
8

Description Logics Systems
Ralf Möller

Volker Haarslev

Abstract

This chapter discusses implemented description logic systems that have played or
play an important role in the field. It first presents several earlier systems that,
although not based on description logics, have provided important ideas. These
systems include Kl-One, Krypton, Nikl, and Kandor. Then, successor systems
are described by classifying them along the characteristics discussed in the previous
chapters, addressing the following systems: Classic (“almost” complete, fast);
Back, Loom (expressive, incomplete); Kris, Crack (expressive, complete). At
last, a new optimized generation of very expressive but sound and complete DL
systems is also introduced. In particular, we focus on the systems Dlp, Fact, and
Racer and explain what they can and cannot do.

8.1 New light through old windows?

In this chapter a description of the goals behind the development of different DL
systems is given from a historical perspective. The description of DL systems al-
lows important insights into the development of the knowledge representation re-
search field as a whole. The design decisions behind the well-known systems which
we discuss in this chapter do not only reflect the trends in different knowledge
representation research areas but also characterize the point of view on knowl-
edge representation that different researchers advocate. The chapter discusses
general capabilities of the systems and gives an analysis of the main language
features and design decisions behind system architectures. The analysis of cur-
rent systems in the light of a historical perspective might lead to new ideas for
the development of even more powerful description logic systems in the future.
References to previous descriptions of DL systems (e.g., in [MacGregor, 1991a;
Woods and Schmolze, 1990; Horrocks, 1997a]) or publications on DL theory that also
contain discussions about description logic systems (e.g., [Patel-Schneider, 1987a;

289

290 R. Möller, V. Haarslev

Nebel, 1990a; Schmidt, 1991]) are included where appropriate. For references to
other systems not mentioned here see also [Woods and Schmolze, 1990] and [Nebel,
1990b, p. 46f., p. 63f.].

In Chapter 2 basic concept and role constructors were already introduced (see also
the appendix for a summary of syntax and semantics of DL constructors). However,
before starting the discussion about DL systems it is appropriate to introduce some
notation for language constructors in order to keep this chapter self-contained. It
is assumed that the reader is familiar with the basic description logics AL and
ALC. In a similar way as in Chapter 2, further language features are indicated
by different letters. The letter N is used for simple number restrictions and the
letter Q is used for qualified number restrictions. H is used for role hierarchies
with multiple parents whereas h is used for role hierarchies with single inheritance
only. In some languages, no role hierarchies but role conjunctions are provided.
Role conjunctions are indicated with the letter R in the following. In addition, the
abbreviations F and f are used for features with and without equality for feature
chains (i.e., agreements), respectively. The index R+ is used to indicate support for
transitive roles. Language constructors for an extensional specification of concepts
using nominals (or individuals) are denoted by the letters O and B (see Chapter 2
or the appendix for details). If inverse roles are supported by a DL system, this
is indicated either with a superscript −1 or with the letter I. The latter variant is
used in order to allow for a convenient pronunciation of the DL language.

8.2 The first generation

Inspired by research on human cognitive behavior, proposals for knowledge repre-
sentation languages were first discussed in the late sixties. E.g., [Quillian, 1967]
is one of the first publications of these languages called “semantic networks” (see
also [Quillian, 1968]). Originally, semantic network formalisms were seen as alter-
natives to first-order logic. In a similar spirit, [Minsky, 1981] introduced the initial
notion of a frame system. The motivation of these representation formalisms was
to mimic human reasoning in the sense of achieving “cognitive adequacy”. Thus,
the idea was to support problem solving with appropriate representation structures
that somehow “resemble” representation structures assumed in human information
processing. The exploitation of inheritance was a predominant idea in frame sys-
tems. The specification of knowledge bases should be simple and the use of the
representation structures should be intuitive (“epistemological adequacy”). How-
ever, as pointed out by [Woods, 1975], it was not at all simple to specify what an
inference system was supposed to actually compute. The late seventies saw ini-
tial research on the relation of frame systems and first-order logic [Hayes, 1977;
1979] which revealed that some aspects of frame-based systems can be considered

Description Logics Systems 291

as special “instantiations” of first-order reasoning. Hayes argued that frame-based
reasoning was not an entirely new way of knowledge representation with particular
advantages over first-order reasoning. Specific features of frame systems beyond
first-order reasoning (e.g., defaults) were not very well understood at that time.
The consequence of these publications was that many researchers did not consider
frame systems and semantic network systems as possible alternatives to logic-based
approaches any more.

The criticisms of early frame systems and semantic network formalisms stimulated
research on the development of mathematical structures and techniques for defining
the semantics of representational constructs supported by different representation
languages. For instance, in early frame systems there was no clear distinction be-
tween constructs for representing “generic” knowledge about sets of individuals and
knowledge about “specific” individuals. Furthermore, frames were often used as
data structures in procedural programs. For these programs a formal specification
of what they were expected to compute was rarely provided. Rather than interpret-
ing frame structures as data structures, [Woods, 1975] suggested to use a formal
semantics to clearly specify what is to be computed by inference algorithms.

