
10

Conceptual Modeling with Description Logics
Alex Borgida

Ronald J. Brachman

Abstract

The purpose of the chapter is to help someone familiar with DLs to understand the
issues involved in developing an ontology for some universe of discourse, which is to
become a conceptual model or knowledge base represented and reasoned with using
Description Logics.

We briefly review the purposes and history of conceptual modeling, and then use
the domain of a university library to illustrate an approach to conceptual model-
ing that combines general ideas of object-centered modeling with a look at special
modeling/ontological problems, and DL-specific solutions to them.

Among the ontological issues considered are the nature of individuals, concept
specialization, non-binary relationships, materialization, aspects of part-whole rela-
tionships, and epistemic aspects of individual knowledge.

10.1 Background

Information modeling is concerned with the construction of computer-based sym-
bol structures that model some part of the real world. We refer to such symbol
structures as information bases, generalizing the term from related terms in Com-
puter Science, such as databases and knowledge bases. Moreover, we shall refer to
the part of a real world being modeled by an information base as its universe of
discourse (UofD). The information base is checked for consistency, and sometimes
queried and updated through special-purpose languages. As with all models, the
advantage of information models is that they abstract away irrelevant details, and
allow more efficient examination of both the current, as well as past and projected
future states of the UofD.

An information model is built up using some language, and this language influ-
ences (more or less subtly) the kinds of details that are considered. For example,
early information models (e.g., relational data model) were built on conventional

359



360 A. Borgida, R. J. Brachman

programming notions such as records, and as a result focused on the implementa-
tion aspects of the information being captured, as opposed to the representational
aspects. Conceptual models offer more expressive facilities for modeling applications
directly and naturally [Hammer and McLeod, 1981], and for structuring information
bases. These languages provide semantic terms for modeling an application, such
as entity and relationship (or even activity, agent and goal), as well as means for
organizing information.

Conceptual models play an important part in a variety of areas. The following is
a brief summary of these areas, as reviewed in [Mylopoulos, 1998]:

• Artificial intelligence programs turned out to require the representation of a great
deal of human knowledge in order to act “intelligently.” As a result, they relied
on conceptual models built up using knowledge representation languages, such
as semantic networks—directed graphs labeled with natural language identifiers.
DLs are the historical descendants of attempts to formalize semantic networks.

• The design of database systems was seen to have as an important initial phase the
construction of a “conceptual level schema,” which determined the information
needs of the users, and which was eventually converted to a physical implementa-
tion schema. Chen’s Entity-Relationship model [Chen, 1976], and later semantic
data models [Hull and King, 1987] were the result of efforts in this direction.

• More generally, the development of all software has an initial requirements ac-
quisition stage, which nowadays is seen to consist of a requirements model that
describes the relationship of the proposed system and its environment. The en-
vironment in this case is likely to be a conceptual model.

• Independently, the object-oriented software community has also proposed view-
ing software components (classes/objects) as models of real-world entities. This
was evident in the features of Simula, the first object-oriented programming lan-
guage, and became a cornerstone of most object-oriented techniques, including
the current leader, UML [Rumbaugh et al., 1998].

One interesting aspect of conceptual modeling in the database context has been
the identification of a number of abstraction mechanisms that support the devel-
opment of large models by abstracting details initially, and then introducing them
in a step-wise and systematic manner. Among the important abstractions are the
following:

• thinking of objects as wholes, not just a collection of their attributes/components
(“aggregation”);

• abstracting away the detailed differences between individuals, so that a class can
represent the commonalities (“classification”1);

1 This term is used in a completely different way than in DL terminology, where it refers to the DL-KBMS
service of finding the lowest subsumers of a concept or individual.



Conceptual Modeling with Description Logics 361

• abstracting the commonalities of several classes into a superclass (“generaliza-
tion”).

An important claim regarding the benefits of abstraction in conceptual modeling
is that it results in a structured information model, which is easier to build and
maintain. Interestingly, DLs further this goal by supporting the automatic classi-
fication of concepts with respect to others, thereby revealing generalizations that
may not have been recognized by the modeler.

10.2 Elementary Description Logics modeling

Most conceptual models, including DLs, subscribe to an object-centered view of
the world. Thus, their ontology includes notions like individual objects, which are
associated with each other through (usually binary) relationships, and which are
grouped into classes. In this chapter we use freely the notation and concrete syntax
of Description Logics (see Appendix), and extend it with additional constructs that
make it more suitable for modeling.

In the domain of a university library, we might encounter a particular person,
GIANNI, or a particular book, BOOK23. Most of the information about the state of
the world is captured by the inter-relationships between individuals, such as GIANNI
having borrowed BOOK23. Binary relationships are modeled directly in DLs using
roles and attributes: either GIANNI is a filler of the lentTo role for BOOK23, or
BOOK23 is the filler of the hasBorrowed role for GIANNI. Note that lentTo and
hasBorrowed are converse relationships, and this should be captured in a model, since
frequently one wants to access information about associations in either direction.
In DLs, this is accomplished using the role constructor inverse:

hasBorrowed ≡ (inverse lentTo)

Note that in order to avoid inadvertent errors during modeling due to confusion
between a role and its converse, or between a role and the kind of values filling
it, one heuristic is to use a natural language name that is asymmetric, and adopt
the convention that the relationship R(a, b) should be read as “a R b”; therefore in
the above case lentTo(BOOK23,GIANNI) reads “BOOK23 lentTo GIANNI,” while
lentTo(GIANNI,BOOK23) reads “GIANNI lentTo BOOK23,” which makes it clear
that the first but not the second is the proper way to use the role lentTo in the
model. On the other hand, loan would be a poor choice of a role identifier because
one could equally well imagine loan as a role of books or of persons, so that neither
loan(GIANNI,BOOK23) nor loan(BOOK23,GIANNI) “read” properly.

