
9

Implementation and Optimisation Techniques
Ian Horrocks

Abstract

This chapter will discuss the implementation of the reasoning services which form
the core of Description Logic based Knowledge Representation Systems. To be
useful in realistic applications, such systems need both expressive logics and fast
reasoners. As expressive logics inevitably have high worst-case complexities, this
can only be achieved by employing highly optimised implementations of suitable
reasoning algorithms. Systems based on such implementations have demonstrated
that they can perform well with problems that occur in realistic applications, in-
cluding problems where unoptimised reasoning is hopelessly intractable.

9.1 Introduction

The usefulness of Description Logics (DLs) in applications has been hindered by the
basic conflict between expressiveness and tractability. Realistic applications typi-
cally require both expressive logics, with inevitably high worst case complexities for
their decision procedures, and acceptable performance from the reasoning services.
Although the definition of acceptable may vary widely from application to appli-
cation, early experiments with DLs indicated that, in practice, performance was a
serious problem, even for logics with relatively limited expressive powers [Heinsohn
et al., 1992].

On the other hand, theoretical work has continued to extend our understanding
of the boundaries of decidability in DLs, and has led to the development of sound
and complete reasoning algorithms for much more expressive logics. The expressive
power of these logics goes a long way towards addressing the criticisms levelled at
DLs in traditional applications such as ontological engineering [Doyle and Patil,
1991] and is sufficient to suggest that they could be useful in several exciting new
application domains, for example reasoning about DataBase schemata and queries
[Calvanese et al., 1998f; 1998a] and providing reasoning support for the so-called

313

314 I. Horrocks

Semantic Web [Decker et al., 2000; Bechhofer et al., 2001b]. However, the worst
case complexity of their decision procedures is invariably (at least) exponential with
respect to problem size.

This high worst case complexity initially led to the conjecture that expressive
DLs might be of limited practical applicability [Buchheit et al., 1993c]. However,
although the theoretical complexity results are discouraging, empirical analyses
of real applications have shown that the kinds of construct which lead to worst
case intractability rarely occur in practice [Nebel, 1990b; Heinsohn et al., 1994;
Speel et al., 1995], and experiments with the Kris system showed that apply-
ing some simple optimisation techniques could lead to a significant improvement
in the empirical performance of a DL system [Baader et al., 1992a]. More re-
cently the Fact, Dlp and Racer systems have demonstrated that, even with
very expressive logics, highly optimised implementations can provide accept-
able performance in realistic applications [Horrocks and Patel-Schneider, 1999;
Haarslev and Möller, 2001c].1

In this chapter we will study the implementation of DL systems, examining in
detail the wide range of optimisation techniques that can be used to improve perfor-
mance. Some of the techniques that will be discussed are completely independent
of the logical language supported by the DL and the kind of algorithm used for
reasoning; many others would be applicable to a wide range of languages and im-
plementation styles, particularly those using search based algorithms. However, the
detailed descriptions of implementation and optimisation techniques will assume,
for the most part, reasoning in an expressive DL based on a sound and complete
tableaux algorithm.

9.1.1 Performance analysis

Before designing and implementing a DL based Knowledge Representation System,
the implementor should be clear about the goals that they are trying to meet and
against which the performance of the system will ultimately be measured. In this
chapter it will be assumed that the primary goal is utility in realistic applications,
and that this will normally be assessed by empirical analysis.

Unfortunately, as DL systems with very expressive logics have only recently be-
come available [Horrocks, 1998a; Patel-Schneider, 1998; Haarslev and Möller, 2001e],
there are very few applications that can be used as a source for test data.2 One
application that has been able to provide such data is the European Galen project,
part of which has involved the construction of a large DL Knowledge Base describing

1 It should be pointed out that experience in this area is still relatively limited.
2 This situation is changing rapidly, however, with the increasing use of DLs in DataBase and ontology

applications.

Implementation and Optimisation Techniques 315

medical terminology [Rector et al., 1993]. Reasoning performance with respect to
this knowledge base has been used for comparing DL systems [Horrocks and Patel-
Schneider, 1998b], and we will often refer to it when assessing the effectiveness of
optimisation techniques.

As few other suitable knowledge bases are available, the testing of DL systems
has often been supplemented with the use of randomly generated or hand crafted
test data [Giunchiglia and Sebastiani, 1996b; Heuerding and Schwendimann, 1996;
Horrocks and Patel-Schneider, 1998b; Massacci, 1999; Donini and Massacci, 2000].
In many cases the data was originally developed for testing propositional modal
logics, and has been adapted for use with DLs by taking advantage of the well know
correspondence between the two formalisms [Schild, 1991]. Tests using this kind
of data, in particular the test suites from the Tableaux’98 comparison of modal
logic theorem provers [Balsiger and Heuerding, 1998] and the DL’98 comparison
of DL systems [Horrocks and Patel-Schneider, 1998b], will also be referred to in
assessments of optimisation techniques.

9.2 Preliminaries

This section will introduce the syntax and semantics of DLs (full details of which
can be found in Chapter 2) and discuss the reasoning services which would form
the core of a Description Logic based Knowledge Representation System. It will
also discuss how, through the use of unfolding and internalisation, these reasoning
services can often be reduced to the problem of determining the satisfiability of a
single concept.

9.2.1 Syntax and semantics

DLs are formalisms that support the logical description of concepts and roles. Ar-
bitrary concept and role descriptions (from now on referred to simply as concepts
and roles) are constructed from atomic concept and role names using a variety of
concept and role forming operators, the range of which is dependent on the par-
ticular logic. In the following discussion we will use C and D to denote arbitrary
concepts, R and S to denote arbitrary roles, A and P to denote atomic concept and
role names, and n to denote a nonnegative integer.

For concepts, the available operators usually include some or all of the standard
logical connectives, conjunction (denoted u), disjunction (denoted t) and negation
(denoted ¬). In addition, the universal concept top (denoted >, and equivalent to
At¬A) and the incoherent concept bottom (denoted⊥, and equivalent to Au¬A) are
often predefined. Other commonly supported operators include restricted forms of
quantification called existential role restrictions (denoted ∃R.C) and universal role

316 I. Horrocks

restrictions (denoted ∀R.C). Some DLs also support qualified number restrictions
(denoted 6n .PC and >n .PC), operators that place cardinality restrictions on the
roles relating instances of a concept to instances of some other concept. Cardinality
restrictions are often limited to the forms 6n .P> and > n .P>, when they are
called unqualified number restrictions, or simply number restrictions, and are often
abbreviated to 6 nP and > nP. The roles that can appear in cardinality restriction
concepts are usually restricted to being atomic, as allowing arbitrary roles in such
concepts is known no lead to undecidability [Baader and Sattler, 1996b].

Role forming operators may also be supported, and in some very expressive logics
roles can be regular expressions formed using union (denoted t), composition (de-
noted ◦), reflexive-transitive closure (denoted ∗) and identity operators (denoted id),
possibly augmented with the inverse (also known as converse) operator (denoted −)
[De Giacomo and Lenzerini, 1996]. In most implemented systems, however, roles
are restricted to being atomic names.

Concepts and roles are given a standard Tarski style model theoretic semantics,
their meaning being given by an interpretation I = (∆I ,I), where ∆I is the domain
(a set) and I is an interpretation function. Full details of both syntax and semantics
can be found in Chapter 2.

In general, a DL knowledge base (KB) consists of a set T of terminological axioms,
and a set A of assertional axioms. The axioms in T state facts about concepts and
roles while those in A state facts about individual instances of concepts and roles.
As in this chapter we will mostly be concerned with terminological reasoning, that
is reasoning about concepts and roles, a KB will usually be taken to consist only of
the terminological component T .

A terminological KB T usually consists of a set of axioms of the form C v D and
C ≡ D, where C and D are concepts. An interpretation I satisfies T if for every
axiom (C v D) ∈ T , CI ⊆ DI , and for every axiom (C ≡ D) ∈ T , CI = DI ; T is
satisfiable if there exists some non empty interpretation that satisfies it. Note that
T can, without loss of generality, be restricted to contain only inclusion axioms or
only equality axioms, as the two forms can be reduced one to the other using the
following equivalences:

C v D ⇐⇒ > ≡ D t ¬C

C ≡ D ⇐⇒ C v D and D v C

A concept C is subsumed by a concept D with respect to T (written T |= C v D)
if CI ⊆ DI in every interpretation I that satisfies T , a concept C is satisfiable with
respect to T (written T |= C 6v ⊥) if CI 6= ∅ in some I that satisfies T , and a
concept C is unsatisfiable (not satisfiable) with respect to T (written T |= ¬C) if
CI = ∅ in every I that satisfies T . Subsumption and (un)satisfiability are closely

Implementation and Optimisation Techniques 317

related. If T |= C v D, then in all interpretations I that satisfy T , CI ⊆ DI and
so CI ∩ (¬D)I = ∅. Conversely, if C is not satisfiable with respect to T , then in all
I that satisfy T , CI = ∅ and so CI ⊆ ⊥I . Subsumption and (un)satisfiability can
thus be reduced one to the other using the following equivalences:

T |= C v D ⇐⇒ T |= ¬(C u ¬D)

T |= ¬C ⇐⇒ T |= C v ⊥

In some DLs T can also contain axioms that define a set of transitive roles R+

and/or a subsumption partial ordering on roles [Horrocks and Sattler, 1999]. An
axiom R ∈ R+ states that R is a transitive role while an axiom R v S states that
R is subsumed by S. An interpretation I satisfies the axiom R ∈ R+ if RI is
transitively closed (i.e, (RI)+ = RI), and it satisfies the axiom R v S if RI ⊆ SI .

9.2.2 Reasoning services

Terminological reasoning in a DL based Knowledge Representation System is based
on determining subsumption relationships with respect to the axioms in a KB. As
well as answering specific subsumption and satisfiability queries, it is often useful to
compute and store (usually in the form of a directed acyclic graph) the subsumption
partial ordering of all the concept names appearing in the KB, a procedure known
as classifying the KB [Patel-Schneider and Swartout, 1993]. Some systems may
also be capable of dealing with assertional axioms, those concerning instances of
concepts and roles, and performing reasoning tasks such as realisation (determining
the concepts instantiated by a given individual) and retrieval (determining the set
of individuals that instantiate a given concept) [Baader et al., 1991]. However,
we will mostly concentrate on terminological reasoning as it has been more widely
used in DL applications. Moreover, given a sufficiently expressive DL, assertional
reasoning can be reduced to terminological reasoning [De Giacomo and Lenzerini,
1996].

In practice, many systems use subsumption testing algorithms that are not ca-
pable of determining subsumption relationships with respect to an arbitrary KB.
Instead, they restrict the kinds of axiom that can appear in the KB so that de-
pendency eliminating substitutions (known as unfolding) can be performed prior to
evaluating subsumption relationships. These restrictions require that all axioms are
unique, acyclic definitions. An axiom is called a definition of A if it is of the form
A v D or A ≡ D, where A is an atomic name, it is unique if the KB contains no
other definition of A, and it is acyclic if D does not refer either directly or indirectly
(via other axioms) to A. A KB that satisfies these restrictions will be called an
unfoldable KB.

Definitions of the form A v D are sometimes called primitive or necessary, as

318 I. Horrocks

D specifies a necessary condition for instances of A, while those of the form A ≡
D are sometimes called non-primitive or necessary and sufficient as D specifies
conditions that are both necessary and sufficient for instances of A. In order to
distinguish non-definitional axioms, they are often called general axioms [Buchheit
et al., 1993a]. Restricting the KB to definition axioms makes reasoning much easier,
but significantly reduces the expressive power of the DL. However, even with an
unrestricted (or general) KB, definition axioms and unfolding are still useful ideas,
as they can be used to optimise the reasoning procedures (see Section 9.4.3).

9.2.3 Unfolding

Given an unfoldable KB T , and a concept C whose satisfiability is to be tested
with respect to T , it is possible to eliminate from C all concept names occurring
in T using a recursive substitution procedure called unfolding. The satisfiability of
the resulting concept is independent of the axioms in T and can therefore be tested
using a decision procedure that is only capable of determining the satisfiability of
a single concept (or equivalently, the satisfiability of a concept with respect to an
empty KB).