Kl-One

Inspired by critics such as [Woods, 1975], Brachman started to develop a new rep-
resentation system (called Kl-One) that inherently included the notion of inferring
implicit knowledge from given declarations [Brachman, 1977b; 1979]. Although the
initial approach was not logic-based, Kl-One started the era of logic-based repre-
sentation systems which can be used to formalize application problems as inference
problems over the constructs supported by the representation language. One of
the prevailing inference patterns is centered around inheritance [Brachman, 1983].
The final report on the Kl-One language is published in [Brachman and Schmolze,
1985].

One of the core ideas behind Kl-One as a representation language for the “epis-
temological level” resulted from problems with languages offering built-in primitives
for general representation purposes (e.g., CD theory [Schank, 1975]). Rather than
providing general built-in primitives, in Kl-One, for a specific representation prob-
lem a set of adequate primitives was defined by the user. The primitives were
denoted by so-called concept names. The next idea was to use concept-forming op-
erators to build new concepts from basic concepts. These compound concepts were
also referred to as “concepts”, “concept terms” or “concept descriptions”. Generic
concepts were intended to denote classes of individuals and individual concepts were
intended to denote individuals (see also [Nebel, 1990a, p. 42]). Individuals were re-

292 R. Möller, V. Haarslev

lated by so-called roles which, in turn, could be primitive roles (role names) or roles
described with role constructors [Brachman and Schmolze, 1985].

In Kl-One, concepts and roles are the building blocks for representational pur-
poses. The main idea behind concepts and concept constructors in Kl-One is that
the meaning of a concept is derived only from the meaning of its superconcepts
and other restrictions associated with a concept [Brachman and Schmolze, 1985].
A Kl-One generic concept consists of a set of superconcept names, a set of role
descriptions, and a set of structural descriptions [Patel-Schneider, 1987a, p. 58f.].1

Roles can be viewed as potential relationships between an individual of a certain
class and other individuals in the world [Nebel, 1990a, p. 42].

Role descriptions could be either restrictions or differentiations. The former re-
stricted the class of permitted fillers (value restrictions) or the number of fillers
(number restrictions). Role differentiations were used to describe a subrole with
possible value or number restrictions. So-called structural descriptions were used
to state relationships between the fillers of roles (see also [Patel-Schneider, 1987a,
p. 58f.]). Descriptions for individual concepts consisted simply of a set of values for
roles plus a set of generic concepts. Individual concepts were seen as instances of
these generic concepts, i.e., an individual concept had to satisfy all restrictions (and
differentiations) inherited by the generic concepts. On the other hand, individual
concepts were also subsumed by their generic concepts. However, the semantics of
individuals was never completely worked out (see [Schmolze and Brachman, 1982,
p. 23–31] cited after [Nebel, 1990a, p. 64]).

The representation structures offered by Kl-One were similar to those of-
fered by semantic networks or frames. Although, initially, the structures of-
fered by Kl-One were called “structural inheritance networks” [Brachman, 1977b;
1979], in [Brachman and Levesque, 1984] the authors talk of “frame structures”.2

In accordance with [Nebel, 1990a, p. 45] we argue that in contrast to, e.g., CD
theory [Schank, 1975], providing a (large) set of primitive representation structures
(names) for all kinds of representation purposes was not the development goal of
Kl-One. As Nebel points out [Nebel, 1990a, p. 45], more important and unique
for Kl-One is the core idea of proving ways to specify concept definitions, i.e., the
possibility to let a knowledge engineer declare the relation of “high-level concepts”
to “lower-level primitives”.

A concept definition was an assignment of a (unique) name to a concept term. In
Kl-One the well known distinction between the two kinds of concept definitions,
1 Note that, in Kl-One-like languages, there are specific syntactic constructs for specifying superconcepts.

These specific constructs are no longer present in logic-based concept languages of the nineties.
2 There are large differences between frame systems and description logic systems: if for i the restriction
∀R.C holds, and we set i into relation to j via the role r, then every Kl-One-based system concludes
that j is an instance of C. In standard frame-based systems, j can only be set into relation to i via R if
it is already known that j is an instance of C. Otherwise, in frame systems at least a warning is issued
or even an error is signalled.

Description Logics Systems 293

definitions with necessary and sufficient conditions and definitions with only nec-
essary conditions (so-called primitive definitions), was investigated for knowledge
representation purposes for the first time.3 In the original approach no cycles were
allowed in the set of concept definitions.4 The most important consequence of the
introduction of concept definitions with necessary and sufficient conditions was that
reasoning about the relationships between concepts became important. In Kl-One
there is still the notion of a “told subsumer” syntactically being explicitly mentioned
in a list of so-called superconcepts but, according to the semantics, there are also
additional computed subsumers which are concept names (direct subsumers or di-
rect superconcepts). Note that inferences in Kl-One were based on the open-world
assumption. Hence, rather than with frame systems where the names as supercon-
cepts are always given explicitly, Kl-One introduced the idea that the set of direct
superconcepts (i.e., concept names) for a given concept must be inferred.

Direct superconcept/subconcept relationships (also called parent/children rela-
tionships) are dependent on the concept terms used in the definitions of a TBox. In
particular, the notion of defined concepts (with necessary and sufficient conditions)
led to the idea of classifying a TBox. The idea was to compute the subsumption
hierarchy (sometimes also called “inheritance hierarchy”) of parents and children
for each concept name mentioned in a TBox during a so-called classification pro-
cess. The intention was that a model for a specific application domain could be
verified by a knowledge engineer based on the subsumption hierarchy. Considering
the subsumption hierarchy, i.e., the lattice of direct superconcepts, the idea was
also that concept terms could be automatically “inserted” between named concepts
in the hierarchy. Hence, concept terms could be set into relation to “predefined”
concept names (and, indirectly, other concept terms). This feature has been used
in many projects for implementing application functionality.