In addition, it is always important to distinguish functional relationships, like
lentTo (a book can be loaned to at most one borrower at any time) from non-
functional ones, like hasBorrowed. This is done most cleanly if the particular DL



362 A. Borgida, R. J. Brachman

being used allows the declaration of functional relationships, sometimes called “at-
tributes” or “features.” Attributes themselves come in two flavors: total and partial.
Thus lentTo is a partial attribute because a book can only be loaned to one person,
but may not be on loan at some point of time; on the other hand, every book has
to have an ISBN-Nr. It is important to check which interpretation of attributes is
offered by the particular DL being used. In the rest of this chapter we assume that
attributes are total, and the concept constructor the will be used as an abbrevia-
tion, so that (the p C) is equivalent to the conjunction of (all p C), (at-most 1 p)
and (at-least 1 p).

Individuals are grouped into classes; for example, Book might be a natural class
in our domain. Classes usually abstract out common properties of their instances,
e.g., every book in the library has a call number. Classes are modeled by concepts
in DLs, and usually the common properties are expressed as subsumption axioms
about the concept. These conditions usually involve super-concepts, as well as the
kinds of values that can fill roles, and limits on the number of (various kinds of)
role fillers. By design, these are exactly the kinds of things that can be expressed
using DL constructors:

/* Books are materials, whose callNr is an integer */
Book v (and Material

(the callNr Integer)
. . . )

As mentioned in earlier chapters, one of the fundamental properties of DLs is
support for the distinction between primitive/atomic concepts—for which instances
can only be declared explicitly—and defined concepts—which offer necessary and
sufficient conditions for membership. So, for example, we can distinguish between
the notion of “borrower” as someone who can borrow a book (an approved customer
of the library)

/* Borrower is previously declared as a primitive concept.
Here it is indicated what restrictions on borrowing are in force for this concept */

Borrower v (all hasBorrowed Book)

from the notion of “borrower” as someone who has actually borrowed a book from
the library

/* Borrower is defined as someone who has borrowed books */
Borrower ≡ (and (all hasBorrowed Book)

(at-least 1 hasBorrowed))

We now turn to considering a variety of more subtle issues that arise when model-



Conceptual Modeling with Description Logics 363

ing a domain. Almost all of these issues arise independent of the modeling language
used; what we emphasize here is the range of possible solutions in the DL framework.

10.3 Individuals in the world

Some individuals are quite concrete, like a particular person, Gianni, or a particular
copy of a book. Some are more abstract, like the subject matter covered by a book.
The important property of most individuals is that they have an identity, which
allows them to be distinguished from one another and to be counted.

Modeling of individuals is therefore made easier if they have unique identifiers.
Unfortunately, this may not always be the case. For example, if one sees on a
bookshelf two brand new copies of a book, which may not be distinguishable by any
property known to us, one can still say that they are different copies of the book.
In information management systems, and sometimes in the real world, this leads
us to devise some kind of “extrinsic” identification scheme. For example, books on
the library shelf are assigned a copy number. In this paper, as in object-oriented
software systems, we will tend to assign arbitrary internal identifiers to objects,
such as GIANNI or BOOK23.

The following examples concerning books show that what constitutes a relevant
individual in a UofD depends very much on what we want to do with the infor-
mation. In a domain concerning literature courses, one might consider something
like Dickens’ HARD-TIMES as the kind of individual appearing on an assigned read-
ing list. For an Internet book-seller interface, it is necessary to consider a more
concrete level of modeling—that of book editions, since, these may have different
prices. Finally, in a library, we need to keep track of actual physical book copies.

In the last two cases, one must then decide whether to model books (as opposed
to editions or copies) as individuals, or as concepts that have the other kinds of
individuals as instances. A general heuristic is that if we expect certain notions to
be counted, then they must be modeled as individuals. Another heuristic is that
notions that do not have an inception time are usually modeled as concepts.

Modeling of the particular kind of relationship that exists, for example, between
a book and its editions is further examined in Section 10.7.2.

10.3.1 Values vs. objects

It is important to distinguish what we may call individual objects, such as GIANNI,
from values, such as integers, strings, lists, tuples, etc. The former have an associ-
ated intrinsic and immutable identity, and need to be created in the knowledge base.
The later are “eternal” mathematical abstractions, whose identity is determined by
some procedure usually involving the structure of the individual. For example, the



364 A. Borgida, R. J. Brachman

two strings “abc” and “abc” are the same individual value because they have the
same sequence of characters; similarly for dates, such as 1925/12/20, which can be
considered as 3-tuples.

Many DLs only support reasoning with objects, in which case composite values
such as dates need to be modeled as objects with attributes for day, month and
year. The danger here is that, for example, multiple date individuals can be cre-
ated with the same attribute values, in which case they are treated as distinct for
the purposes of counting and identity checking, resulting in reasoning anomalies.
Implemented DLs such as Classic support values from the underlying program-
ming language (so-called “host values”), and relatively simple concept hierarchies
over them. Others, such as ALC(D) [Baader and Hanschke, 1991a] and SHOQ(D)
[Horrocks and Sattler, 2001] allow attributes to have values from so-called “concrete
domains,” which can contain entirely new kinds of values. These concrete domains
are required to have their own, independent reasoners, which are then coupled with
the DL reasoner.

Equally desirable would be mathematical types such as sets, bags, sequences, and
tuples, as supported by modern programming languages and certain semantic data
models.

Currently, only the highly expressive DLR languages support notions such as
n-tuples and recursive fixed-point structures, from which one can build lists, trees,
etc. Even here, one can only provide the description of concepts (“list of Persons”),
as opposed to the specification of individuals (“the list [GIANNI,ANNA]”).