For a non-primitive concept name A, defined in T by an axiom A ≡ D, the
procedure is simply to substitute A with D wherever it occurs in C, and then to
recursively unfold D. For a primitive concept name A, defined in T by an axiom
A v D, the procedure is slightly more complex. Wherever A occurs in C it is
substituted with the concept A′ uD, where A′ is a new concept name not occurring
in T or C, and D is then recursively unfolded. The concept A′ represents the
“primitiveness” of A—the unspecified characteristics that differentiate it from D.
We will use Unfold(C, T) to denote the concept C unfolded with respect to a KB
T .

A decision procedure that tries to find a satisfying interpretation I for the un-
folded concept can now be used, as any such interpretation will also satisfy T . This
can easily be shown by applying the unfolding procedure to all of the concepts form-
ing the right hand side of axioms in T , so that they are constructed entirely from
concept names that are not defined in T , and are thus independent of the other
axioms in T . The interpretation of each defined concept in T can then be taken to
be the interpretation of the unfolded right hand side concept, as given by I and the
semantics of the concept and role forming operators.

Subsumption reasoning can be made independent of T using the same technique.
Given two concepts C and D, determining if C is subsumed by D with respect to
T is the same as determining if Unfold(C, T) is subsumed by Unfold(D, T) with

Implementation and Optimisation Techniques 319

respect to an empty KB:

T |= C v D ⇐⇒ ∅ |= Unfold(C, T) v Unfold(D, T)

Unfolding would not be possible, in general, if the axioms in T were not unique
acyclic definitions. If T contained multiple definition axioms for some concept A,
for example {(A ≡ C), (A ≡ D)} ⊆ T , then it would not be possible to make
a substitution for A that preserved the meaning of both axioms. If T contained
cyclical axioms, for example (A v ∃R.A) ∈ T , then trying to unfold A would lead
to non-termination. If T contained general axioms, for example ∃R.C v D, then
it could not be guaranteed that an interpretation satisfying the unfolded concept
would also satisfy these axioms.

9.2.4 Internalisation

While it is possible to design an algorithm capable of reasoning with respect to a
general KB [Buchheit et al., 1993a], with more expressive logics, in particular those
allowing the definition of a universal role, a procedure called internalisation can
be used to reduce the problem to that of determining the satisfiability of a single
concept [Baader, 1991]. A truly universal role is one whose interpretation includes
every pair of elements in the domain of interpretation (i.e., ∆I ×∆I). However, a
role U is universal w.r.t. a terminology T if it is defined such that U is transitively
closed and P v U for all role names P occurring in T . For a logic that supports the
union and transitive reflexive closure role forming operators, this can be achieved
simply by taking U to be

(P1 t . . . t Pn t P−1 t . . . t P−n)∗,

where P1, . . . , Pn are all the roles names occurring in T . For a logic that supports
transitively closed roles and role inclusion axioms, this can be achieved by adding
the axioms

(U ∈ R+), (P1 v U), . . . , (Pn v U), (P−1 v U), . . . , (P−n v U)

to T , where P1, . . . , Pn are all the roles names occurring in T and U is a new role
name not occurring in T . Note that in either case, the inverse role components are
only required if the logic supports the inverse role operator.

The concept axioms in T can be reduced to axioms of the form > v C using the
equivalences:

A ≡ B ⇐⇒ > v (A t ¬B) u (¬A tB)

A v B ⇐⇒ > v ¬A tB

320 I. Horrocks

These axioms can then be conjoined to give a single axiom > v C, where

C = u
(Ai≡Bi)∈T

((Ai t ¬Bi) u (¬Ai tBi)) u u
(AjvBj)∈T

(¬Aj tBj)

Because the interpretation of > is equal to the domain (>I = ∆I), this axiom
states that every element in the domain must satisfy C. When testing the satisfia-
bility of a concept D with respect to T , this constraint on possible interpretations
can be imposed by testing the satisfiability of D u C u ∀U.C (or simply D u ∀U.C
in the case where U is transitively reflexively closed). This relies on the fact that
satisfiable DL concepts always have an interpretation in which every element is
connected to every other element by some sequence of roles (the collapsed model
property) [Schild, 1991].

9.3 Subsumption testing algorithms

The use of unfolding and internalisation means that, in most cases, terminological
reasoning in a Description Logic based Knowledge Representation System can be
reduced to subsumption or satisfiability reasoning. There are several algorithmic
techniques for computing subsumption relationships, but they divide into two main
families: structural and logical.

9.3.1 Structural subsumption algorithms

Structural algorithms were used in early DL system such as Kl-One [Brachman and
Schmolze, 1985], Nikl [Kaczmarek et al., 1986] and Krypton [Brachman et al.,
1983a], and are still used in systems such as Classic [Patel-Schneider et al., 1991],
Loom [MacGregor, 1991b] and Grail [Rector et al., 1997]. To determine if one
concept subsumes another, structural algorithms simply compare the (normalised)
syntactic structure of the two concepts (see Chapter 2).

Although such algorithms can by quite efficient [Borgida and Patel-Schneider,
1994; Heinsohn et al., 1994], they have several disadvantages.

• Perhaps the most important disadvantage of this type of algorithm is that while
it is generally easy to demonstrate the soundness of the structural inference rules
(they will never infer an invalid subsumption relationship), they are usually in-
complete (they may fail to infer all valid subsumption relationships).

• It is difficult to extend structural algorithms in order to to deal with more ex-
pressive logics, in particular those supporting general negation, or to reason with
respect to an arbitrary KB. This lack of expressive power makes the DL system
of limited value in traditional ontological engineering applications [Doyle and

Implementation and Optimisation Techniques 321

Patil, 1991], and completely useless in DataBase schema reasoning applications
[Calvanese et al., 1998f].

• Although accepting some degree of incompleteness is one way of improving the
performance of a DL reasoner, the performance of incomplete reasoners is highly
dependent on the degree of incompleteness, and this is notoriously difficult to
quantify [Borgida, 1992a].

9.3.2 Logical algorithms

These kinds of algorithm use a refutation style proof: C is subsumed by D if it
can be shown that the existence of an individual x that is in the extension of C
(x ∈ CI) but not in the extension of D (x /∈ DI) is logically inconsistent. As we
have seen in Section 9.2.2, this corresponds to testing the logical (un)satisfiability
of the concept C u¬D (i.e., C v D iff C u¬D is not satisfiable). Note that forming
this concept obviously relies on having full negation in the logic.

Various techniques can be used to test the logical satisfiability of a concept.
One obvious possibility is to exploit an existing reasoner. For example, the Log-
icsWorkbench [Balsiger et al., 1996], a general purpouse proposition modal logic
reasoning system, could be used simply by exploiting the well known correspon-
dences between description and modal logics [Schild, 1991]. First order logic the-
orem provers can also be used via appropriate traslations of DLs into first or-
der logic. Examples of this approach can be seen in systems developed by Hus-
tadt and Schmidt [1997], using the Spass theorem prover, and Paramasivam and
Plaisted [1998], using the CLIN-S theorem prover. An existing reasoner could also
be used as a component of a more powerful system, as in Ksat/*Sat [Giunchiglia
and Sebastiani, 1996a; Giunchiglia et al., 2001a], where a propositional satisfiability
(SAT) tester is used as the key component of a propositional modal satisfiability
reasoner.

There are advantages and disadvantages to the “re-use” approach. On the positive
side, it should be much easier to build a system based on an existing reasoner, and
performance can be maximised by using a state of the art implementation such
as Spass (a highly optimised first order theorem prover) or the highly optimised
SAT testing algorithms used in Ksat and *Sat (the use of a specialised SAT tester
allows *Sat to outperform other systems on classes of problem that emphasise
propositional reasoning). The translation (into first order logic) approach has also
been shown to be able to deal with a wide range of expressive DLs, in particular
those with complex role forming operators such as negation or identity [Hustadt
and Schmidt, 2000].

On the negative side, it may be difficult to extend the reasoner to deal with more
expressive logics, or to add optimisations that take advantage of specific features

322 I. Horrocks

of the DL, without reimplementing the reasoner (as has been done, for example, in
more recent versions of the *Sat system).

Most, if not all, implemented DL systems based on logical reasoning have used
custom designed tableaux decision procedures. These algorithms try to prove that
D subsumes C by starting with a single individual satisfying C u ¬D, and demon-
strating that any attempt to extend this into a complete interpretation (using a set
of tableaux expansion rules) will lead to a logical contradiction. If a complete and
non-contradictory interpretation is found, then this represents a counter example
(an interpretation in which some element of the domain is in CI but not in DI)
that disproves the conjectured subsumption relationship.

This approach has many advantages and has dominated recent DL research:

• it has a sound theoretical basis in first order logic [Hollunder et al., 1990];
• it can be relatively easily adapted to allow for a range of logical languages by

changing the set of tableaux expansion rules [Hollunder et al., 1990; Bresciani et
al., 1995];

• it can be adapted to deal with very expressive logics, and to reason with respect
to an arbitrary KB, by using more sophisticated control mechanisms to ensure
termination [Baader, 1991; Buchheit et al., 1993c; Sattler, 1996];

• it has been shown to be optimal for a number of DL languages, in the sense that
the worst case complexity of the algorithm is no worse than the known complexity
of the satisfiability problem for the logic [Hollunder et al., 1990].

In the remainder of this chapter, detailed descriptions of implementation and
optimisation techniques will assume the use of a tableaux decision procedure. How-
ever, many of the techniques are independent of the subsumption testing algorithm
or could easily be adapted to most logic based methods. The reverse is also true,
and several of the described techniques have been adapted from other logical de-
cision procedures, in particular those that try to optimise the search used to deal
with non-determinism.

9.3.2.1 Tableaux algorithms

Tableaux algorithms try to prove the satisfiability of a concept D by constructing
a model, an interpretation I in which DI is not empty. A tableau is a graph which
represents such a model, with nodes corresponding to individuals (elements of ∆I)
and edges corresponding to relationships between individuals (elements of ∆I×∆I).

A typical algorithm will start with a single individual satisfying D and try to
construct a tableau, or some structure from which a tableau can be constructed,
by inferring the existence of additional individuals or of additional constraints on
individuals. The inference mechanism consists of applying a set of expansion rules

Implementation and Optimisation Techniques 323

which correspond to the logical constructs of the language, and the algorithm ter-
minates either when the structure is complete (no further inferences are possible)
or obvious contradictions have been revealed. Non-determinism is dealt with by
searching different possible expansions: the concept is unsatisfiable if every expan-
sion leads to a contradiction and is satisfiable if any possible expansion leads to the
discovery of a complete non-contradictory structure.

Theoretical presentations of tableaux algorithms use a variety of notational styles
including constraints [Hollunder et al., 1990], prefixes [De Giacomo and Massacci,
1996] and labelled graphs [Sattler, 1996]. We will use the labelled graph notation as
it has an obvious correspondence with standard implementation techniques. In its
basic form, this notation describes the construction of a directed graph (usually a
tree) in which each node x is labelled with a set of concepts (L(x) = {C1, . . . , Cn}),
and each edge 〈x, y〉 is labelled with a role (L(〈x, y〉) = R). When a concept C is
in the label of a node x (C ∈ L(x)), it represents a model in which the individual
corresponding with x is in the interpretation of C. When an edge 〈x, y〉 is labelled R
(L(〈x, y〉) = R), it represents a model in which the tuple corresponding with 〈x, y〉
is in the interpretation of R. A node y is called an R-successor of a node x if there
is an edge 〈x, y〉 labelled R, x is called the predecessor of y if y is an R-successor of
x, and x is called an ancestor of y if x is the predecessor of y or there exists some
node z such that z is the predecessor of y and x is an ancestor of z. A contradiction
or clash is detected when {C,¬C} ⊆ L(x) for some concept C and some node x.