The first development of an algorithm for computing the subsumption hierarchy
of a TBox (the “classifier”) is described in [Schmolze and Lipkis, 1983]. Another
inference component called “realizer” computes for each individual mentioned in an
ABox the most-specific atomic concepts (or concept names) of which the individual
is an instance. One of the first algorithms for computing the realization of an ABox is
described in [Mark, 1982]. Initial Kl-One systems were implemented in Interlisp
[Lipkis, 1982] and Smalltalk [Fikes, 1982]. The Consul project [Kaczmarek et al.,

3 In the literature, some authors use the word “definition” as a synonym for concept terms themselves (e.g.,
[Schmidt, 1991], see also [Woods, 1991, p. 65]). In this case, “primitive” concepts with only necessary
conditions were introduced with a specific marker to be used in concept terms.

4 The semantics of cycles was analyzed in [Baader, 1990b; 1991; Nebel, 1990a; 1991]. The so-called
descriptive semantics provided many advantages compared to so-called fixed point semantics. For details
see [Nebel, 1990a]. One of the first publications of an expressive description logic supporting cyclic axioms
with a descriptive semantics and a sound and complete calculus is [Buchheit et al., 1993a]. Cyclic axioms
are usually not considered as concept definitions.

294 R. Möller, V. Haarslev

1986] was one first projects in which classifier and realizer inference services were
first exploited.

First investigations about defaults and exceptions were published in [Brach-
man, 1985]. Nowadays, the semantical theory of defaults in description logics is
much clearer, see [Baader and Hollunder, 1992; 1993; Baader and Schlechta, 1993;
Padgham and Zhang, 1993; Padgham and Nebel, 1993; Baader and Hollunder,
1995a; 1995b; Donini et al., 1997b].

At the first Kl-One workshop [Schmolze and Brachman, 1982] it became clear
that the informal specification of the semantics of Kl-One concept and role con-
structors led to serious problems. The development of the classifier [Schmolze
and Lipkis, 1983] was based on the intuitive meaning of the Kl-One formalism
[Nebel, 1990a, p. 46]. Attempts to logically reconstruct the representation con-
structs, e.g., [Schmolze and Israel, 1983; Israel and Brachman, 1984], resulted in a
deeper understanding of the formalism. Given the formal semantics, implemented
algorithms for classification and realization were shown to be incomplete. Later
investigations revealed that Kl-One (with the formal semantics given in the logi-
cal reconstruction approaches) is undecidable (e.g., this holds for the combination
of conjunction, value restrictions and role-value-maps [Schmidt-Schauß, 1989]). In
[Brachman and Levesque, 1984] the first thoughts about tractability of subsump-
tion for sublanguages are discussed. Terminological reasoning with concept defini-
tions even for sublanguages with low expressiveness were shown to be inherently
intractable in the worst case [Nebel, 1990b, p. 28, p. 71f.]. Proposals for a se-
mantics based on many-valued logics (e.g., [Patel-Schneider, 1986; 1987a; 1987b;
1989a]) ensure tractable algorithms concerning concept consistency reasoning but
also result in a weak expressiveness: many intuitive inferences are not sanctioned
by this semantics (see also [Nebel, 1990a]).

Another result of [Schmolze and Brachman, 1982] was that the semantics of indi-
vidual concepts was not quite clear (e.g., concerning coreference and unique name
assumption, see above). Thus, at the first Kl-One workshop [Schmolze and Brach-
man, 1982], the notions of a hybrid reasoning system consisting of a TBox (a set of
concept definitions) and an ABox (a set of assertions concerning individuals) were
made more precise. The change of the view on Kl-One spelled out in [Schmolze
and Brachman, 1982, pp. 8–17] (see also [Nebel, 1990a, p. 46]) can be summarized
as follows: It is not the names of representation structures that are important but
the functionality, i.e., the declaration and inference services which the system pro-
vided. It was first pointed out that inferences have to be formally defined based on
the semantics of the representation formalism. This view led to the development of
the functional view of knowledge representation as pursued with the development
of the system Krypton.

Description Logics Systems 295

Krypton

The knowledge representation system Krypton [Brachman et al., 1983b; 1983b;
1985] can be seen as the first approach to define a new language of the Kl-One
family with a formal, Tarskian semantics. Furthermore, the goal was to overcome
the problems with individual concepts in Kl-One [Nebel, 1990a, p. 63]. The hybrid
representation approach with a TBox and an ABox was first implemented in the
Krypton system (see also [MacGregor, 1991a, p. 391]). Similar to Kl-One the
distinction between primitive and defined concepts and the computation of the
most-specific atomic concepts which instantiate individuals is one of the core ideas
of Krypton.