10.3.2 Individuals vs. references to them

It is important to distinguish an individual from various references to it: Gianni
vs. “the person whose first name is the 5 letter string “Gianni” vs. “the borrower
with library card number 32245” vs. “the chairman of the Psychology Department.”
This distinction becomes crucial when we express relationships: there is a difference
between relating two objects and relating their names, because we usually want
objects to remain related, even if names are changed. Thus “GIANNI hasBorrowed
BOOK25” is different from “card-holder number 32245 hasBorrowed BOOK25,”
because if Gianni gets a new card (after losing his old one, say), then the relationship
between Gianni and the book is lost. So, in general, one should always deal with
the individual objects, unless there is a bijection between a class of objects and
a class of referents to them, and this bijection is universal (it always exists) and
is unchanging1. Kent [Kent, 1979] has eloquently argued the importance of these
issues in record-based database systems, and shows that in the real world such
bijections are much rarer than assumed. For example, Neumann [Neumann, 1992]
1 Such bijections are exactly the “keys” used in the database context.



Conceptual Modeling with Description Logics 365

reports that the same US social security number (the prototypical identifier for
persons in the USA) has been issued to two people, who even have the same name
and birth-date!

Conversely, in some cases one wants to state relationships between intensional
references, rather than specific objects. For example, we might want to say that,
in general, the director of the library is the head of the book selection committee
(COMMITTEE3). If Gianni happens to be the current director of the NBU library,
then asserting headOf(GIANNI,COMMITTEE3) is improper because, among others,
if Gianni steps down as director, according to the above model he would still be com-
mittee chair. One needs the ability to use unnamed expressions as arguments of re-
lationships, along the lines of the predicate logic expression headOf(directorOf(NBU-
LIBRARY),COMMITTEE3).

In DLs, intensional referents can be expressed as roles that are applied to indi-
viduals. (The roles may often be complex chains, resulting from the composition of
atomic roles, as in “the zipCode of the address of the lentTo.”) Assuming that we
use the notation NBU-LIBRARY.director to refer to the filler of the director role for
the NBU-LIBRARY individual, the above relationship is actually stated as “NBU-
LIBRARY.director is identical to COMMITTEE3.head.” The concept constructor
same-as, indicating that two chains of roles have the same value, is used to express
exactly such relationships, so the above situation might be modeled, naively, using
the concept (same-as director head). The problem is that we need a single indi-
vidual of which to assert this property, yet it is libraries that have directors while
committees have heads. In such situations, in DLs one must find or create some
chain of attributes relating the two individuals NBU-LIBRARY and COMMITTEE3.
The natural relationship in this case is the attribute hasBookSelectionCommittee.
Therefore the appropriate way of modeling this situation is

/* NBU-LIBRARY has book selection committee COMMITTEE3 */
hasBookSelectionCommittee(NBU-LIBRARY, COMMITTEE3)

/* NBU-LIBRARY.director equals
NBU-LIBRARY.hasBookSelectionCommittee.head */

(same-as director (hasBookSelectionCommittee ◦ head))(NBU-LIBRARY)

10.4 Concepts

For the university library, some obvious classes of individuals include people, insti-
tutions, the material that can be loaned by the library, the staff, dates, library cards,
and fines. These classes are normally modeled using atomic/primitive concepts in
DLs.



366 A. Borgida, R. J. Brachman

It may be worth noting that in DLs the same individual may be an instance of
multiple classes, without one being necessarily a subclass of another: some book
might be an instance of both hard-cover and science books. This is in contrast
with many other object-oriented software systems, where one is forced to create a
special subclass for this notion, in order to guarantee a unique “minimal” class for
every individual. However, this is not a modeling principle—it is an implementation
obstacle.

10.4.1 Essential vs. incidental properties of concepts

As explained in the earlier example involving the two possible meanings for the
term “borrower,” an important feature of DLs is the ability to distinguish primitive
from defined concepts, where the latter have necessary and sufficient conditions for
concept membership.

For example, BookOnLoan might naturally be defined as

/* A book is on loan if it is borrowed by someone */
BookOnLoan ≡ (and Book (at-least 1 lentTo))

Suppose that we also want to require that only hard-cover books can be loaned out.
There seem to be two options for modeling this:

/* Option 1 — being hardcover is part of the definition */
BookOnLoan ≡ (and Book

(at-least 1 lentTo)
(fills binding ’hardcover))

/* Option 2 — being hardcover is an additional necessary condition */
BookOnLoan ≡ (and Book (at-least 1 lentTo))
BookOnLoan v (fills binding ’hardcover)

The first approach is not quite right because being hardcover is an incidental
property of books on loan, albeit one universally shared by all such objects. Among
other things, this means that if the system is to recognize some individual book as
being on loan, it is enough to know that it has been lent to someone—one does not
also need to know it is hardcover. Hence the second modeling option is the right
one, since, one can actually deduce that a book on loan is hardcover, if this was not
known ahead of time.

The distinction between definitional and incidental properties is also important
if we consider the task of classifying concepts into a taxonomy, since it has been
argued that the taxonomy should not depend on contingent facts. This suggests that
incidental properties, even universal inclusion assertions like the one for hardcover



Conceptual Modeling with Description Logics 367

books in Option 2 above, should appear in the ABox, not the TBox defining the
terminology.

Another subtle problem arises when there are multiple sufficient conditions for a
concept. For example, suppose we associated a due date with books on loan (in the
physical world, this might be recorded as a date stamped in the back of the book).
Then encountering a book with a due date in the future would rightly classify it as a
book on loan. If we model the due date as an attribute of books, which has a value
only as long as the date is in the future, then we would represent this situation as

(and Book (at-least 1 dueDate)) v BookOnLoan

and, of course, requiring books on loan to have a due date would lead to

BookOnLoan v (at-least 1 dueDate)

We thus have multiple sufficient conditions for being a book on loan, although one
of them appears to be the primary definition.