To test the satisfiability of a concept D, a basic algorithm initialises a tree to
contain a single node x (called the root node) with L(x) = {D}, and then expands
the tree by applying rules that either extend node labels or add new leaf nodes. A
set of expansion rules for the ALC description logic is shown in Figure 9.1, where
C and D are concepts, and R is a role. Note that:

• Concepts are assumed to be in negation normal form, that is with negations only
applying to concept names. Arbitrary ALC concepts can be converted to negation
normal form by pushing negations inwards using a combination of DeMorgan’s
laws and the equivalences ¬(∃R.C) ⇐⇒ (∀R.¬C) and ¬(∀R.C) ⇐⇒ (∃R.¬C).
This procedure can be extended to more expressive logics using additional equiv-
alences such as ¬(6n R) ⇐⇒ (> (n + 1)R).

• Disjunctive concepts (C tD) ∈ L(x) give rise to non-deterministic expansion. In
practice this is usually dealt with by search: trying each possible expansion in turn
until a fully expanded and clash free tree is found, or all possibilities have been
shown to lead to contradictions. In more expressive logics other constructs, such
as maximum number restrictions (6nR), also lead to non-deterministic expan-
sion. Searching non-deterministic expansions is the main cause of intractability
in tableaux subsumption testing algorithms.

324 I. Horrocks

u-rule if 1. (C uD) ∈ L(x)
2. {C,D} * L(x)

then L(x) −→ L(x) ∪ {C, D}
t-rule if 1. (C tD) ∈ L(x)

2. {C, D} ∩ L(x) = ∅
then either L(x) −→ L(x) ∪ {C}

or L(x) −→ L(x) ∪ {D}
∃-rule if 1. ∃R.C ∈ L(x)

2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)
then create a new node y and edge 〈x, y〉

with L(y) = {C} and L(〈x, y〉) = R
∀-rule if 1. ∀R.C ∈ L(x)

2. there is some y s.t. L(〈x, y〉) = R and C /∈ L(y)
then L(y) −→ L(y) ∪ {C}

Fig. 9.1. Tableaux expansion rules for ALC.

• Existential role restriction concepts ∃R.C ∈ L(x) cause the creation of new R-
successor nodes, and universal role restriction concepts ∀R.C ∈ L(x) extend the
labels of R-successor nodes.

The tree is fully expanded when none of the expansion rules can be applied.
If a fully expanded and clash-free tree can be found, then the algorithm returns
satisfiable; otherwise it returns unsatisfiable.

More expressive logics may require several extensions to this basic formalism.
For example, with logics that include both role inclusion axioms and some form of
cardinality restriction, it may be necessary to label edges with sets of role names
instead of a single role name [Horrocks, 1998b]. It may also be necessary to add
cycle detection (often called blocking) to the preconditions of some of the inference
rules in order to guarantee termination [Buchheit et al., 1993a; Baader et al., 1996],
the general idea being to stop the expansion of a branch whenever the same node
label recurs in the branch. Blocking can also lead to a more complex correspondence
between the structure created by the algorithm and a model of a satisfiable concept,
as the model may contain cycles or even be non-finite [Horrocks and Sattler, 1999].

9.4 Theory versus practice

So far, what we have seen is typical of theoretical presentations of tableaux based
decision procedures. Such a presentation is sufficient for soundness and complete-
ness proofs, and is an essential starting point for the implementation of a reliable
subsumption testing algorithm. However, there often remains a considerable gap
between the theoretical algorithm and an actual implementation. Additional points
which may need to be considered are:

Implementation and Optimisation Techniques 325

• the efficiency of the algorithm, in the theoretical (worst case) sense;
• the efficiency of the algorithm, in a practical (typical case) sense;
• how to use the algorithm for reasoning with unfoldable, general and cyclical KBs;
• optimising the (implementation of the) algorithm to improve the typical case

performance.

In the remainder of this Section we will consider the first three points, while in
the following section we will consider implementation and optimisation techniques
in detail.

9.4.1 Worst case complexity

When considering an implementation, it is sensible to start with an algorithm that is
known to be theoretically efficient, even if the implementation subsequently departs
from the theory to some extent. Theoretically efficient is taken to mean that the
complexity of the algorithm is equal to the complexity of the satisfiability problem
for the logic, where this is known, or at least that consideration has been given
to the worst case complexity of the algorithm. This is not always the case, as
the algorithm may have been designed to facilitate a soundness and completeness
proof, with little consideration having been given to worst case complexity, much
less implementation.

Apart from establishing an upper bound for the “hardness” of the problem, stud-
ies of theoretical complexity can suggest useful implementation techniques. For
example, a study of the complexity of the satisfiability problem for ALC concepts
with respect to a general KB has demonstrated that caching of intermediate results
is required in order to stay in ExpTime [Donini et al., 1996a], while studying the
complexity of the satisfiability problem for SIN concepts has shown that a more
sophisticated labelling and blocking strategy can be used in order to stay in PSpace
[Horrocks et al., 1999].

One theoretically derived technique that is widely used in practice is the trace
technique. This is a method for minimising the amount of space used by the algo-
rithm to store the tableaux expansion tree. The idea is to impose an ordering on
the application of expansion rules so that local propositional reasoning (finding a
clash-free expansion of conjunctions and disjunctions using the u-rule and t-rule)
is completed before new nodes are created using the ∃-rule. A successor created by
an application of the ∃-rule, and any possible applications of the ∀-rule, can then
be treated as an independent sub-problem that returns either satisfiable or unsatis-
fiable, and the space used to solve it can be reused in solving the next sub-problem.
A node x returns satisfiable if there is a clash-free propositional solution for which
any and all sub-problems return satisfiable; otherwise it returns unsatisfiable. In

326 I. Horrocks

∃∀-rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)
3. neither the u-rule nor the t-rule is applicable to L(x)

then create a new node y and edge 〈x, y〉
with L(y) = {C} ∪ {D | ∀R.D ∈ L(x)} and L(〈x, y〉) = R

Fig. 9.2. Combined ∃∀-rule for ALC.

algorithms where the trace technique can be used, the ∀-rule is often incorporated
in the ∃-rule, giving a single rule as shown in Figure 9.2.

Apart from minimising space usage the trace technique is generally viewed as a
sensible way of organising the expansion and the flow of control within the algorithm.
Ordering the expansion in this way may also be required by some blocking strategies
[Buchheit et al., 1993a], although in some cases it is possible to use a more efficient
subset blocking technique that is independent of the ordering [Baader et al., 1996].

The trace technique relies on the fact that node labels are not affected by the
expansion of their successors. This is no longer true when the logic includes inverse
roles, because universal value restrictions in the label of a successor of a node x can
augment L(x). This could invalidate the existing propositional solution for L(x), or
invalidate previously computed solutions to sub-problems in other successor nodes.
For example, if

L(x) = {∃R.C, ∃S.(∀S−.(∀R.¬C))},

then x is obviously unsatisfiable as expanding ∃S.(∀S−.(∀R.¬C)) will add ∀R.¬C
to L(x), meaning that x must have an R-successor whose label contains both C
and ¬C. The contradiction would not be discovered if the R-successor required by
∃R.C ∈ L(x) were generated first, found to be satisfiable and then deleted from the
tree in order to save space.

The development of a PSpace algorithm for the SIN logic has shown that a
modified version of the trace technique can still be used with logics that include
inverse roles [Horrocks et al., 1999]. However, the modification requires that the
propositional solution and all sub-problems are re-computed whenever the label of
a node is augmented by the expansion of a universal value restriction in the label
of one of its successors.

9.4.2 Typical case complexity

Although useful practical techniques can be derived from the study of theoretical
algorithms, it should be borne in mind that minimising worst case complexity may
require the use of techniques that clearly would not be sensible in typical cases.
This is because the kinds of pathological problem that would lead to worst case

Implementation and Optimisation Techniques 327

behaviour do not seem to occur in realistic applications. In particular, the amount
of space used by algorithms does not seem to be a practical problem, whereas the
time taken for the computation certainly is. For example, in experiments with
the Fact system using the DL’98 test suite, available memory (200Mb) was never
exhausted in spite of the fact that some single computations required hundreds of
seconds of CPU time [Horrocks and Patel-Schneider, 1998b]. In other experiments
using the Galen KB, computations were run for tens of thousands of seconds of
CPU time without exhausting available memory.

In view of these considerations, techniques that save space by recomputing are
unlikely to be of practical value. The modified trace technique used in the PSpace
SIN algorithm (see Section 9.4.1), for example, is probably not of practical value.
However, the more sophisticated labelling and blocking strategy, which allows the
establishment a polynomial bound on the length of branches, could be used not
only in an implementation of the SIN algorithm, but also in implementations of
more expressive logics where other considerations mean that the PSpace result no
longer holds [Horrocks et al., 1999].

In practice, the poor performance of tableaux algorithms is due to non-
determinism in the expansion rules (for example the t-rule), and the resulting
search of different possible expansions. This is often treated in a very cursory man-
ner in theoretical presentations. For soundness and completeness it is enough to
prove that the search will always find a solution if one exists, and that it will always
terminate. For worst case complexity, an upper bound on the size of the search space
is all that is required. As this upper bound is invariably exponential with respect to
the size of the problem, exploring the whole search space would inevitably lead to
intractability for all but the smallest problems. When implementing an algorithm
it is therefore vital to give much more careful consideration to non-deterministic
expansion, in particular how to reduce the size of the search space and how to ex-
plore it in an efficient manner. Many of the optimisations discussed in subsequent
sections will be aimed at doing this, for example by using absorption to localise
non-determinism in the KB, dependency directed backtracking to prune the search
tree, heuristics to guide the search, and caching to avoid repetitive search.

9.4.3 Reasoning with a knowledge base

One area in which the theory and practice diverge significantly is that of reasoning
with respect to the axioms in a KB. This problem is rarely considered in detail:
with less expressive logics the KB is usually restricted to being unfoldable, while
with more expressive logics, all axioms can be treated as general axioms and dealt
with via internalisation. In either case it is sufficient to consider an algorithm that
tests the satisfiability of a single concept, usually in negation normal form.

328 I. Horrocks

In practice, it is much more efficient to retain the structure of the KB for as long
as possible, and to take advantage of it during subsumption/satisfiability testing.
One way in which this can be done is to use lazy unfolding—only unfolding concepts
as required by the progress of the subsumption or satisfiability testing algorithm
[Baader et al., 1992a]. With a tableaux algorithm, this means that a defined concept
A is only unfolded when it occurs in a node label. For example, if T contains
the non-primitive definition axiom A ≡ C, and the u-rule is applied to a concept
(A u D) ∈ L(x) so that A and D are added to L(x), then at this point A can be
unfolded by substituting it with C.

Used in this way, lazy unfolding already has the advantage that it avoids unnec-
essary unfolding of irrelevant sub-concepts, either because a contradiction is dis-
covered without fully expanding the tree, or because a non-deterministic expansion
choice leads to a complete and clash free tree. However, a much greater increase in
efficiency can be achieved if, instead of substituting concept names with their def-
initions, names are retained when their definitions are added. This is because the
discovery of a clash between concept names can avoid expansion of their definitions
[Baader et al., 1992a].

In general, lazy unfolding can be described as additional tableaux expansion rules,
defined as follows.

U1-rule if 1. A ∈ L(x) and (A ≡ C) ∈ T
2. C /∈ L(x)

then L(x) −→ L(x) ∪ {C}
U2-rule if 1. ¬A ∈ L(x) and (A ≡ C) ∈ T

2. ¬C /∈ L(x)
then L(x) −→ L(x) ∪ {¬C}

U3-rule if 1. A ∈ L(x) and (A v C) ∈ T
2. C /∈ L(x)

then L(x) −→ L(x) ∪ {C}

The U1-rule and U2-rule reflect the symmetry of the equality relation in the non-
primitive definition A ≡ C, which is equivalent to A v C and ¬A v ¬C. The
U3-rule on the other hand reflects the asymmetry of the subsumption relation in
the primitive definition A v C.