Krypton offered a concept language with low expressiveness. While the ini-
tial approach [Brachman et al., 1983b] was too expressive to be tractable (see also
[MacGregor, 1991a, p. 390]), in a revised version [Brachman et al., 1985] the con-
cept constructors of Krypton were defined as conjunction, value restrictions and
role chains. Thus, subsumption checking was polynomial [Patel-Schneider, 1987a,
p. 75]. For the ABox a full-fledged resolution-based FOPL theorem prover [Stickel,
1982] was proposed, i.e., the ABox reasoner of Krypton was incomplete. Another
perspective is that Krypton started with a first-order logic theorem prover and
augmented it with a special-purpose inference system for terminological reason-
ing to cut out some of the combinatorial search [Vilain, 1985]. Krypton can be
regarded as one of the first efforts in combining knowledge representation and theo-
rem proving techniques but was not used for industrial applications [Nebel, 1990a,
p. 63f.].

Rather than dealing with specific representation structures and operations on
them, Krypton offers a so-called “functional approach”. Using the interface func-
tions “tell” and “ask”, a knowledge base can be defined and queries can be answered
about it. In this sense, a “functional approach” means that a formal representation
system does not necessarily have to maintain, for instance, frame structures, the
subsumption hierarchy, or even an ABox as a graph structure. If, for the internal
implementation purposes, graph structures are indeed used, they are nevertheless
hidden from the user in order to avoid “procedural” operations to be carried out
with internal record structures. Arbitrary procedural operations are usually not
related to the semantics of the representation formalism such that, in this case, it is
hard to characterize what is actually represented and what is computed as solutions
to inference problems. Thus, the focus of Krypton was not on the structures to
be maintained by the system but was centered around the question about what
should the system do for the user, i.e., what services should be made available. In
other publications this idea was described as the “knowledge level” [Newell, 1982].
In Krypton, inference services for concept terms are checks for concept consis-

296 R. Möller, V. Haarslev

tency, disjointness, and subsumption. For a TBox, the most-specific subsumers
(parent/children relation) can be computed, whereas for an ABox, consistency,
instance checking, realization (direct types) and instance retrieval are offered as
inference services. Krypton pioneered the idea that the user should only know,
at some level not dependent on implementation details, what questions the system
is capable of answering and what operations are permitted that allow new infor-
mation to be provided to it. For instance, it is not important how the association
between an individual and a certain role filler is actually represented in terms of
memory arrangements (called the symbol level). What counted for the underlying
implementation was what operations must be supported in order to answer queries
at the semantical level. This view about Kl-One-based representation systems was
one of the major achievements of the Krypton project.

Nikl , Penni , Kl-Two

At the same time as Krypton, the knowledge representation system Nikl was
developed as a successor of Kl-One. Nikl was a New Implementation of Kl-
One [Schmolze and Israel, 1983; Schmolze, 1985; Schmolze and Mark, 1991]. As
discussed in [Kaczmarek et al., 1986] in Nikl, roles are also ordered with respect
to subsumption (see also [Schmidt, 1991, p. 13]).

The assertional components of Kl-One were initially discarded in the Nikl sys-
tem (see the Nikl user guide [Robins, 1986]). Compared to the initial Kl-One
implementation, the algorithms in the Nikl classifier were faster in the average
case because “obvious” information was exploited to a larger degree (see [Mac-
Gregor, 1988, p. 405] or [MacGregor, 1991a, p. 392]). However, the subsumption
algorithm of Nikl was incomplete and it was hard to characterize which inferences
are omitted [Schmolze and Israel, 1983] (see also [Patel-Schneider, 1987a, p. 74]).

Later, an assertional reasoning component was added with the system Penni
which is based on RUP [McAllester, 1982]. The resulting system was called Kl-
Two [Vilain, 1985] (see also [Schmidt, 1991, p. 15]). In Kl-Two a propositional
reasoner with equality (the Penni subsystem) was augmented with a so-called quan-
tificational reasoning component (the Nikl subsystem). For the propositional part
in the Penni component, incremental additions and retractions were supported due
to the facilities provided by RUP. However, as shown in [Patel-Schneider, 1989b] the
concept language of Nikl contained concept and role constructs that render the sat-
isfiability problem for Nikl concept terms undecidable (see also [Schmidt-Schauß,
1989]).

Concerning hybrid reasoning, i.e., the systematic integration of TBox and ABox
reasoning, there were shortcomings as well. Because in RUP different constants
do not necessarily denote different objects, the unique name assumption was not

Description Logics Systems 297

built into the assertional component Penni. Thus, number restrictions imposed
by Nikl concepts often did not have the intended effects concerning hybrid rea-
soning. Other sources of incompleteness were pointed out (see also the analysis of
“inferential gaps” in [Nebel, 1990a, p. 63f.]). The research on the Kl-Two system
demonstrated that hybrid reasoning is not just a matter of integrating reasoning
subsystems at the software level. Hybrid reasoning requires a dedicated architecture
implementing a sound and complete calculus which, in turn, can be developed only
after a deep analysis of the semantics of the representation constructs. Neverthe-
less, the principle idea of exploiting subsumption information for resolution-based
first-order reasoning has been integrated in many theorem proving systems.