10.4.2 Reified concepts and meta-roles

In some cases it seems natural to associate information with an entire concept, rather
than with each of its individual instances. One situation where this arises is in cap-
turing aggregate information, such as the count of current individual instances of the
concept, or the average value of their attributes. In the library example, attributes
such as numberOfBooks and mostRequestedBooks would fall into this category.

In some object-oriented systems this can be modeled directly because classes
are themselves objects, and as such are instances of meta-classes and have meta-
properties. Currently, DLs do not have a facility to treat classes as objects. One
must therefore create a separate “meta-individual” that is related to the concept by
some naming convention, for example. In our example, we would create the individ-
ual BOOK-CLASS-OBJECT, and then attach the information regarding numberOf-
Books, mostRequestedBooks, etc., as roles of this individual. In the Classic system,
given a named concept, this meta-individual can be retrieved using a special, new
knowledge base operation.

10.4.3 Concepts dependent on relationships

The following interesting modeling problem arises in many situations: some con-
cepts, such as Book, stand on their own. Others, such as Borrower, rely on the
implied existence of some relation/event (e.g., lending), which has a second argu-
ment, and from which their meaning is derived. It is important to discern this



368 A. Borgida, R. J. Brachman

second category of concepts, and explicitly introduce the corresponding binary re-
lationship in the model. In the data modeling literature (e.g., [Albano et al., 1993])
categories of this second type, such as Borrower, are called “roles,” but to avoid
confusion with DL roles, we will call them “relationship-roles.” The modeling of
these will be considered further in Section 10.7.1.

10.5 Subconcepts

For many of the above concepts, there are specialized subconcepts representing
subsets of individuals that are also of interest. For example, the concept Material
(referring to the holdings of libraries) could be Book, Journal, Videotape, etc. In
turn, Book may have subconcepts Monograph, EditedCollection, Proceedings, etc.1

And Borrowers may be Institutions or Individuals, with the latter being divided into
Faculty, Student, Staff.

There are a number of special aspects of the subclass relationship that should be
modeled in order to properly capture the semantics of the UofD.

10.5.1 Disjointness of subconcepts

In many cases, subclasses are disjoint from each other. For example, Book and
Journal are disjoint subclasses of Material. In DLs that support negation, this is
modeled by adding the complement of one concept to the necessary properties of
the other concept:

Book v not Journal

Often, entire collections of subclasses are disjoint2. For this purpose, some DLs
provide the ability to describe disjointness by naming a discriminator, and a special
declaration operation for primitive subclasses. For example, one might discriminate
between various kinds of material on the basis of the medium as follows:

Print v (disjointPrim Material in group medium with discriminant paper);
Video v (disjointPrim Material in group medium with discriminant light);
Audio v (disjointPrim Material in group medium with discriminant sound);

At the same time, one might discriminate between different kinds of material on
the basis of the format:

Book v (disjointPrim Material in group format with discriminant book);
Journal v (disjointPrim Material in group format with discriminant journal);

. . .
1 For this section, we will think of the material to be loaned as physical individuals that can be carried

out the door of the library, so to speak.
2 This is especially the case at the top of the subclass hierarchy: Person, Material, etc.



Conceptual Modeling with Description Logics 369

Two points are worth making here: (i) the advantage of a syntax based on dis-
criminators is that it avoids the multiplicative effect of having to state disjointness
for every pair of disjoint concepts; (ii) as in the above example, it is important
to allow during modeling for multiple groups of disjoint subconcepts for the same
concept.

10.5.2 Covering by subconcepts

In addition to disjointness, it is natural to consider whether some set of subclasses
fully covers the superclass. For example, we might want to say that Circulating
material must be either short-term or long-term.

For DLs that support concept disjunction, this is easy:

Circulating v (or ShortTerm LongTerm)

Note that since ShortTerm, in turn, has Circulating as a superclass, the possibility
arises of modeling Circulating as a definition:

Circulating ≡ (or ShortTerm LongTerm)

However, this approach is not available for languages like Classic, which avoid
disjunction in order to gain tractable reasoning. We discuss in the next section an
approach to the problem based on subconcept definitions and enumerated values.

10.5.3 Defined vs. primitive subconcepts

In the case of material that is either circulating or non-circulating, the name of the
second class provides a hint: after introducing Material and Circulating as primitives,
NonCirculating should be defined :

Circulating v Material
NonCirculating ≡ (and Material (not Circulating))

In this case, the DL can deduce both the disjointness of Circulating and NonCirculat-
ing, and the fact that Material is the union of Circulating and NonCirculating, without
having stated anything explicitly about either. This shows clearly the power of a
reasoning system that is capable of supporting definitions.

By joining covering and disjointness one gets the partitioning of a class by some
group of subclasses. In some DLs—those supporting the constructor one-of—it is
possible to simulate the effect of declaring concepts as partitioned into subconcepts
through the use of a special attribute. For example, we could add the attribute
format to Books, with an enumerated set of possible values:

Book v (the format (one-of ’monograph ’journal ’editedCollection))



370 A. Borgida, R. J. Brachman

and then define the corresponding subclasses:

Monograph ≡ (and Book (fills format ’monograph))
Journal ≡ (and Book (fills format ’journal))
EditedCollection ≡ (and Book (fills format ’editedCollection))

These concepts will be disjoint because format can have at most one value, and they
cover the original class Book, because format must have (at least) one value from
among the set enumerated.

10.5.4 Dynamics of (sub)concept membership

When changes in the model are allowed, there is a distinction between concepts
that represent inherent properties of objects that do not change over time (called
“rigid” in [Guarino and Welty, 2000]) such as Book, and concepts that represent
more transient properties, such as MisplacedBook. Note that while it is possible for
a transient property to be a subconcept of rigid one, the converse does not make
sense.