Treating all the axioms in the KB as general axioms, and dealing with them
via internalisation, is also highly inefficient. For example, if T contains an axiom
A v C, where A is a concept name not appearing on the left hand side of any other
axiom, then it is easy to deal with the axiom using the lazy unfolding technique,
simply adding C to the label of any node in which A appears. Treating all axioms

Implementation and Optimisation Techniques 329

as general axioms would be equivalent to applying the following additional tableaux
expansion rules:

I1-rule if 1. (C ≡ D) ∈ T
2. (D t ¬C) /∈ L(x)

then L(x) −→ L(x) ∪ {(D t ¬C)}
I2-rule if 1. (C ≡ D) ∈ T

2. (¬D t C) /∈ L(x)
then L(x) −→ L(x) ∪ {(¬D t C)}

I3-rule if 1. (C v D) ∈ T
2. (D t ¬C) /∈ L(x)

then L(x) −→ L(x) ∪ {(D t ¬C)}

With (A v C) ∈ T , this would result in the disjunction (Ct¬A) being added to the
label of every node, leading to non-deterministic expansion and search, the main
cause of empirical intractability.

The solution to this problem is to divide the KB into two components, an un-
foldable part Tu and a general part Tg, such that Tg = T \ Tu, and Tu contains
unique, acyclical, definition axioms. This is easily achieved, e.g., by initialising Tu

to ∅ (which is obviously unfoldable), then for each axiom X in T , adding X to Tu

if Tu ∪X is still unfoldable, and adding X to Tg otherwise.1 It is then possible to
use lazy unfolding to deal with Tu, and internalisation to deal with Tg.

Given that the satisfiability testing algorithm includes some sort of cycle checking,
such as blocking, then it is even possible to be a little less conservative with respect
to the definition of Tu by allowing it to contain cyclical primitive definition axioms,
for example axioms of the form A v ∃R.A. Lazy unfolding will ensure that AI ⊆
∃R.AI by adding ∃R.A to every node containing A, while blocking will take care of
the non-termination problem that such an axiom would otherwise cause [Horrocks,
1997b]. Moreover, multiple primitive definitions for a single name can be added to
Tu, or equivalently merged into a single definition using the equivalence

(A v C1), . . . , (A v Cn) ⇐⇒ A v (C1 u . . . u Cn)

However, if Tu contains a non-primitive definition axiom A ≡ C, then it cannot
contain any other definitions for A, because this would be equivalent to allowing
general axioms in Tu. For example, given a general axiom C v D, this could be
added to Tu as A v D and A ≡ C, where A is a new name not appearing in T .
Moreover, certain kinds of non-primitive cycles cannot be allowed as they can be
used to constrain possible models a way that would not be reflected by unfolding.
For example, if (A ≡ ¬A) ∈ T for some concept name A, then the domain of all
1 Note that the result may depend on the order in which the axioms in T are processed.

330 I. Horrocks

valid interpretations of T must be empty, and T |= C v D for all concepts C and
D [Horrocks and Tobies, 2000].

9.5 Optimisation techniques

The Kris system demonstrated that by taking a well designed tableaux algorithm,
and applying some reasonable implementation and optimisation techniques (such as
lazy expansion), it is possible to obtain a tableaux based DL system that behaves
reasonably well in typical cases, and compares favourably with systems based on
structural algorithms [Baader et al., 1992a]. However, this kind of system is still
much too slow to be usable in many realistic applications. Fortunately, it is possible
to achieve dramatic improvements in typical case performance by using a wider
range of optimisation techniques.

As DL systems are often used to classify a KB, a hierarchy of optimisation tech-
niques is naturally suggested based on the stage of the classification process at which
they can be applied.

(i) Preprocessing optimisations that try to modify the KB so that classification
and subsumption testing are easier.

(ii) Partial ordering optimisations that try to minimise the number of subsump-
tion tests required in order to classify the KB

(iii) Subsumption optimisations that try to avoid performing a potentially expen-
sive satisfiability test, usually by substituting a cheaper test.

(iv) Satisfiability optimisations that try to improve the typical case performance
of the underlying satisfiability tester.

9.5.1 Preprocessing optimisations

The axioms that constitute a DL KB may have been generated by a human knowl-
edge engineer, as is typically the case in ontological engineering applications, or be
the result of some automated mapping from another formalism, as is typically the
case in DB schema and query reasoning applications. In either case it is unlikely
that a great deal of consideration was given to facilitating the subsequent reasoning
procedures; the KB may, for example, contain considerable redundancy and may
make unnecessary use of general axioms. As we have seen, general axioms are costly
to reason with due to the high degree of non-determinism that they introduce.

It is, therefore, useful to preprocess the KB, applying a range of syntactic simpli-
fications and manipulations. The first of these, normalisation, tries to simplify the
KB by identifying syntactic equivalences, contradictions and tautologies. The sec-
ond, absorption, tries to eliminate general axioms by augmenting definition axioms.

Implementation and Optimisation Techniques 331

9.5.1.1 Normalisation

In realistic KBs, at least those manually constructed, large and complex concepts are
seldom described monolithically, but are built up from a hierarchy of named concepts
whose descriptions are less complex. The lazy unfolding technique described above
can use this structure to provide more rapid detection of contradictions.

The effectiveness of lazy unfolding is greatly increased if a contradiction between
two concepts can be detected whenever one is syntactically equivalent to the nega-
tion of the other; for example, we would like to discover a direct contradiction
between (C u D) and (¬D t ¬C). This can be achieved by transforming all con-
cepts into a syntactic normal form, and by directly detecting contradictions caused
by non-atomic concepts as well as those caused by concept names.

In DLs there is often redundancy in the set of concept forming operators. In
particular, logics with full negation often provide pairs of operators, either one of
which can be eliminated in favour of the other by using negation. Conjunction and
disjunction operators are an example of such a pair, and one can be eliminated in
favour of the other using DeMorgan’s laws. In syntactic normal form, all concepts
are transformed so that only one of each such pair appears in the KB (it does not
matter which of the two is chosen, the important thing is uniformity). In ALC, for
example, all concepts could be transformed into (possibly negated) value restric-
tions, conjunctions and atomic concept names, with (¬D t ¬C) being transformed
into ¬(D u C). An important refinement is to treat conjunctions as sets (written
u{C1, . . . , Cn}) so that reordering or repeating the conjuncts does not effect equiv-
alence; for example, (D uC) would be normalised as u{C, D}.1 Normalisation can
also include a range of simplifications so that syntactically obvious contradictions
and tautologies are detected; for example, ∃R.⊥ could be simplified to ⊥.

Figure 9.3 describes normalisation and simplification functions Norm and Simp
for ALC. These can be extended to deal with more expressive logics by adding
appropriate normalisations (and possibly additional simplifications). For example,
number restrictions can be dealt with by adding the normalisations Norm(6 nR) =
¬> (n + 1)R and Norm(> nR) = > nR, and the simplification Simp(> 0R) = >.

Normalised and simplified concepts may not be in negation normal form, but they
can be dealt with by treating them exactly like their non-negated counterparts. For
example, ¬u{C, D} can be treated as (¬C t ¬D) and ¬∀R.C can be treated as
∃R.¬C. In the remainder of this chapter we will use both forms interchangeably,
choosing whichever is most convenient.

Additional simplifications would clearly be possible. For example, ∀R.C u ∀R.D
could be simplified to ∀R. Norm(C u D). Which simplifications it is sensible to
perform is an implementation decision that may depend on a cost-benefit analysis

1 Sorting the elements in conjuctions, and eliminating duplicates, achieves the same result.

332 I. Horrocks

Norm(A) = A for atomic concept name A
Norm(¬C) = Simp(¬Norm(C))

Norm(C1 u . . . u Cn) = Simp(u{Norm(C1)} ∪ . . . ∪ {Norm(Cn)})
Norm(C1 t . . . t Cn) = Norm(¬(¬C1 u . . . u ¬Cn))

Norm(∀R.C) = Simp(∀R. Norm(C))
Norm(∃R.C) = Norm(¬∀R.¬C)

Simp(A) = A for atomic concept name A

Simp(¬C) =











⊥ if C = >
> if C = ⊥
Simp(D) if C = ¬D
¬C otherwise

Simp(uS) =



























⊥ if ⊥ ∈ S
⊥ if {C,¬C} ⊆ S
> if S = ∅
Simp(S \ {>}) if > ∈ S
Simp(uP ∪ S \ {u{P}}) if u{P} ∈ S
uS otherwise

Simp(∀R.C) =
{

> if C = >
∀R.C otherwise

Fig. 9.3. Normalisation and simplification functions for ALC.

with respect to some particular application. Empirically, simplification seems to
be more effective with mechanically generated KBs and satisfiability problems, in
particular those where there the number of different roles is very small. With this
kind of problem it is quite common for satisfiability tests to be greatly simplified,
or even completely avoided, by simplifying part or all of the concept to either >
or ⊥. In the benchmark tests used for the Tableaux’98 comparison of modal logic
theorem provers, for example, some classes of problem can be completely solved
via this mechanism [Heuerding and Schwendimann, 1996; Balsiger and Heuerding,
1998].

If the subsumption testing algorithm is to derive maximum benefit from normal-
isation, it is important that it directly detect contradictions caused by non-atomic
concepts as well as those caused by concept names; for example the occurrence of
both u{C, D} and ¬u{C, D} in a node label should be detected as a contradiction
without the need for further expansion. This can be achieved by replacing all equiv-
alent (identically encoded) non-atomic concepts C in the KB with a new atomic
concept name A, and adding the axiom A ≡ C to the KB. For example, all occur-
rences of u{C,D} in a KB could be replaced with CD, and the axiom CD ≡ u{C,D}
added to the KB.

Implementation and Optimisation Techniques 333

It is necessary to distinguish these newly introduced system names from user
names appearing in the original KB, as system names need not be classified (indeed,
it would be very confusing for the user if they were). In practice, it is often more
convenient to avoid this problem by using pointer or object identifiers to refer to
concepts, with the same identifier always being associated with equivalent concepts.
A contradiction is then detected whenever a pointer/identifier and its negation occur
in a node label.

The advantages of the normalisation and simplification procedure are:

• It is easy to implement and could be used with most logics and algorithms.
• Subsumption/satisfiability problems can often be simplified, and sometimes even

completely avoided, by detecting syntactically obvious satisfiability and unsatis-
fiability.

• It complements lazy unfolding and improves early clash detection.
• The elimination of redundancies and the sharing of syntactically equivalent struc-

tures may lead to the KB being more compactly stored.

The disadvantages are:

• The overhead involved in the procedure, although this is relatively small.
• For very unstructured KBs there may be no benefit, and it might even slightly

increase size of KB.

9.5.1.2 Absorption

As we have seen in Section 9.4.3, general axioms are costly to reason with due to the
high degree of non-determinism that they introduce. With a tableaux algorithm,
a disjunction is added to the label of each node for each general axiom in the KB.
This leads to an exponential increase in the search space as the number of nodes
and axioms increases. For example, with 10 nodes and a KB containing 10 general
axioms there are already 100 disjunctions, and they can be non-deterministically
expanded in 2100 different ways. For a KB containing large numbers of general
axioms (there are 1,214 in the Galen medical terminology KB) this can degrade
performance to the extent that subsumption testing is effectively non-terminating.

It therefore makes sense to eliminate general axioms from the KB whenever possi-
ble. Absorption is a technique that tries to do this by absorbing them into primitive
definition axioms. The basic idea is that a general axiom of the form C v D, where
C may be a non-atomic concept, is manipulated (using the equivalences in Fig-
ure 9.4) so that it has the form of a primitive definition A v D′, where A is an
atomic concept name. This axiom can then be merged into an existing primitive
definition A v C ′ to give A v C ′ uD′. For example, an axiom stating that all three

334 I. Horrocks

C1 u C2 v D ⇐⇒ C1 v D t ¬C2

C v D1 uD2 ⇐⇒ C v D1 and C v D2

Fig. 9.4. Axiom equivalences used in absorption.

sided geometric figures (i.e., triangles) also have three angles

geometric-figure u ∃angles.three v ∃sides.three

could be transformed into an axiom stating that all geometric figures either have
three sides or do not have three angles

geometric-figure v ∃sides.three t ¬∃angles.three

and then absorbed into the primitive definition of geometric figure
(geometric-figure v figure) to give

geometric-figure v figure u (∃sides.three t ¬∃angles.three).