Kandor

Research on Kandor [Patel-Schneider, 1984] was influenced by the Krypton archi-
tecture and the performance problems of the Nikl approach. The goal of Kandor
was to increase the expressive power of the terminological representation component
in such a way that an efficient subsumption algorithm could be developed. Basi-
cally, Kandor supported conjunction, value restriction and number restrictions as
concept-forming operators. In minimum number restrictions, range-restricted roles
could be used (hence, qualified minimum number restrictions are allowed, see also
[Patel-Schneider, 1987a, p. 76]). In order to provide effective inference algorithms
(e.g., for information retrieval scenarios) in the Kandor approach the expressive-
ness of the assertional component was cut down to a representation system compa-
rable to a database (without revision mechanisms). Subsumption in Kandor was
shown to be conp-complete (see [Nebel, 1988], and [Nebel, 1990a, p. 90] for details).
The initially proposed subsumption algorithm with polynomial runtime must have
been incomplete.

Kandor was called a frame-based system (which might be reasonable because
of the expressiveness offered by the ABox language). A frame in Kandor was
essentially a specification of conditions for describing how an individual can be
an instance of it (in terms of superframes and restrictions). Kandor supported
defined frames and primitive frames in the spirit of Kl-One. The system adopted
the “small interfaces” approach of Krypton, i.e., models were built using the
declaration interface (tell interface), and application services were realized with the
query interface (ask interface). Although called a frame system, frames were not
treated as record structures to be manipulated by procedural programs. The authors
of Kandor argued for a small knowledge representation system that could be used
as part of larger systems with different subcomponents. The main achievement of
Kandor was the introduction of a small-can-be-beautiful approach which, finally,

298 R. Möller, V. Haarslev

led to the design of the system Classic which will be discussed in detail in the next
section.

8.3 Second generation Description Logics systems

Whereas the prototypical implementations of first generation systems were used to
study knowledge representation problems, second generation DL systems have been
more extensively used in serious applications. The implementations discussed in
this section are not only prototypes but were much more stable. In addition, since
the beginning of the nineties, the systems have been called description logic systems.
We first discuss systems for (almost) tractable languages based on (almost) complete
algorithms and investigate systems for expressive description logics afterwards

Classic

The basic Classic system supported the logic ALNFh−1 with TBoxes and ABoxes
plus facilities for dealing with numbers [Borgida et al., 1989]. We use the lower-
case letter h to indicate that Classic supports only role inclusion but no role
conjunction, i.e., Classic supports “single-inheritance” role hierarchies. Clas-
sic is available for research purposes. Implementation languages for Classic are
CommonLisp [Steele, 1990] and C. The interfaces are described in [Resnick et al.,
1995]. Full Classic also contained the concept constructors O and B for referring
to individuals in concept terms.

Subsumption in full Classic was initially assumed to be polynomial [Borgida
et al., 1989]. Problems with individuals in full Classic were recognized in [Patel-
Schneider et al., 1991]. At the same time, subsumption in Classic was shown
to be conp complete [Lenzerini and Schaerf, 1991]. In the modified semantics for
the concept constructors O and B (see [Borgida and Patel-Schneider, 1994]) the
interpretation function maps individuals in concept terms to disjoint sets of domain
objects. With this semantics concerning individuals the inference algorithms of the
Classic system could be shown to be complete [Borgida and Patel-Schneider, 1994].
However, given the non-standard semantics for the concept constructors O and B,
the same effect can be achieved with existential quantifications and disjunctions
w.r.t. atomic concepts:1 For each individual I a new atomic concept AI can be
introduced. Note that atomic concepts are also mapped to sets of individuals.
Additionally, since Classic imposes the unique name assumption, a set of axioms
ensures that the new atomic concepts are disjoint. Now every term of the form
∃R.I can be replaced by ∃R.AI . Terms of the form {I1, . . . , In} can be replaced by
AI1 t . . . t AIn . In an ABox, for each individual I a concept assertion is added to
1 Note that these concept constructors are not directly provided by Classic.

Description Logics Systems 299

ensure that the individual is an instance of the associated atomic concept AI . Thus,
only in an ABox, a real coreference between roles can be enforced. On the one hand,
we can call the Classic system “almost” complete. “Almost” refers to non-standard
semantics w.r.t. individuals being supported by current system implementations.
On the other hand, the transformation makes clear that in Classic nevertheless a
limited kind of disjunction (with concept names for which no definitions exist) can
be expressed while retaining polynomial inference algorithms.

The recommended techniques for knowledge-based system development with
Classic are outlined in [Brachman et al., 1991]. As Brachman [Brachman, 1992,
p. 256] points out, a tractable description logic does not guarantee that a system
is useful in practice. Therefore, the Classic system was also carefully designed to
meet practical requirements and to guarantee predictable system behavior. The con-
text in which the system was expected to be used required that many queries were
given to knowledge bases which rarely change. The architectural design of Classic
supported a precomputation of index structures such that queries can be answered
quickly (mostly by simple storage retrieval). The architecture is made possible by
a careful selection of the concept and role constructors for the description logic
language. Inference services for the description logic supported by Classic can be
implemented by transforming concept expressions into a normal form (“structural
subsumption”). Once the normal form is computed, queries can be answered by
inspecting the data structures used to encode the normal form. It should be noted
that, in Classic, retraction of told information is possible but not optimized.

Another facility offered by Classic is a rule system. Rules are applied to indi-
viduals explicitly named in the ABox. Furthermore, rules are applied in a forward-
chaining way. Basically, a rule has a precondition (a concept) and a conclusion
(also a concept). If it can be shown that an individual mentioned in the ABox is an
instance of the precondition concept, a concept assertion for stating the member-
ship of the individual in the conclusion concept is added to the ABox. In order to
provide support for modeling, the rule base is statically checked for inconsistencies.
For instance, if there are two rules whose preconditions subsume each other, the
conclusions must not be disjoint.