Standard DLs have not developed modeling tools for issues involving the dynamics
of the world, and hence usually cannot represent such distinctions. DLs extended
with the notion of time, such as [Artale and Franconi, 1998], are of course well
suited to express them.

10.5.5 The structure of the subconcept hierarchy

Recent work by Guarino and Welty (e.g., [Guarino and Welty, 2000]) has presented
several interesting ontological dimensions along which a concept can be positioned.

The dimensions are related to many of the topics we discuss elsewhere in this
chapter, including the existence or absence of criteria for identifying individuals
(viz. Section 10.3), the rigid vs. non-rigid nature of concept membership (viz.
Section 10.5.4), the nature of the part-whole relationship (viz. Section 10.7.3), and
aspects resembling relationship-roles (viz. Section 10.7.1).

The significance of these dimensions is that they can be used to both clarify the
intended meaning of concepts in an ontology, and to better organize the taxonomy of
primitive concepts. The conditions for proper taxonomies are based on observations
such as “a concept some of whose current instances may cease to be instances at
some point in the future (e.g., Student) cannot subsume a concept whose membership
cannot change (e.g., Person).”

We refer the reader to the original paper for further details.



Conceptual Modeling with Description Logics 371

10.6 Modeling relationships

As mentioned earlier, binary relationships are modeled in DLs using roles and at-
tributes. Just as with subclasses, there are a number of special constraints that are
frequently expressed about relationships: cardinality constraints state the minimum
and maximum number of objects that can be related via a role; domain constraints
state the kinds of objects that can be related via a role; and inverse relationships
between roles need to be recorded. For example, a book has exactly one title, which
is a string, and exactly one call number, which is some value that depends on the
cataloging technique used. On the other hand, there may be zero or more authors
for a book:

Book v (and (the title String)
(the callNr MaterialIdentifier)
(all author Person))

As mentioned in Section 10.2, we can use the attribute lentTo to model when some-
one borrows a book:

Book v (all lentTo Borrower)

Suppose we also want to record that the material in the library may be on loan,
available or missing. This can be modeled by adding appropriate roles to the library:

Library v (and (all hasOnLoan Material)
(all hasAvailable Material)
(all hasMissing Material))

In such a case we would like to say that these roles are non-overlapping. This could
be accomplished through the use of a concept constructor non-overlapping, syntac-
tically similar to same-as: (non-overlapping hasOnLoan hasAvailable). However, if
only one library is involved, it would be better to model the situation using an appro-
priate subclass of Material, such as MissingMaterial, because we already have tools
for modeling disjointness of subclasses, and reasoning with them is not inherently
hard as is the case of general constructors such as same-as and non-overlapping.

10.6.1 Reified relationships

It is sometimes useful to be able to give “properties of properties.” For example,
when some material is lent to a borrower, it is useful to record on what date the loan
took place and when the material is due back. In the Entity-Relationship approach
this would be modeled by the creation of a relationship class, called Loan, which
would have attributes onLoan, lentTo, as well as lentOn and dueOn, describing the



372 A. Borgida, R. J. Brachman

loan. This can be thought of as the reification of the relationship, and results in
the following DL class specification:

Loan v (and (the lentTo Borrower)
(the onLoan Material)
(the lentOn Date)
(the dueOn Date)
(the NrOfRenewals (max 3)))

Unless the DL supports n-ary relations, reified relationships become essential
when modeling associations that involve more than two objects, as would be the
case, for example, if we had several libraries (or branches), and we wanted to record
from which library the loan was made.

Reified relationships have the disadvantage of requiring the modeler to distinguish
somehow the subset of attributes determining the relationship R(a, b, . . .), from
those qualifying it. In the above case, we may imagine that Loan represents a
binary relationship Loan(Borrower,Material) between lentTo and onLoan (in which
case lentOn is there just to qualify the relation); alternatively, we may interpret
Loan as a ternary relationship Loan(Borrower,Material,Date) between lentTo, onLoan
and lentOn. The former records loans (a borrower may have a book at most once)
while the latter records the history of loans. The notion of “keys/unique identifiers”
from databases, as adapted to DLs [Borgida and Weddell, 1997] can be used for this
task, by marking the collection of attributes that describe the relationship as a key.

We remark that the DLR description logic can express n-ary relationships di-
rectly, so it does not require reification for this purpose.

10.6.2 Role hierarchies

In many applications, two roles on the same concept may be related by the constraint
that every filler of the first role must be a filler of the second role. For example, in the
library domain, the fillers of the role hasOnShortTermLoan, recording a borrower’s
materials that need to be returned within a week, are also fillers of hasBorrowed,
recording all the materials borrowed (this would be true by definition). Similarly,
the editorInChief of a journal would be included in its editorialStaff.

One of the important features of frame knowledge representation schemes, and
DLs in particular, is that they encourage the modeler to think of roles as first class
citizens. This includes support for the notion of a role taxonomy (subroles). This
is all the more reasonable, since once we reify a relationship, we would be allowed
to create subconcepts of it at will.

As a result, the above kinds of constraints on the containment of role fillers can



Conceptual Modeling with Description Logics 373

be modeled through the use of role hierarchies—a notion supported by most DLs,
at least for primitive roles:

hasOnShortTermLoan v hasBorrowed

10.7 Modeling ontological aspects of relationships

The material in this section deals with some special kinds of relationships and ap-
proaches to modeling them. The cognoscenti will recognize these as issues related
to the ontological aspects of a UofD (constructs relating to the essence of objects),
as opposed to epistemological aspects (constructs relating to the structure of ob-
jects), which are captured by notions such as InstanceOf and IS-A. The kinds of
relationships to be discussed below do however occur relatively frequently, and pose
difficulties to the uninitiated.