Given a KB divided into an unfoldable part Tu and a general part Tg, the following
procedure can be used to try to absorb the axioms from Tg into primitive definitions
in Tu. First a set T ′g is initialised to be empty, and any axioms (C ≡ D) ∈ Tg are
replaced with an equivalent pair of axioms C v D and ¬C v ¬D. Then for each
axiom (C v D) ∈ Tg:

(i) Initialise a set G = {¬D,C}, representing the axiom in the form > v
¬u{¬D, C} (i.e. > v D t ¬C).

(ii) If for some A ∈ G there is a primitive definition axiom (A v C) ∈ Tu,
then absorb the general axiom into the primitive definition axiom so that it
becomes

A v u{C,¬u(G \ {A})},

and exit.
(iii) If for some A ∈ G there is an axiom (A ≡ D) ∈ Tu, then substitute A ∈ G

with D

G −→ {D} ∪G \ {A},

and return to step (ii).
(iv) If for some ¬A ∈ G there is an axiom (A ≡ D) ∈ Tu, then substitute ¬A ∈ G

with ¬D

G −→ {¬D} ∪G \ {¬A},

and return to step (ii).

Implementation and Optimisation Techniques 335

(v) If there is some C ∈ G such that C is of the form uS, then use associativity
to simplify G

G −→ S ∪G \ {uS},

and return to step (ii).
(vi) If there is some C ∈ G such that C is of the form ¬uS, then for every D ∈ S

try to absorb (recursively)

{¬D} ∪G \ {¬uS},

and exit.
(vii) Otherwise, the axiom could not be absorbed, so add ¬uG to T ′g

T ′g −→ T ′g ∪ ¬uG,

and exit.

Note that this procedure allows parts of axioms to be absorbed. For example, given
axioms (A v D1) ∈ Tu and (A t ∃R.C v D2) ∈ Tg, then the general axiom would
be partly absorbed into the definition axiom to give (A v (D1 uD2)) ∈ Tu, leaving
a smaller general axiom (¬u{¬D2,∃R.C}) ∈ Tg.

When this procedure has been applied to all the axioms in Tg, then T ′g represents
those (parts of) axioms that could not be absorbed. The axioms in T ′g are already
in the form > v C, so that uT ′g is the concept that must be added to every node
in the tableaux expansion. This can be done using a universal role, as describe in
Section 9.2.4, although in practice it may be simpler just to add the concept to the
label of each newly created node.

The absorption process is clearly non-deterministic. In the first place, there may
be more than one way to divide T into unfoldable and general parts. For example, if
T contains multiple non-primitive definitions for some concept A, then one of them
must be selected as a definition in Tu while the rest are treated as general axioms in
Tg. Moreover, the absorption procedure itself is non-deterministic as G may contain
more than one primitive concept name into which the axiom could be absorbed. For
example, in the case where {A1, A2} = G, and there are two primitive definition
axioms A1 v C and A2 v D in Tu, then the axiom could be absorbed either into
the definition of A1 to give A1 v C u ¬u{A2} (equivalent to A1 v C u ¬A2) or into
the definition of A2 to give A2 v C u ¬u{A1} (equivalent to A2 v C u ¬A1).

It would obviously be sensible to choose the “best” absorption (the one that max-
imised empirical tractability), but it is not clear how to do this—in fact it is not even
clear how to define “best” in this context [Horrocks and Tobies, 2000]. If T contains
more than one definition axiom for a given concept name, then empirical evidence
suggests that efficiency is improved by retaining as many non-primitive definition

336 I. Horrocks

axioms in Tu as possible. Another intuitively obvious possibility is to preferentially
absorb into the definition axiom of the most specific primitive concept, although
this only helps in the case that A1 v A2 or A2 v A1. Other more sophisticated
schemes might be possible, but have yet to be investigated.

The advantages of absorption are:

• It can lead to a dramatic improvement in performance. For example, without
absorption, satisfiability of the Galen KB (i.e., the satisfiability of >) could not
be proved by either Fact or Dlp, even after several weeks of CPU time. After
absorption, the problem becomes so trivial that the CPU time required is hard
to measure.

• It is logic and algorithm independent.

The disadvantage is the overhead required for the pre-processing, although this is
generally small compared to classification times. However, the procedure described
is almost certainly sub-optimal, and trying to find an optimal absorption may be
much more costly.

9.5.2 Optimising classification

DL systems are often used to classify a KB, that is to compute a partial ordering
or hierarchy of named concepts in the KB based on the subsumption relationship.
As subsumption testing is always potentially costly, it is important to ensure that
the classification process uses the smallest possible number of tests. Minimising the
number of subsumption tests required to classify a concept in the concept hierarchy
can be treated as an abstract order-theoretic problem which is independent of the
ordering relation. However, some additional optimisation can be achieved by using
the structure of concepts to reveal obvious subsumption relationships and to control
the order in which concepts are added to the hierarchy (where this is possible).

The concept hierarchy is usually represented by a directed acyclic graph where
nodes are labelled with sets of concept names (because multiple concept names
may be logically equivalent), and edges correspond with subsumption relationships.
The subsumption relation is both transitive and reflexive, so a classified concept A
subsumes a classified concept B if either:

(i) both A and B are in the label of some node x, or
(ii) A is in the label of some node x, there is an edge 〈x, y〉 in the graph, and the

concept(s) in the label of node y subsume B.

It will be assumed that the hierarchy always contains a top node (a node whose
label includes >) and a bottom node (a node whose label includes ⊥) such that the

Implementation and Optimisation Techniques 337

top node subsumes the bottom node. If the KB is unsatisfiable then the hierarchy
will consist of a single node whose label includes both > and ⊥.

Algorithms based on traversal of the concept hierarchy can be used to minimise
the number of tests required in order to add a new concept [Baader et al., 1992a].
The idea is to compute a concept’s subsumers by searching down the hierarchy from
the top node (the top search phase) and its subsumees by searching up the hierarchy
from the bottom node (the bottom search phase).

When classifying a concept A, the top search takes advantage of the transitivity
of the subsumption relation by propagating failed results down the hierarchy. It
concludes, without performing a subsumption test, that if A is not subsumed by B,
then it cannot be subsumed by any other concept that is subsumed by B:

T 6|= A v B and T |= B′ v B implies T 6|= A v B′

To maximise the effect of this strategy, a modified breadth first search is used [Ellis,
1992] which ensures that a test to discover if B subsumes A is never performed until
it has been established that A is subsumed by all of the concepts known to subsume
B.

The bottom search uses a corresponding technique, testing if A subsumes B only
when A is already known to subsume all those concepts that are subsumed by B.
Information from the top search is also used by confining the bottom search to those
concepts which are subsumed by all of A’s subsumers.

This abstract partial ordering technique can be enhanced by taking advantage of
the structure of concepts and the axioms in the KB. If the KB contains an axiom
A v C or A ≡ C, then C is said to be a told subsumer of A. If C is a conjunctive
concept (C1 u . . . u Cn), then from the structural subsumption relationship

D v (C1 u · · · u Cn) implies D v C1 and · · · and D v Cn

it is possible to conclude that C1, . . . , Cn are also told subsumers of A. Moreover, due
to the transitivity of the subsumption relation, any told subsumers of C1, . . . , Cn are
also told subsumers of A. Before classifying A, all of its told subsumers which have
already been classified, and all their subsumers, can be marked as subsumers of A;
subsumption tests with respect to these concepts are therefore rendered unnecessary.
This idea can be extended in the obvious way to take advantage of a structural
subsumption relationship with respect to disjunctive concepts,

(C1 t · · · t Cn) v D implies C1 v D and · · · and Cn v D.

If the KB contains an axiom A ≡ C and C is a disjunctive concept (C1 t . . . tCn),
then A is a told subsumer of C1, . . . , Cn.

To maximise the effect of the told subsumer optimisation, concepts should be
classified in definition order. This means that a concept A is not classified until all

338 I. Horrocks

of its told subsumers have been classified. When classifying an unfoldable KB, this
ordering can be exploited by omitting the bottom search phase for primitive con-
cept names and assuming that they only subsume (concepts equivalent to) ⊥. This
is possible because, with an unfoldable KB, a primitive concept can only subsume
concepts for which it is a told subsumer. Therefore, as concepts are classified in
definition order, a primitive concept will always be classified before any of the con-
cepts that it subsumes. This additional optimisation cannot be used with a general
KB because, in the presence of general axioms, it can no longer be guaranteed that
a primitive concept will only subsume concepts for which it is a told subsumer. For
example, given a KB T such that

T = {A v ∃R.C, ∃R.C v B},

then B is not a told subsumer of A, and A may be classified first. However, when
B is classified the bottom search phase will discover that it subsumes A due to the
axiom ∃R.C v B.

The advantages of the enhanced traversal classification method are:

• It can significantly reduce the number of subsumption tests required in order to
classify a KB [Baader et al., 1992a].

• It is logic and (subsumption) algorithm independent.

There appear to be few disadvantages to this method, and it is used (in some
form) in most implemented DL systems.

9.5.3 Optimising subsumption testing

The classification optimisations described in Section 9.5.2 help to reduce the num-
ber of subsumption tests that are performed when classifying a KB, and the com-
bination of normalisation, simplification and lazy unfolding facilitates the detection
of “obvious” subsumption relationships by allowing unsatisfiability to be rapidly
demonstrated. However, detecting “obvious” non-subsumption (satisfiability) is
more difficult for tableaux algorithms. This is unfortunate as concept hierarchies
from realistic applications are typically broad, shallow and tree-like. The top search
phase of classifying a new concept A in such a hierarchy will therefore result in sev-
eral subsumption tests being performed at each node, most of which are likely to
fail. These failed tests could be very costly (if, for example, proving the satisfiability
of A is a hard problem), and they could also be very repetitive.

This problem can be tackled by trying to use cached results from previous
tableaux tests to prove non-subsumption without performing a new satisfiability

Implementation and Optimisation Techniques 339

R1

{C1} {C2}

R1

{C1} {C2}

R2

{C3}

{C3}

R3

R3
R2

{A, C, ∃R1.C1, ∃R2.C2} {¬B, D, ∃R3.C3}

{A,¬B, C, D,∃R1.C1, ∃R2.C2, ∃R3.C3}

Fig. 9.5. Joining expansion trees for A and ¬B.

test. For example, given two concepts A and B defined by the axioms

A ≡ C u ∃R1.C1 u ∃R2.C2, and

B ≡ ¬D t ∀R3.¬C3,

then A is not subsumed by B if the concept A u ¬B is satisfiable. If tableaux
expansion trees for A and ¬B have already been cached, then the satisfiability of
the conjunction can be demonstrated by a tree consisting of the trees for A and ¬B
joined at their root nodes, as shown in Figure 9.5 (note that ¬B ≡ D u ∃R3.C3).

Given two fully expanded and clash free tableaux expansion trees T1 and T2

representing models of (satisfiable) concepts A and ¬B respectively, the tree created
by joining T1 and T2 at their root nodes is a fully expanded and clash free tree
representing a model of Au¬B provided that the union of the root node labels does
not contain a clash and that no tableaux expansion rules are applicable to the new
tree. For most logics, this can be ascertained by examining the labels of the root
nodes and the labels of the edges connection them with their successors. With the
ALC logic for example, if x1 and x2 are the two root nodes, then the new tree will
be fully expanded and clash free provided that

(i) the union of the root node labels does not contain an immediate contradic-
tion, i.e., there is no C such that {C,¬C} ⊆ L(x1) ∪ L(x2), and

(ii) there is no interaction between value restrictions in the label of one root node
and edges connecting the other root node with its successors that might make
the ∀-rule applicable to the joined tree, i.e., there is no R such that ∀R.C ∈
L(x1) and T2 has an edge 〈x2, y〉 with L(〈x2, y〉) = R, or ∀R.C ∈ L(x2) and
T1 has an edge 〈x1, y〉 with L(〈x1, y〉) = R.