Furthermore, Classic provides simple support for closed-world reasoning
([Resnick et al., 1995], see also [Weida, 1996]). Closing a role for an individual means
adding an appropriate maximum number restriction for the role. The maximum
number of fillers is restricted to the largest integer such that the minimum number
restriction with this integer (and the corresponding role) is entailed by the knowl-
edge base. The problem with role closing is that in combination with rules, the exact
sequence of several closing operations determines what actually holds in the result-
ing ABox. These and other problems concerning different closing operations have to
be considered with default reasoning as theoretical background [Baader and Hollun-

300 R. Möller, V. Haarslev

der, 1995a; 1995b; Donini et al., 1997b; Rosati, 1998]. For a specific approach con-
cerning the integration of defaults into the Classic system see also [Wahlöf, 1996;
Lambrix et al., 1998].

Classic is one of the first systems that provided support for incorporating
inferences over other domains. Consistency and subsumption checking for ex-
pressions of another domain (e.g., the reals) can be integrated into the Clas-
sic system via an extension interface [Borgida et al., 1996]. Classic was one
of the first description logic systems designed with respect to users which are
non-experts in description logic theory. An important lesson learned by the
Classic approach and its applications was the importance of explanation and
output pruning facilities [McGuinness and Borgida, 1995; McGuinness, 1996;
Borgida and McGuinness, 1996]. Moreover, Classic was the first system capable
of supporting some reasonable form of error reporting [Brachman, 1992]. However,
at the current state of the art there is hardly an adequate measure for the quality
of these indispensable services [Brachman, 1992, p. 253].

Although Classic was a very successful description logic modeling environment,
the low expressiveness of the Classic description logic made it hard to use the
system in many kinds of applications. In many cases, users wanted more expres-
siveness [Patel-Schneider et al., 1990]. In the following sections we discuss systems
for (more) expressive description logics. As can be expected, increases in expres-
siveness came at a certain price. The predictability of the behavior of Classic in
terms of performance could not be reached by systems implementing complete algo-
rithms for more expressive DLs. On the other hand, incomplete algorithms have the
problem that results computed by a system cannot be trusted in general. Thus, the
complete-incomplete debate for expressive description logic systems started at the
end of the eighties and the beginning of the nineties. First, we describe the systems
Loom and Back, which are based on incomplete algorithms. Afterwards, initial
research on description logic systems based on complete algorithms is summarized
with a discussion of the systems Kris and Crack.

Loom

The Loom architecture [MacGregor and Bates, 1987; MacGregor, 1991b] offers
TBox and ABox reasoning facilities for a description logic that can be characterized
by the name ALCQRIFO plus additional constructs for dealing with real numbers
(see also [Brill, 1994] or [Horrocks, 1997a, p. 43]). Loom is based on Kl-One, i.e.,
concept definitions with necessary or with necessary and sufficient conditions play an
important role in domain modeling with Loom. It should be emphasized that truth
maintenance facilities for revision were built into the Loom architecture right from
the beginning and have influenced the design of the whole system [MacGregor, 1988;

Description Logics Systems 301

MacGregor and Brill, 1992]. While first Loom versions were based on description
logics [MacGregor and Brill, 1992] in later versions an attempt was made to develop
a “description classifier for the Predicate Calculus” [MacGregor, 1994]. For instance,
facilities for dealing with definitions for relations were added. The current version
of Loom is implemented in CommonLisp and is available for research purposes. A
new system (called PowerLoom) for CommonLisp as well as C and Java-based
platforms can be licensed as well.

A distinguishing design goal of Loom was the incorporation of an expressive
query language for retrieving ABox individuals. Another design goal of Loom
was to support rule-based programming [Yen et al., 1991b; 1991a; MacGregor and
Burstein, 1991]. Based on the rule system, it is possible to specify additional nec-
essary conditions for individuals which (i) are explicitly mentioned in the ABox
and (ii) are derived to be instances of a certain defined concept. The additional
necessary conditions are called “implications” in Loom [MacGregor, 1988]. The
additional necessary conditions specified by rules are not exploited, for instance, for
TBox reasoning. Note that an “implication” A → B stated by a Loom rule does
not mean that ¬B → ¬A holds, i.e., rule-based “implications” are not to be con-
fused with true logical implications as provided by generalized concept inclusions
that are now standard in newer systems (see below).

In order to meet the performance requirements of the applications for which
Loom was developed (e.g., natural language and image interpretation), incomplete
algorithms for concept consistency and subsumption are implemented. Concerning
ABox reasoning, Loom applications required specific strategies to avoid the compu-
tation of unused results. Rather than employing the usual forward-chaining strategy
of computing the most-specific atomic concepts of which the ABox individuals are
instances, Loom uses a scheme that considers the queries being posed to the system.
Thus, backward-chaining strategies for query answering are used in the implemen-
tation [MacGregor and Brill, 1992]. However, for the rule system, it is important to
detect whether an individual is an instance of a concept that is used as a precondition
of a rule. In this case, forward-chaining techniques are exploited [MacGregor, 1991b;
MacGregor and Brill, 1992]. The combination of forward-chaining and backward-
chaining inferences can be specified for a certain application problem by “marking”
concepts accordingly. The user can control the inference process by these means
but is also responsible for estimating the effects of these declarations.