10.7.1 Relationship-roles

A subtle, but important distinction can be drawn between objects that may par-
ticipate in a relationship (the domain restrictions on the role) and the objects that
actually do take part in one or more relationships. For example, the objects partici-
pating in a lending relationship can be said to be playing certain “roles”: LentObject
and Borrower. It was exactly this second meaning of borrower—as a relationship-
role—that was contrasted with the original meaning of “potential borrower” in our
example of Section 10.2.

DLs allow one to define the relationship-roles associated with a relationship. In
the case when the relationship is modeled by a regular DL role, such as borrowedBy,
we can define lent objects as ones that are being borrowed, and borrowers, as objects
that are the values of borrowedBy:

LentObject ≡ (at-least 1 borrowedBy)
Borrower ≡ (at-least 1 (inverse borrowedBy))

In the case of the reified Loan relationship, the definition of these classes would be

LentObject ≡ (at-least 1 (inverse onLoan))
Borrower ≡ (at-least 1 (inverse lentTo))

10.7.2 Materialization

There is a family of situations whose modeling is complicated by the fact that several
concepts can be referred to by the same natural language term. For example, one
might say “Shakespeare wrote ‘Hamlet’,” “The ‘Hamlet’ in London this season is a
success,” and “ ‘Hamlet’ was cancelled tonight.” But there is a difference between



374 A. Borgida, R. J. Brachman

the abstract notion of the play ‘Hamlet’, various stagings of the play, and particular
performances. Other familiar distinctions of this kind include the difference between
an airline flight (“Air France flight 25 from Paris to London”) and a particular
“instance” of it—the one that will leave on May 24, 2002. Failure to model such
differences can result in the same kind of problem that arises with any other form
of ambiguity—inappropriate use in a context. So one can only buy tickets to play
performances, but theatrical awards are given to stagings.

In each of these cases there is a relationship between a general notion (e.g., play
staging) and 0-to-N more specific notions (e.g., performance of that play staging),
which has been called materialization, and was investigated in [Pirotte et al., 1994].

Let us first model some information that we would like to capture in the library
domain:

/* Books have information about authors, etc. */
Book v (and . . .

(all hasAuthors Person)
(the hasTitle String))

/* Editions of books are related to the book (in a way yet to be specified)
but have their own roles too */

BookEdition v (and . . .
(the publishedBy PublishingCompany)
(the isbnNr IsbnNumber)
(the format (one-of ’printed ’audio)))

/* Book copies are related to book editions, and in turn have their own roles */
BookCopy v (and . . .

(the callNr CallNumber)
(the atBranch LibraryBranch))

There are several alternative ways of proceeding with the modeling of such a UofD.
Since objects in each of these classes are seen to naturally have attributes like

hasTitle, it is tempting to think of BookCopy as being a subclass of BookEdition
so that this attribute is inherited. However, this would mean that each individual
instance of BookCopy is a separate BookEdition, which seems wrong.

If we are not committed to modeling separate individual instances of each of
these concepts, it is possible to combine their description into a single concept that
records all the relevant information. So, for example, we could define Books to have
all the attributes of the three concepts above, and thus really refer to book copies.
(But see below.)

Finally, according to the results in [Pirotte et al., 1994], a more appropriate



Conceptual Modeling with Description Logics 375

approach is to view each edition of a book as determining a subclass of BookCopy.
Each of these subclasses can then be viewed as an instance of BookEdition, for which
it provides so-called “meta-roles.” Materialization is the combination of these ideas.

The materialization relationship can be modeled in DLs by a role materializa-
tionOf, connecting in our case book editions and books, and book copies and book
editions. However, this sounds very unnatural when read out loud, so a better ap-
proach may be to create subroles of the general role materializationOf. This means
that the above model would be completed by adding the following assertions

/* editionfOf is a kind of materialization relationship */
editionOf v materializationOf

/* Book editions are materializations of books */
BookEdition v (the editionOf Book)

/* copyOf is a kind of materialization relationship */
copyOf v materializationOf

/* Book copies are materializations of book editions */
BookCopy v (the copyOf BookEdition)

Often, the properties of the more abstract concept are inherited by the material-
ization. For example, the book edition, and then the book copy, has the same title
and author as the book. In DLs, this relationships can be expressed by identifying
the appropriate attribute values on the general and the materialized object:

BookEdition v (same-as hasTitle (editionOf ◦ hasTitle))

Several additional kinds of relationships between attributes of an object and its
materialization are identified in [Pirotte et al., 1994], but they are rather unclear
and cannot be represented in DLs. Probably the most interesting is the case when
an attribute of the more general concept has no correspondent on materialized
individuals. For example, though a book edition may reasonably record the date
when it was first and last printed, it seems very questionable to say that a book
copy has a last printing date.

This looks like a case of meta-roles of the kind mentioned earlier. The main
importance is that if one wants to have in the model attributes such as firstPrinting,
then one cannot “melt” objects (book editions) into their various materializations
(book copies), and is forced to model them separately.



376 A. Borgida, R. J. Brachman

10.7.3 Part-whole aggregation

The part-whole relationship distinguishes roles of a book such as its chapters, from
others such as its publisher. There is a long history of discussions concerning this
topic, with [Artale et al., 1996b] being an excellent and comprehensive survey that
considers, among other things, a variety of DL solutions to the problem. We present
here some interesting observations.

Cognitive scientists have distinguished a variety of part-whole relationships,
whose mixture has caused apparent paradoxes; according to one hypothesis these
can be distinguished by differentiating three kinds of wholes—complexes, collections
and masses—with parts called components, members and quantities respectively;
furthermore parts can be portions (sharing intrinsic properties with the whole) and
segments. Most physical objects, like book copies, are complexes of their parts (e.g.,
pages), but in the book domain we also find uses for collections in modeling books
that are anthologies of other literary pieces.

