog rules, or at least supporting conjunctive queries
from concepts, is a promising way to obtain a more expressive query language.
The evaluation of the resulting queries appears to be decidable with a wide range
of DLs if the rules are not recursive. The addition of recursion appears to lead
to undecidability relatively quickly. However, full recursion is not an necessity for
practical applications, such as information integration, so further research in the
possible combinations of DLs and Datalog restrictions is warranted.

The ability to represent the semantics of a UofD is also the reason why DLs are
useful in situations where information is to be integrated from various sources, such
as heterogeneous or federated databases. It is widely agreed that the integration
needs to be achieved at the conceptual level. The DL can be used to define the
ontology of each site, and then these ontologies are inter-related; alternatively, a
global ontology is specified, and then the sites are described as views over it.