The arguments for the Loom approach can be summarized as follows: The in-
tractability of the representation language can hardly be avoided to fulfill the re-
quirements of users. Therefore, the idea is to support the features in one system
rather than as a set of application-specific ad hoc supplements (“Where resides the
scruffiness?” [MacGregor, 1991a, p. 396]). Obviously, incompleteness is no problem
as long as the answers of the inference system are interpreted in the right way (i.e.,

302 R. Möller, V. Haarslev

“no” answers should not be trusted). Several researchers argued that there is al-
ways the inherent danger that non-expert users either do not know this or might not
recognize this as a potential danger (cf. the work on complete systems [Baader and
Hollunder, 1991a; 1991b] discussed below). However, if a combinatorial explosion
occurs in a complete algorithm, in practice, no result is available as well. Concern-
ing incomplete algorithms for decidable description logics, similar arguments as for
other modeling environments based on first-order logic can be mentioned: If, in a
certain application, concept terms are checked for consistency and a combinatorial
explosions occur in complete algorithms, incomplete algorithms at least might pro-
vide some support, e.g., for building a TBox. Just signalling a timeout during the
execution of a complete algorithm that runs into a combinatorial explosion might
result in less information. In this case, an incomplete algorithm might succeed in
finding at least some inconsistencies. Note however, that in modern inference sys-
tem technologies supporting complete reasoning, incomplete reasoners are used as
“preprocessors” in order to speed up inferences (see the next chapter).

Loom supports different kinds of individuals (classified instances, light instances,
CLOS instances). For different kinds of instances different levels of inference services
are supported, e.g., for classified instances, the set of most specific atomic concepts
of which the classified individual is an instance is computed once new assertions
are specified. Thus, for classified instances, the rule-based forward chaining engine
is triggered and possibly new assertions are automatically added to an ABox (for
details see [MacGregor and Brill, 1992]).

A problem with the Loom approach is that from a user perspective it is hard
to characterize the source of the incompleteness of the Loom reasoning algorithms
(see the discussion in [Horrocks, 1997a, p. 42]). Although the inference techniques
used in Loom are characterized in [MacGregor, 1991b, p. 90], once a system is
incomplete, there is no adequate measure for the “quality of service” in terms of an
implementation-independent characterization. For instance, in Classic the char-
acterization of the incompleteness of the inference system concerning individual
reasoning was given in terms of a weak semantics for the offered representation con-
structs (see above). It should be noted that specifying the incompleteness on the
semantical level is by no means a trivial task. Not only incompleteness issues are im-
portant in this context. For instance, the theoretical background for giving a seman-
tics for rule-based computations was only investigated recently [Donini et al., 1992b;
1994a; 1998a].

Incomplete reasoning facilities might lead to unexpected behavior. We demon-
strate with an example that incomplete inference algorithms can have effects in
situations a user might not be aware of. Loom also supports closed-world reason-
ing. The strategy for closing a role for an individual is to count the number of
known role fillers. However, in addition to the individuals explicitly mentioned in

Description Logics Systems 303

the ABox, existential quantifications and minimum number restrictions have to be
considered. Assuming too few of these individuals might result in an inconsistency.
This is demonstrated with a simple knowledge base example with the following
ABox {(∃R.A u ∃R.B u ∃R.C)(i), R(i, j)}. Let us assume, in the TBox there exist
axioms such that A is implicitly declared as disjoint from both concepts, B and C.
In the Loom system, specific reasoning techniques (e.g., a technique called “condi-
tioning” [MacGregor, 1991b]) are implemented to compute the number of necessary
fillers. Closing the role R for i by adding (≤ 1R)(i) makes the ABox inconsistent.
However, since Loom is incomplete, it might be the case that the disjointness of A
and B as well as A and C is not detected and, therefore, too few fillers are assumed
to exist in the closing process. Thus, the added maximum number restriction might
be too restrictive, i.e., the system is unsound if closed-world reasoning is employed.
Note that the semantic basis of automatic closing of roles as offered by Loom is
hard to characterize for expressive representation languages. Obviously, closing the
role R for i with (≤ 2R)(i) might be a candidate. However, closing the role R for
i with (≤ 3R)(i) might also be possible. In this case we have more individuals but
with less specific constraints.

Back and Flex

Research on Back (Berlin Advanced Computational Knowledge representation sys-
tem) started in 1985, approximately at the same time as work on the Loom sys-
tem was initiated. Back was also called a knowledge representation environment
[Quantz and Kindermann, 1990; Peltason, 1991; Hoppe et al., 1993].