340 I. Horrocks

With more expressive logics it may be necessary to consider other interactions that
could lead to the application of tableaux expansion rules. With a logic that included
number restrictions, for example, it would be necessary to check that these could
not be violated by the root node successors in the joined tree.

It would be possible to join trees in a wider range of cases by examining the
potential interactions in more detail. For example, a value restriction ∀R.C ∈ L(x1)
and an R labelled edge 〈x2, y〉 would not make the ∀-rule applicable to the joined tree
if C ∈ L(x2). However, considering only root nodes and edges provides a relatively
fast test and reduces the storage required by the cache. Both the time required
by the test and the size of the cache can be reduced even further by only storing
relevant components of the root node labels and edges from the fully expanded and
clash free tree that demonstrates the satisfiability of a concept. In the case of ALC,
the relevant components from a tree demonstrating the satisfiability of a concept
A are the set of (possibly negated) atomic concept names in the root node label
(denoted Lc(A)), the set of role names in value restrictions in the root node label
(denoted L∀(A)), and the set of role names labelling edges connecting the root node
with its successors (denoted L∃(A)).1 These components can be cached as a triple
(Lc(A),L∀(A),L∃(A)).

When testing if A is subsumed by B, the algorithm can now proceed as follows.

(i) If any of (Lc(A),L∀(A),L∃(A)), (Lc(¬A),L∀(¬A),L∃(¬A)), (Lc(B),L∀(B),
L∃(B)) or (Lc(¬B),L∀(¬B),L∃(¬B)) are not in the cache, then perform the
appropriate satisfiability tests and update the cache accordingly. In the case
where a concept C is unsatisfiable, Lc(C) = {⊥} and Lc(¬C) = {>}.

(ii) Conclude that A v B (A u ¬B is not satisfiable) if Lc(A) = {⊥} or Lc(B) =
{>}.

(iii) Conclude that A 6v B (A u ¬B is satisfiable) if

(a) Lc(A) = {>} and Lc(B) 6= {>}, or
(b) Lc(A) 6= {⊥} and Lc(B) = {⊥}, or
(c) L∀(A)uL∃(B) = ∅, L∀(B)uL∃(A) = ∅, ⊥ /∈ Lc(A)∪Lc(B), and there

is no C such that {C,¬C} ⊆ Lc(A) ∪ Lc(B).

(iv) Otherwise perform a satisfiability test on A u ¬B, concluding that A v B if
it is not satisfiable and that A 6v B if it is satisfiable.

When a concept A is added to the hierarchy, this procedure will result in satisfia-
bility tests immediately being performed for both A and ¬A. During the subsequent
top search phase, at each node x in the hierarchy such that some C ∈ L(x) sub-
sumes A, it will be necessary to perform a subsumption test for each subsumee
1 Consideration can be limited to atomic concept names because expanded conjunction and disjunction

concepts are no longer relevant to the validity of the tree, and are only retained in order to facilitate
early clash detection.

Implementation and Optimisation Techniques 341

node y (unless some of them can be avoided by the classification optimisations dis-
cussed in Section 9.5.2). Typically only one of these subsumption tests will lead to
a full satisfiability test being performed, the rest being shown to be obvious non-
subsumptions using the cached partial trees. Moreover, the satisfiability test that is
performed will often be an “obvious” subsumption, and unsatisfiability will rapidly
be demonstrated.

The optimisation is less useful during the bottom search phase as nodes in the
concept hierarchy are typically connected to only one subsuming node. The ex-
ception to this is the bottom (⊥) node, which may be connected to a very large
number of subsuming nodes. Again, most of the subsumption tests that would be
required by these nodes can be avoided by demonstrating non-subsumption using
cached partial trees.

The caching technique can be extended in order to avoid the construction of
obviously satisfiable and unsatisfiable sub-trees during tableaux expansion. For
example, if some leaf node x is about to be expanded, and L(x) = {A}, unfolding and
expanding L(x) is clearly unnecessary if A is already known to be either satisfiable
(i.e., (Lc(A),L∀(A),L∃(A)) is in the cache and Lc(A) 6= {⊥}) or unsatisfiable (i.e.,
(Lc(A),L∀(A),L∃(A)) is in the cache and Lc(A) = {⊥}).

This idea can be further extended by caching (when required) partial trees for
all the syntactically distinct concepts discovered by the normalisation and simplifi-
cation process, and trying to join cached partial trees for all the concepts in a leaf
node’s label before starting the expansion process. For example, with the logic ALC
and a node x such that

L(x) = {C1, . . . , Cn},

x is unsatisfiable if for some 1 6 i 6 n, Lc(Ci) = {⊥}, and x is satisfiable if for all
1 6 i 6 n and 1 < j 6 n,

(i) L∀(Ci) u L∃(Cj) = ∅,
(ii) L∃(Ci) u L∀(Cj) = ∅, and
(iii) there is no C such that {C,¬C} ⊆ Lc(Ci) ∪ Lc(Cj).

As before, additional interactions may need to be considered with more expressive
logics. Moreover, with logics that support inverse roles, the effect that the sub-tree
might have on its predecessor must also be considered. For example, if x is an
R-successor of some node y, and R− ∈ L∀(Ci) for one of the Ci ∈ L(x), then
the expanded L(x) represented by the cached partial trees would contain a value
restriction of the form ∀R−.D that could augment L(y).

The advantages of caching partial tableaux expansion trees are:

• When classifying a realistic KB, most satisfiability tests can be avoided. For

342 I. Horrocks

example, the number of satisfiability tests performed by the Fact system when
classify the Galen KB is reduced from 122,695 to 23,492, a factor of over 80%.

• Without caching, some of the most costly satisfiability tests are repeated (with
minor variations) many times. The time saving due to caching is therefore even
greater than the saving in satisfiability tests.

The disadvantages are:

• The overhead of performing satisfiability tests on individual concepts and their
negations in order to generate the partial trees that are cached.

• The overhead of storing the partial trees. This is not too serious a problem as the
number of trees cached is equal to the number of named concepts in the KB (or
the number of syntactically distinct concepts if caching is used in sub-problems).

• The overhead of determining if the cached partial trees can be merged, which is
wasted if they cannot be.

• Its main use is when classifying a KB, or otherwise performing many similar
satisfiability tests. It is of limited value when performing single tests.

9.5.4 Optimising satisfiability testing

In spite of the various techniques outlined in the preceding sections, at some point
the DL system will be forced to perform a “real” subsumption test, which for a
tableaux based system means testing the satisfiability of a concept. For expressive
logics, such tests can be very costly. However, a range of optimisations can be
applied that dramatically improve performance in typical cases. Most of these are
aimed at reducing the size of the search space explored by the algorithm as a result
of applying non-deterministic tableaux expansion rules.

9.5.4.1 Semantic branching search

Standard tableaux algorithms use a search technique based on syntactic branching.
When expanding the label of a node x, syntactic branching works by choosing an
unexpanded disjunction (C1 t . . . t Cn) in L(x) and searching the different models
obtained by adding each of the disjuncts C1, . . . , Cn to L(x) [Giunchiglia and Sebas-
tiani, 1996b]. As the alternative branches of the search tree are not disjoint, there is
nothing to prevent the recurrence of an unsatisfiable disjunct in different branches.
The resulting wasted expansion could be costly if discovering the unsatisfiability
requires the solution of a complex sub-problem. For example, tableaux expansion
of a node x, where {(A t B), (A t C)} ⊆ L(x) and A is an unsatisfiable concept,
could lead to the search pattern shown in Figure 9.6, in which the unsatisfiability
of L(x) ∪A must be demonstrated twice.

This problem can be dealt with by using a semantic branching technique adapted

Implementation and Optimisation Techniques 343

t t

t t

L(x) = {(A tB), (A t C)}

L(x) ∪ {B}L(x) ∪ {A} ⇒ clash x

L(x) ∪ {A} ⇒ clash xx

x

x

L(x) ∪ {C}

Fig. 9.6. Syntactic branching search.

from the Davis-Putnam-Logemann-Loveland procedure (DPLL) commonly used
to solve propositional satisfiability (SAT) problems [Davis and Putnam, 1960;
Davis et al., 1962; Freeman, 1996].1 Instead of choosing an unexpanded disjunction
in L(x), a single disjunct D is chosen from one of the unexpanded disjunctions in
L(x). The two possible sub-trees obtained by adding either D or ¬D to L(x) are
then searched. Because the two sub-trees are strictly disjoint, there is no possibil-
ity of wasted search as in syntactic branching. Note that the order in which the
two branches are explored is irrelevant from a theoretical viewpoint, but may offer
further optimisation possibilities (see Section 9.5.4.4).

The advantages of semantic branching search are:

• A great deal is known about the implementation and optimisation of the DPLL
algorithm. In particular, both local simplification (see Section 9.5.4.2) and heuris-
tic guided search (see Section 9.5.4.4) can be used to try to minimise the size of
the search tree (although it should be noted that both these techniques can also
be adapted for use with syntactic branching search).

• It can be highly effective with some problems, particularly randomly generated
problems [Horrocks and Patel-Schneider, 1999].

The disadvantages are:

• It is possible that performance could be degraded by adding the negated disjunct
in the second branch of the search tree, for example if the disjunct is a very large or
complex concept. However this does not seem to be a serious problem in practice,
with semantic branching rarely exhibiting significantly worse performance than
syntactic branching.

• Its effectiveness is problem dependent. It is most effective with randomly gener-
ated problems, particularly those that are over-constrained (likely to be unsat-
isfiable). It is also effective with some of the hand crafted problems from the
Tableaux’98 benchmark suite. However, it appears to be of little benefit when
classifying realistic KBs [Horrocks and Patel-Schneider, 1998a].

1 An alternative solution is to enhance syntactic branching with “no-good” lists in order to avoid reselecting
a known unsatisfiable disjunct [Donini and Massacci, 2000].

344 I. Horrocks

t t

L(x) = {(A tB), (A t C)}

L(x) ∪ {A} ⇒ clash L(x) ∪ {¬A, B, C}x x

x

Fig. 9.7. Semantic branching search.

9.5.4.2 Local simplification

Local simplification is another technique used to reduce the size of the search space
resulting from the application of non-deterministic expansion rules. Before any
non-deterministic expansion of a node label L(x) is performed, disjunctions in L(x)
are examined, and if possible simplified. The simplification most commonly used
(although by no means the only one possible) is to deterministically expand dis-
junctions in L(x) that present only one expansion possibility and to detect a clash
when a disjunction in L(x) has no expansion possibilities. This simplification has
been called Boolean constraint propagation (BCP) [Freeman, 1995]. In effect, the
inference rules

¬C1,...,¬Cn,C1t...tCntD
D and C1,...,Cn,¬C1t...t¬CntD

D

are being used to simplify the conjunctive concept represented by L(x).
For example, given a node x such that

{(C t (D1 uD2)), (¬D1 t ¬D2 t C),¬C} ⊆ L(x),

BCP deterministically expands the disjunction (C t (D1 uD2)), adding (D1 uD2)
to L(x), because ¬C ∈ L(x). The deterministic expansion of (D1 uD2) adds both
D1 and D2 to L(x), allowing BCP to identify (¬D1 t¬D2 tC) as a clash (without
any branching having occurred), because {D1, D2,¬C} ⊆ L(x).

BCP simplification is usually described as an integral part of SAT based algo-
rithms [Giunchiglia and Sebastiani, 1996a], but it can also be used with syntactic
branching. However, it is more effective with semantic branching as the negated
concepts introduced by failed branches can result in additional simplifications. Tak-
ing the above example of {(A t B), (A t C)} ⊆ L(x), adding ¬A to L(x) allows
BCP to deterministically expand both of the disjunctions using the simplifications
(A t B) and ¬A implies B and (A t C) and ¬A implies C. The reduced search
space resulting from the combination of semantic branching and BCP is shown in
Figure 9.7.