In addition, one can qualify the nature of two aspects of the relationship between
parts and wholes:

• Existence: A whole may depend on particular individual(s) for its continued
existence and identity, as in the case when the part is irreplaceable (e.g., a book
must have an author); or it may depend generically on a class of parts (e.g., a
book copy must have a cover). Conversely, the part may depend on the whole for
its existence (e.g., the chapter of a book). Finally, a part may belong exclusively
to only one whole or it might be shared.

• Properties: Properties may be “inherited” from the whole to the part (e.g.,
ownedBy) or from the part to the whole (e.g., isDefective).

At the very least, the above provides a checklist of issues to consider whenever a
part-whole relationship is encountered during modeling.

In the realm of Description Logics, Sattler [1995] offers an approach to dealing
with these topics, exploiting various role-forming operators such as role hierarchies,
role inverse, and transitive closure to capture the semantics of aggregation.

Specifically, special roles are introduced for the different kinds of part-whole re-
lationships mentioned above: hasDComponent, hasDMember, hasDSegment, has-
DQuantity, hasDStuff, hasDIngredient, where “D” stands for “direct.” One then
defines more complex relationships from these primitives:

hasComponent ≡ (transitive-closure
(orrole hasDComponent (hasDMember ◦ hasDComponent)))

hasPart ≡ (orrole hasComponent hasMember · · ·)

indicating that members of collections of components are also components, and that
hasPart is the union of the various sub-kinds of relationships.



Conceptual Modeling with Description Logics 377

Let us concentrate here on the component-of relationship, which is probably the
one most frequently encountered in practical applications. We shall consider the
table of contents of a book as an exemplar of a component attribute.

One idea is to declare attributes and roles that represent components (e.g., table-
OfContents) as specializations of hasDComponent. This allows us to distinguish such
component roles from other roles, like lentTo and publisher.

Obviously, the inverses of such roles provide access from a part to its containing
whole:

isDComponentOf ≡ (inverse hasDComponent)
hasTableOfContents ≡ (inverse contentsOf)

Turning to “existence” constraints, a book (but not a copy of a book!) depends
on the existence of its specific table of contents, and conversely. Although we can
specify that a book must have table of contents, as with earlier “dynamic” aspects
(such as (im)mutable class membership) standard DLs are not currently equipped
to express constraints stating that an attribute value cannot change.

To model the fact that each table of contents belongs exclusively to one book, we
can use qualified number restrictions

TableOfContents v (the contentsOf Book)

Finally, the inheritance of properties (e.g., isDefective) across component-like at-
tributes is modeled using constructs such as same-as, which relate attribute/role
chains set-theoretically, in the same manner as shown with materialization:

Book v (same-as isDefective (hasTableOfContents ◦ isDefective))

Note however that several of these representations require quite expressive lan-
guage constructs, whose combination may result in a language for which subsump-
tion is undecidable.

10.7.4 General constraints

In many modeling exercises one will encounter general constraints that characterize
valid states of the world. For example, the dueDate of a book must be later than
the lentOn date.

Except for a few cases involving identity of attribute paths, these constraints will
not be expressible in standard DLs, due to their limited expressive power. Several
widely distributed systems, such as Classic and Loom, offer “escape hatches”—
concept constructors that allow one to describe sets of individuals using some very
powerful language, such as a programming language (Classic’s test-concepts) or
some variant of first-order logic (Loom’s assertions). These concept definitions are



378 A. Borgida, R. J. Brachman

usually opaque as far as concept-level reasoning is concerned, because the system
cannot guarantee correctness for such an expressive formalism. However, these con-
cepts can have an impact as far as the ABox reasoning is concerned, since the latter
resembles a logical model, and therefore we can do relatively simple “evaluation” as
a way of recognizing individuals. Thus, in Classic, the test-concept (test date-after
(dueDate lentOn)) would invoke the date-after function on the dueDate and lentOn
attributes of an individual object, and check that the first is temporally after the
second, thus classifying individuals, or detecting errors in the ABox.

More general than these procedural extensions are DL systems that are extensible
in the sense that a “knowledge language engineer” can add new concept construc-
tors, and extend the implementation in a principled way. For example, if we wanted
to deal with dates and durations (clearly a desirable feature for libraries), we would
want to be able to compare dates, add durations to dates, etc. General approaches to
extending DLs have been described, among others, in [Baader and Hanschke, 1991b;
Borgida, 1999; Horrocks and Sattler, 2001].

10.7.5 Views and contexts

Although the initial goal is usually to provide a single model of the UofD, it turns
out to be very important to preserve the various “views” of the information seen by
different stake-holders and participants. For example, a book that is in the library
(and by definition, this would mean that it has no value for the lentTo role) is of
interest to the staff, for example to help find it; for this, it may have a role location,
which might specify some shelf or sorting area; this attribute may be attached to
the MaterialInLibrary concept.

On the other hand, a view of Material called MaterialOnLoan (which requires
a lentTo role value), would be a natural place to keep information about dueDate
and nrOfRenewals—attributes that would normally appear on the relationship itself.
This view is of particular interest to the borrower, but also the staff in charge of
sending overdue notices.

Incidentally, the above pattern of replacing a binary relationship having attributes
by two views can be applied any time one of the participants in the relationship is
restricted to appear in at most one tuple (e.g., every book can be loaned to at most
one borrower).

10.8 A conceptual modeling methodology

The world of object-oriented software development has produced a vast literature
on methodologies (e.g., [Shlaer and Mellor, 1988]) for identifying objects, classes,
methods, etc., for a particular application. Instead of considering this voluminous



Conceptual Modeling with Description Logics 379

material here, we will recapitulate some of the issues raised above by extending
the outline of a simple DL knowledge engineering methodology first presented in
[Brachman et al., 1991]. The reader is referred to that article for more details,
including a long worked-out example.