The advantages of local simplification are:

• It is applicable to a wide range of logics and algorithms.
• It can never increase the size of the search space.

Implementation and Optimisation Techniques 345

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A uB),¬A, A, B}

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A uB),¬A, A, B}
R

t

t

t
L(x) ∪ {Cn-1}

Clash Clash Clash . . . Clash

x x

x

x

Fig. 9.8. Thrashing in backtracking search.

The disadvantages are:

• It may be costly to perform without using complex data structures [Freeman,
1995].

• Its effectiveness is relatively limited and problem dependant. It is most effective
with randomly generated problems, particularly those that are over-constrained
[Horrocks and Patel-Schneider, 1998a].

9.5.4.3 Dependency directed backtracking

Inherent unsatisfiability concealed in sub-problems can lead to large amounts of
unproductive backtracking search, sometimes called thrashing. The problem is ex-
acerbated when blocking is used to guarantee termination, because blocking may
require that sub-problems only be explored after all other forms of expansion have
been performed. For example, expanding a node x (using semantic branching),
where

L(x) = {(C1 tD1), . . . , (Cn tDn), ∃R.(A uB), ∀R.¬A},

could lead to the fruitless exploration of 2n possible R-successors of x before the in-
herent unsatisfiability is discovered (note that if L(x) simply included ∃R.A instead
of ∃R.(AuB), then the inherent unsatisfiability would have been detected immedi-
ately due to the normalisation of ∃R.A as ¬∀R.¬A). The search tree resulting from
the tableaux expansion is illustrated in Figure 9.8.

This problem can be addressed by identifying the causes of clashes, and using
this information to prune or restructure the search space—a technique known as
dependency directed backtracking. The form most commonly used in practice, called
backjumping, is adapted from a technique that has been used in solving constraint

346 I. Horrocks

satisfiability problems [Baker, 1995] (a similar technique was also used in the Harp
theorem prover [Oppacher and Suen, 1988]). Backjumping works by labelling each
concept in a node label and each role in an edge label with a dependency set
indicating the branching points on which it depends. A concept C ∈ L(x) depends
on a branching point if C was added to L(x) at the branching point or if C depends
on another concept D (or role R), and D (or R) depends on the branching point.
A concept C ∈ L(x) depends on a concept D (or role R) when C was added to
L(x) by the application of a deterministic expansion rule that used D (or R); a role
R = L(〈x, y〉) depends on a concept D when 〈x, y〉 was labelled R by the application
of a deterministic expansion rule that used D. For example, if A ∈ L(y) was derived
from the expansion of ∀R.A ∈ L(x), then A ∈ L(y) depends on both ∀R.A ∈ L(x)
and R = L(〈x, y〉).

Labelling roles with dependency sets can be avoided in algorithms where a
combined ∃∀-rule is used, as the dependency sets for concepts in the label of
the new node can be derived in a single step. On the other hand, more com-
plex algorithms and optimisation techniques may lead to more complex depen-
dencies. For example, if Cn ∈ L(x) was derived from a BCP simplification of
{(C1 t . . . t Cn),¬C1, . . . ,¬Cn−1} ⊆ L(x), then it depends on the disjunction
(C1 t . . . t Cn) and all of ¬C1, . . . ,¬Cn−1.

When a clash is discovered, the dependency sets of the clashing concepts can
be used to identify the most recent branching point where exploring the other
branch might alleviate the cause of the clash. It is then possible to jump back
over intervening branching points without exploring any alternative branches.
Again, more complex algorithms and optimisations may lead to more complex
dependencies. For example, if the clash results from a BCP simplification of
{(C1 t . . . t Cn),¬C1, . . . ,¬Cn} ⊆ L(x), then it depends on the disjunction
(C1 t . . . t Cn) and all of ¬C1, . . . ,¬Cn.

When testing the satisfiability of a concept C, the dependency set of C ∈ L(x) is
initialised to ∅ (the empty set) and a branching depth counter b is initialised to 1.
The search algorithm then proceeds as follows:

(i) Perform deterministic expansion, setting the dependency set of each concept
added to a node label and each role assigned to an edge label to the union
of the dependency sets of the concepts and roles on which they depend.

(a) If a clash is discovered, then return the union of the dependency sets
of the clashing concepts.

(b) If a clash free expansion is discovered, then return {0}.

(ii) Branch on a concept D ∈ L(y), trying first L(y)∪{D} and then L(y)∪{¬D}.

(a) Add D to L(y) with a dependency set {b}, and increment b.

Implementation and Optimisation Techniques 347

(b) Set D1 to the dependency set returned by a recursive call to the search
algorithm, and decrement b.

(c) If b /∈ D1, then return D1 without exploring the second branch.

(d) If b ∈ D1, then add ¬D to L(y) with a dependency set D1 \ {b} and
return to step (i).

If the search returns {0}, then a successful expansion was discovered and the al-
gorithm returns “satisfiable”, otherwise all possible expansions led to a clash and
“unsatisfiable” is returned.

Let us consider the earlier example and suppose that ∃R.(AuB) has a dependency
set Di, ∀R.¬A has a dependency set Dj and b = k (meaning that there had already
been k − 1 branching points in the search tree). Note that the largest values in Di

and Dj must be less than k, as neither concept can depend on a branching point
that has not yet been reached.

At the kth branching point, C1 is added to L(x) with a dependency set {k} and b is
incremented. The search continues in the same way until the (k+n−1)th branching
point, when Cn is added to L(x) with a dependency set {k+n−1}. Next, ∃R.(AuB)
is deterministically expanded, generating an R-successor y with R = 〈x, y〉 labelled
Di and (A u B) ∈ L(y) labelled Di. Finally, ∀R.¬A is deterministically expanded,
adding ¬A to L(y) with a label Di∪Dj (because it depends on both ∀R.¬A ∈ L(x)
and R = 〈x, y〉).

The expansion now continues with L(y), and (A u B) is deterministically ex-
panded, adding A and B to L(y), both labelled Di. This results in a clash as
{A,¬A} ⊆ L(y), and the set Di ∪Di ∪Dj = Di ∪Dj (the union of the dependency
sets from the two clashing concepts) is returned. The algorithm will then backtrack
through each of the preceding n branching points without exploring the second
branches, because in each case b /∈ Di∪Dj (remember that the largest values in Di

and Dj are less than k), and will continue to backtrack until it reaches the branching
point equal to the maximum value in Di ∪Dj (if Di = Dj = ∅, then the algorithm
will backtrack through all branching points and return “unsatisfiable”). Figure 9.9
illustrates the pruned search tree, with the number of R-successors explored being
reduced by 2n − 1.

Backjumping can also be used with syntactic branching, but the procedure is
slightly more complex as there may be more than two possible choices at a given
branching point, and the dependency set of the disjunction being expanded must
also be taken into account. When expanding a disjunction of size n with a de-
pendency set Dd, the first n − 1 disjuncts are treated like the first branch in the
semantic branching algorithm, an immediate backtrack occurring if the recursive
search discovers a clash that does not depend on b. If each of these branches re-

348 I. Horrocks

PruningBackjump
t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A uB),¬A, A, B}

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

t

t

t
L(x) ∪ {Cn-1}

Clash

x

x

x

Fig. 9.9. Pruning the search using backjumping.

turns a dependency set Di such that b ∈ Di, then the nth disjunct is added with a
dependency set (D1 ∪ . . . ∪Dn−1 ∪Dd) \ b.

The advantages of backjumping are

• It can lead to a dramatic reduction in the size of the search tree and thus a
huge performance improvement. For example, when trying to classify the Galen
model using either Fact or Dlp with backjumping disabled, single satisfiability
tests were encountered that could not be solved even after several weeks of CPU
time.

• The size of the search space can never be increased.

The disadvantage is the overhead of propagating and storing the dependency sets.
The storage overhead can be alleviated to some extent by using a pointer based
implementation so that propagating a dependency set only requires the copying of
a pointer. A simpler scheme using single maximal dependency values instead of sets
would also be possible, but some dependency information would be lost and this
could lead to less efficient pruning of the search tree.

9.5.4.4 Heuristic guided search

Heuristic techniques can be used to guide the search in a way that tries to minimise
the size of the search tree. A method that is widely used in DPLL SAT algorithms
is to branch on the disjunct that has the Maximum number of Occurrences in
disjunctions of Minimum Size—the well known MOMS heuristic [Freeman, 1995].
By choosing a disjunct that occurs frequently in small disjunctions, the MOMS
heuristic tries to maximise the effect of BCP. For example, if the label of a node
x contains the unexpanded disjunctions C tD1, . . . , C tDn, then branching on C

Implementation and Optimisation Techniques 349

leads to their deterministic expansion in a single step: when C is added to L(x),
all of the disjunctions are fully expanded and when ¬C is added to L(x), BCP will
expand all of the disjunctions, causing D1, . . . , Dn to be added to L(x). Branching
first on any of D1, . . . , Dn, on the other hand, would only cause a single disjunction
to be expanded.

The MOMS value for a candidate concept C is computed simply by counting the
number of times C or its negation occur in minimally sized disjunctions. There
are several variants of this heuristic, including the heuristic from Jeroslow and
Wang [Jeroslow and Wang, 1990]. The Jeroslow and Wang heuristic considers all
occurrences of a disjunct, weighting them according to the size of the disjunction in
which they occur. The heuristic then selects the disjunct with the highest overall
weighting, again with the objective of maximising the effect of BCP and reducing
the size of the search tree.

When a disjunct C has been selected from the disjunctions in L(x), a BCP max-
imising heuristic can also be used to determine the order in which the two possible
branches, L(x)∪{C} and L(x)∪{¬C}, are explored. This is done by separating the
two components of the heuristic weighting contributed by occurrences of C and ¬C,
trying L(x)∪{C} first if C made the smallest contribution, and trying L(x)∪{¬C}
first otherwise. The intention is to prune the search tree by maximising BCP in the
first branch.

Unfortunately, MOMS-style heuristics can interact adversely with the backjump-
ing optimisation because they do not take dependency information into account.
This was first discovered in the Fact system, when it was noticed that using
MOMS heuristic often led to much worse performance. The cause of this phe-
nomenon turned out to be the fact that, without the heuristic, the data structures
used in the implementation naturally led to “older” disjunctions (those dependent
on earlier branching points) being expanded before “newer” ones, and this led to
more effective pruning if a clash was discovered. Using the heuristic disturbed this
ordering and reduced the effectiveness of backjumping [Horrocks, 1997b].

Moreover, MOMS-style heuristics are of little value themselves in description logic
systems because they rely for their effectiveness on finding the same disjuncts re-
curring in multiple unexpanded disjunctions: this is likely in hard propositional
problems, where the disjuncts are propositional variables, and where the number of
different variables is usually small compared to the number of disjunctive clauses
(otherwise problems would, in general, be trivially satisfiable); it is unlikely in con-
cept satisfiability problems, where the disjuncts are (possibly non-atomic) concepts,
and where the number of different concepts is usually large compared to the num-
ber of disjunctive clauses. As a result, these heuristics will often discover that
all disjuncts have similar or equal priorities, and the guidance they provide is not
particularly useful.

350 I. Horrocks

An alternative strategy is to employ an oldest-first heuristic that tries to maximise
the effectiveness of backjumping by using dependency sets to guide the expansion
[Horrocks and Patel-Schneider, 1999]. When choosing a disjunct on which to branch,
the heuristic first selects those disjunctions that depend on the least recent branch-
ing points (i.e., those with minimal maximum values in their dependency sets), and
then selects a disjunct from one of these disjunctions. This can be combined with
the use of a BCP maximising heuristic, such as the Jeroslow and Wang heuristic,
to select the disjunct from amongst the selected disjunctions.