We present the main steps of modeling, with suggestions for refinements to be
accomplished in later passes; this is in order to avoid the modeler becoming over-
whelmed by details:

• Identify the individuals one can encounter in the UofD. Revisit this later consid-
ering issues such as materialization and values.

• Enumerate concepts that group these values.
• Distinguish independent concepts from relationship-roles.
• Develop a taxonomy of concepts. Revisit this later considering issues such as

disjointness and covering for subconcepts.
• Identify any individuals (usually enumerated values) that are of interest in all

states of the world in this UofD.
• Systematically search for part-whole relationships between objects, creating roles

for them. Later, make them sub-roles of the categories of roles mentioned in
Section 10.7.3.

• Identify other ‘properties’ of objects, and then general relationships in which
objects participate.

• Determine local constraints involving roles such as cardinality limits and value
restrictions. Elaborate any concepts introduced as value restrictions.

• Determine more general constraints on relationships, such as those that can be
modeled by subroles or same-as. (The latter often correspond to “inheritance”
across some relationship other than IS-A, and have been mentioned in several
places earlier.)

• Distinguish essential from incidental properties of concepts, as well as primitive
from defined concepts.

• Consider properties of concepts such as rigidity, identifiers, etc., and use the
techniques of [Guarino and Welty, 2000] to simplify and realign the taxonomy of
primitive concepts.

10.9 The ABox: modeling specific states of the world

So far, we have concentrated on describing the conceptual model at the level of
concepts. In some applications we may want to use our system to keep models of
specific states of the world—somewhat like a database. As discussed in Chapter 2,
this involves stating for each specific individual zero or more fillers for its attributes



380 A. Borgida, R. J. Brachman

and roles, and asserting membership in zero or more concepts (primitive, but also
possibly defined).

One of the challenging aspects of modeling the state of the world with DLs is
remembering that unlike databases, DL systems do not make the closed-world as-
sumption. Thus, in contrast with standard databases, if some relationship is not
known to hold, it is not assumed to be false.

One consequence of this is that any question about the membership of an individ-
ual in a concept, or its relationship to another individual, has three possible answers:
definitely yes, definitely no, or unknown. The positive side of this is that it allows
the modeling of states with partial information: one can model that BOOK22 is an
instance of Book, and hence has exactly one filler for isbnNr, yet not know what
that value is. Chapter 12 shows how this feature has been exploited in developing
a family of DL applications for configuring various devices.

Another consequence of the above stance is that in some cases individuals are not
recognized as satisfying definitions when one might expect them to. For example,
suppose we only know that hasAuthor relates BOOK22 to SHAKESPEARE, who
in turn is known to be an instance of Englishman. This, by itself, is not enough
to classify BOOK22 as an instance of concept (all hasAuthor Englishman); we must
also know that there are no other possible fillers for BOOK22’s hasAuthor role—i.e.,
that BOOK22 is an instance of (at-most 1 hasAuthor)—before we can try to answer
definitively whether BOOK22 is an instance of (all hasAuthor Englishman). Even in
this case, if the answer is not ‘yes’, we may get ‘no’ or ‘maybe.’

A final consequence of not making the closed-world assumption is that there is
a clear distinction between the state of the world (out there) and our (system’s)
knowledge of it. This is reflected by the terminology used above (e.g., “we must also
know there are no other possible fillers”). As a result, in modeling a domain one may
find it necessary to specify concepts that involve the state of our knowledge base,
rather than the state of the world. For example, we might want to find out exactly
which books in the KB are not known to have a ISBN number. The description
(and Book (at-most 0 isbnNr)) will not do the job, because the second constraint
would conflict with one of the the necessary conditions of Book, which is that it
must have have exactly one isbnNr. What is happening here is that the at-most 1
constraint concerns the state of the world, while the at-most 0 condition involves
the KB’s knowledge of the world. To deal with this, we need some form of epistemic
operator, so we can define the concept

UnknownIsbnBook ≡ (and Book (at-most 0 (known isbnNr)))

The general problem of adding an epistemic operator to DLs is considered in [Donini
et al., 1998a], but this is not available in currently implemented DLs. A “hack”



Conceptual Modeling with Description Logics 381

would be to introduce for such roles a subrole, whose identifier indicates its epistemic
nature:

knownToHaveAuthor v hasAuthor

and then be sure to assert fillers only about the “known” variant. Unfortunately,
there is no way to tell a DL that such roles automatically have the “closed-world
assumption.”

10.10 Conclusions

There are a wide variety of sources that discuss the application of object-oriented
approaches to modeling a domain. The same principles apply to conceptual mod-
eling in general. For this reason, we have concentrated here on some of the more
subtle issues and ontological issues that arise during modeling, and the different
ways in which these can be encoded in DLs. In some cases the issues examined
were suggested by features of DLs themselves.

In the process, we covered most of the kinds of questions that would have to be
addressed while modeling something like the library domain, and uncovered some of
the strengths and also some of the weaknesses of DLs in representing this conceptual
model. The latter include difficulty in representing (structured) values, constraints
related to the dynamic aspects of the domain, certain forms of “inheritance” (e.g.,
for materialization), and meta-information. These were balanced by the multitude
of features dealing with primitive and defined concepts, necessary and sufficient
conditions for concept specification, and the treatment of roles as first-class citizens
in subclasses and composition.

Probably the biggest problem in developing an appropriate conceptual model
for a domain is that of testing it for correctness and completeness. The former is
supported by the reasoning and explanation facilities provided by DLs. The latter,
as usual, is much more difficult to achieve.