Although the BCP and backjumping maximising heuristics described above have
been designed with semantic branching in mind they can also be used with syn-
tactic branching. The oldest first heuristic actually selects disjunctions rather than
disjuncts, and is thus a natural candidate for a syntactic branching heuristic. BCP
maximising heuristics could also be adapted for use with syntactic branching, for
example by first evaluating the weighting of each disjunct and then selecting the
disjunction whose disjuncts have the highest average, median or maximum weight-
ings.

The oldest first heuristic can also be used to advantage when selecting the order
in which existential role restrictions, and the labels of the R-successors which they
generate, are expanded. One possible technique is to use the heuristic to select an
unexpanded existential role restriction ∃R.C from the label of a node x, apply the
∃-rule and the ∀-rule as necessary, and expand the label of resulting R-successor. If
the expansion results in a clash, then the algorithm will backtrack; if it does not,
then continue selecting and expanding existential role restrictions from L(x) until
it is fully expanded. A better technique is to first apply the ∃-rule and the ∀-rule
exhaustively, creating a set of successor nodes. The order in which to expand these
successors can then be based on the minimal maximum values in the dependency
sets of all the concepts in their label, some of which may be due to universal role
restrictions in L(x).

The advantages of using heuristics are

• They can be used to complement other optimisations. The MOMS and Jeroslow
and Wang heuristics, for example, are designed to increase the effectiveness of
BCP while the oldest first heuristic is designed to increase the effectiveness of
backjumping.

• They can be selected and tuned to take advantage of the kinds of problem that
are to be solved (if this is known). The BCP maximisation heuristics, for exam-
ple, are generally quite effective with large randomly generated and hand crafted
problems, whereas the oldest first heuristic seems to be more effective when clas-
sifying realistic KBs.

Implementation and Optimisation Techniques 351

The disadvantages are

• They can add a significant overhead as the heuristic function may be expensive
to evaluate and may need to be reevaluated at each branching point.

• They may not improve performance, and may significantly degrade it.

– Heuristics can interact adversely with other optimisations, as was the case with
the MOMS heuristic and backjumping in the Fact system.

– When they work badly, heuristics can increase the frequency with which patho-
logical worst cases can be expected to occur. For example, with problems
that are highly disjunctive but relatively under-constrained, using a BCP max-
imising heuristic to select highly constraining disjuncts can force backtracking
search to be performed when most random branching choices would lead rapidly
to a clash free expansion.

– The cost of computing the heuristic function can outweigh the benefit (if any).

• Heuristics designed to work well with purely proposition reasoning, such as the
BCP maximising heuristics, may not be particularly effective with DLs, where
much of the reasoning is modal (it involves roles and sub-problems). There has
been little work on finding good heuristics for modal reasoning problems.

9.5.4.5 Caching satisfiability status

During a satisfiability check there may be many successor nodes created. Some of
these nodes can be very similar, particularly as the labels of the R-successors for a
node x each contain the same concepts derived from the universal role restrictions
in L(x). Considerable time can thus be spent re-computing the satisfiability of
nodes that have the same label. As the satisfiability algorithm only needs to know
whether a node is satisfiable or not, this time is wasted. Moreover, when classifying
a KB, similar satisfiability tests may be performed many times, and may provide
further opportunities for the re-use of satisfiability results for node labels if these
are retained across multiple concept satisfiability tests.

If the expansion of existential value restrictions in the label of a node x is de-
layed until all other expansion possibilities have been exhausted (as in the trace
technique), then as each existential role restriction ∃R.C is expanded it is possi-
ble to generate the complete set of concepts that constitute the initial label of the
R-successor; this will consist of C plus all the concepts derived from universal role
restrictions in L(x).1 If there exists another node with the same set of initial con-
cepts, then the two nodes will have the same satisfiability status. Work need be
done only on one of the two nodes, potentially saving a considerable amount of
1 This ordering is used in the trace technique to minimise space usage, and may by useful or even required

for effective blocking.

352 I. Horrocks

processing, as not only is the work at one of the nodes saved, but also the work at
any of the successors of this node.

Care must be taken when using caching in conjunction with blocking as the
satisfiability status of blocked nodes is not completely determined but is simply
taken to be equal to that of the blocking node. Another problem with caching is
that the dependency information required for backjumping cannot be effectively
calculated for nodes that are found to be unsatisfiable as a result of a cache lookup.
Although the set of concepts in the initial label of such a node is the same as
that of the expanded node whose (un)satisfiability status has been cached, the
dependency sets attached to the concepts that made up the two labels may not be
the same. However, a weaker form of backjumping can still be performed by taking
the dependency set of the unsatisfiable node to be the union of the dependency sets
from the concepts in its label.

A general procedure for using caching when expanding a node x can be described
as follows.

(i) Exhaustively perform all local expansions, backtracking as required, until
only existential value restrictions (if any) remain to be expanded.

(ii) If there are no unexpanded existential value restrictions in L(x), then return
the satisfiability status satisfiable to the predecessor node.

(iii) Select (heuristically) an unexpanded existential role restriction from L(x),
expanding it and any applicable universal role restrictions to create a new
node y with an initial label L(y) (or create all such nodes and heuristically
select the order in which they are to be examined).

(iv) If y is blocked, then its satisfiability status S is directly determined by the
algorithm (normally satisfiable, but may depend on the kind of cycle that
has been detected [Baader, 1991]).

(a) If S = satisfiable, then return to step (ii) without expanding L(y).
(b) If S = unsatisfiable, then backtrack without expanding L(y). The

dependency set will need to be determined by the blocking algorithm.

(v) If a set equal to L(y) is found in the cache, then retrieve the associated
satisfiability status S (this is called a cache “hit”).

(a) If S = satisfiable, then return to step (ii) without expanding L(y).
(b) If S = unsatisfiable, then backtrack without expanding L(y), taking

the dependency set to be the union of the dependency sets attached
to the concepts in L(y).

(vi) If a set equal to L(y) is not found in the cache, then set L = L(y) and expand
L(y) in order to determine its satisfiability status S.

Implementation and Optimisation Techniques 353

(a) If S = satisfiable and there is no descendent z of y that is blocked by
an ancestor x′ of y, then add L to the cache with satisfiability status
S and return to step (ii).

(b) If S = satisfiable and there is a descendent z of y that is blocked by an
ancestor x′ of y, then return to step (ii) without updating the cache.

(c) If S = unsatisfiable, then add L to the cache with satisfiability status
S and backtrack, taking the dependency set to be the one returned
by the expansion of L(y).

The problem of combining caching and blocking can be dealt with in a more
sophisticated way by allowing the cached satisfiability status of a node to assume
values such as “unknown”. These values can be updated as the expansion progresses
and the satisfiability status of blocking nodes is determined. Such a strategy is
implemented in the Dlp system.

A further refinement is to use subset and superset instead of equality when
retreiving satisfiability status from the cache: if L(x) is satisfiable, then clearly
any L(y) ⊆ L(x) is also satisfiable, and if L(x) is unsatisfiable, then clearly any
L(y) ⊇ L(x) is also unsatisfiable [Hoffmann and Koehler, 1999; Giunchiglia and
Tacchella, 2000]. However, using sub and supersets significantly increases the com-
plexity of the cache, and it is not yet clear if the performance cost of this added
complexity will be justified by the possible increase in cache hits.

The advantages of caching the satisfiability status are:

• It can be highly effective with some problems, particularly those with a repetitive
structure. For example, the Dlp system has been used to demonstrate that
some of the problem sets from the Tableaux’98 benchmark suite are trivial when
caching is used (all problems were solved in less than 0.1s and there was little
evidence of increasing difficulty with increasing problem size). Without caching,
the same problems demonstrate a clearly exponential growth in solution time with
increasing problem size, and the system was unable to solve the larger problems
within the 100s time limit imposed in the test [Horrocks and Patel-Schneider,
1999].

• It can be effective with both single satisfiability tests and across multiple tests
(as in KB classification).

• It can be effective with both satisfiable and unsatisfiable problems, unlike many
other optimisation techniques that are primarily aimed at speeding up the detec-
tion of unsatisfiability.

The disadvantages are:

• Retaining node labels and their satisfiability status throughout a satisfiability

354 I. Horrocks

test (or longer, if the results are to be used in later satisfiability tests) involves a
storage overhead. As the maximum number of different possible node labels is ex-
ponential in the number of different concepts, this overhead could be prohibitive,
and it may be necessary to implement a mechanism for clearing some or all of the
cache. However, experiments with caching in the Dlp system suggest that this is
unlikely to be a problem in realistic applications [Horrocks and Patel-Schneider,
1999].

• The adverse interaction with dependency directed backtracking can degrade per-
formance in some circumstances.

• Its effectiveness is problem dependent, and (as might be expected) is most evident
with artificial problems having a repetitive structure. It is highly effective with
some of the hand crafted problems from the Tableaux’98 benchmark suite, it is
less effective with realistic classification problems, and it is almost completely in-
effective with randomly generated problems [Horrocks and Patel-Schneider, 1999].

• The technique described depends on the logic having the property that the sat-
isfiability of a node is completely determined by its initial label set. Extend the
technique to logics that do not have this property, for example those which sup-
port inverse roles, may involve a considerable increase in both complexity and
storage requirements.

9.6 Discussion

To be useful in realistic applications, DL systems need both expressive logics and
fast reasoners. Procedures for deciding subsumption (or equivalently satisfiability)
in such logics have discouragingly high worst-case complexities, normally exponen-
tial with respect to problem size. In spite of this, implemented DL systems have
demonstrated that acceptable performance can be achieved with the kinds of prob-
lem that typically occur in realistic applications.

This performance has been achieved through the use of optimisation techniques,
a wide variety of which have been studied in this chapter. These techniques can
operate at every level of a DL system; they can simplify the KB, reduce the num-
ber of subsumption tests required to classify it, substitute tableaux subsumption
tests with less costly tests, and reduce the size of the search space resulting from
non-deterministic tableaux expansion. Amongst the most effective of these optimi-
sations are absorption and backjumping; both have the desirable properties that
they impose a very small additional overhead, can dramatically improve typical
case performance, and hardly ever degrade performance (to any significant extent).
Other widely applicable optimisations include enhanced traversal, normalisation,
lazy unfolding, semantic branching and local simplification; their effects are less
general and less dramatic, but they too impose low overheads and rarely degrade

Implementation and Optimisation Techniques 355

performance. Various forms of caching can also be highly effective, but they do
impose a significant additional overhead in terms of memory usage, and can some-
times degrade performance. Finally, heuristic techniques, at least those currently
available, are not particularly effective and can often degrade performance.

Several exciting new application areas are opening up for very expressive DLs,
in particular reasoning about DataBase schemata and queries, and providing rea-
soning support for the Semantic Web. These applications require logics even more
expressive than those implemented in existing systems, in particular logics that in-
clude both inverse roles and number restrictions, as well as reasoning with general
axioms. The challenge for DL implementors is to demonstrate that highly optimised
reasoners can provide acceptable performance even for these logics. This may re-
quire the extension and refinement of existing techniques, or even the development
of completely new ones.

One promising possibility is to use a more sophisticated form of dependency
directed backtracking, called dynamic backtracking [Ginsberg, 1993], that pre-
serves as much work as possible while backtracking to the source of a con-
tradiction. Another useful approach, indicative of the increasing maturity of
existing implementations, is to focus on problematical constructors and devise
methods for dealing with them more efficiently. Good examples of this can
be seen in the Racer system, where significant improvements in performance
have been achieved by using more sophisticated techniques to deal with domain
and range constraints on roles (see Chapter 2 for an explanation of these con-
structs) and qualified number restrictions [Haarslev and Möller, 2001c; 2001d;
2001a].

Finally, it should be reemphasised that, given the immutability of theoretical com-
plexity, no (complete) implementation can guarantee to provide good performance
in all cases. The objective of optimised implementations is to provide acceptable
performance in typical applications and, as the definition of “acceptable” and “typ-
ical” will always be application dependent, their effectiveness can only be assessed
by empirical testing. Hopefully, the new generation of highly optimised DL systems
will demonstrate their effectiveness by finding more widespread use in applications
than did their predecessors.