The description logic of the initial Back system can be called ALQR−1. There
was also support for reasoning with numbers and attribute sets. Research on the
inference algorithms for the basic Back language stimulated the development of
theoretical results on the complexity of concept consistency reasoning (e.g., [Nebel,
1988; 1990a]) as well as the semantics of cycles [Nebel, 1991]. Additionally, not
only terminological reasoning was considered but an investigation was made on the
development of a hybrid architecture consisting of a TBox and an ABox. Issues
of integration and balancing in hybrid knowledge representation systems, namely
balanced expressiveness and tight coupling in hybrid systems, were analyzed in
[Nebel and von Luck, 1987; 1988]. Research on the Back system helped to shape
the current view on balanced representation schemes with TBox and ABox. In order
to provide an hybrid representation language, Back was one of the first systems, in
which TBox concept terms could also be used in an ABox to assert, e.g., disjunctive
information about individuals. In addition, distinct individuals were assumed to
denote distinct objects. Hence, the number of role fillers could be counted and
compared against number restrictions (this was also done in Krypton as pointed

304 R. Möller, V. Haarslev

out by [Woods and Schmolze, 1990, p. 165]). The algorithms used in Back for
instance checking and instance retrieval are described in [Nebel and von Luck, 1987;
1988; Kindermann and Randi, 1990]. In general, the discussion of the problems of
incomplete algorithms that was sketched in the previous section also applies to the
Back system because the inference algorithms used in Back are also known to be
incomplete.

In order to provide a knowledge representation environment, the Back architec-
ture was designed to support incremental additions to the ABox. Back was one
of the first attempts to implement algorithms for reasoning about retractions of
ABox assertions. Back supported retraction of told information, also called lit-
eral retraction [Nebel, 1990a; Kindermann, 1992]. This is also supported in the
Loom system. ABox assertions can be retrieved from a database by automatically
computing SQL queries [Schmiedel, 1993]. For the applications considered in the
Back project, reasoning about time was important. Therefore, an integration of
temporal reasoning and terminological reasoning was investigated by several project
members. Investigations about how to incorporate temporal reasoning into termino-
logical reasoning are reported in [Schmiedel, 1988; 1990; Schild, 1993; Fischer, 1992;
Neuwirth, 1993].

In the successor system Flex [Quantz et al., 1995], incomplete algorithms were
implemented for the description logic ALCQRIFO. Additionally, reasoning about
equations and inequations concerning integers was supported. Furthermore, the
Flex system served as a testbed for investigating so-called weighted defaults
[Quantz and Royer, 1992]. The initial implementation of Flex was developed
in Prolog. Flex++ was a reimplementation in C++. The implementation was
faster, but for application knowledge bases the performance was not sufficient. Ap-
propriate optimization techniques (see the next chapter) had not been investigated
in the context of description logics at the time of the development of the Flex
implementation.

In general, it is quite difficult to compare different systems and knowledge rep-
resentation environments because the services being offered and the representation
languages are not standardized (see [Patel-Schneider and Swartout, 1993] for a
proposal on standardizing representation languages and inference services). Expe-
riences with system implementations indicated that either limited expressiveness or
incompleteness of reasoning could possibly lead to problems in applications. There-
fore, other researchers investigated the implementation of systems based on sound
and complete algorithms (published at the end of the eighties and beginning of
the nineties). One can consider [Schmidt-Schauß and Smolka, 1991] as a starting
point of this development (see also [Donini et al., 1991a]). Based on tableaux cal-
culi, practical description logic implementations were developed. We discuss the
architectures of the systems Kris and Crack.

Description Logics Systems 305

Kris

The development of sound and complete reasoning systems for more expressive
description logics started at the end of the eighties. One of the main devel-
opments in this direction was the system Kris. The approach of Kris was
to implement sound and complete algorithms for an expressive description logic
and to develop optimization techniques for TBox reasoning so that, in prac-
tice, reasonable performance could be expected. The description logic of Kris
is ALCNF [Baader and Hollunder, 1991a; 1991b]. As an addition, Kris pro-
vides enumerated types (O operator) and an experimental interface for rea-
soning about so-called concrete domains [Baader and Hanschke, 1991a; 1991b;
1992] (e.g., linear inequations over the reals). Role conjunctions were supported
with a prototype implementation. The focus of the work in the Kris project was
on TBox-classification. Nevertheless, Kris was one of the first systems also sup-
porting sound and complete ABox reasoning in expressive description logics. Even
multiple ABoxes could be handled. The implementation language of Kris was
CommonLisp (see [Hollunder et al., 1991] for a User’s Guide and [Achilles et al.,
1991] for a description of the graphical user interface).

The idea behind optimizing TBox classification was to exploit “obvious” infor-
mation concerning “told” superconcepts and primitive concepts. In many con-
cept definitions of application knowledge bases the right-hand side is a conjunc-
tion with concept names and concept terms. The conjuncts which are concept
names on the right-hand side are defined as the “told” subsumers. Another im-
portant point was to avoid recomputation of subsumption relations found in pre-
ceding computation steps. Thus, caching and propagation techniques were im-
plemented. The idea was that information can be propagated in the subsump-
tion lattice such that expensive subsumption tests can be avoided where possi-
ble. Kris was the first system for which systematic empirical tests were car-
ried out. The algorithms evaluated in [Baader et al., 1992a; 1994] are still in
use in modern description logic systems (see below). Extensions such as de-
faults were investigated as well (see also [Baader and Hollunder, 1992; 1993;
Hollunder, 1994a]) but have not been implemented in Kris.

Although the benchmarks considered in [Baader et al., 1994] revealed that the
performance of Kris for TBox reasoning was comparable to that of other systems
of that time, the more or less direct implementation of nondeterministic tableaux
algorithms that were developed for proving the decidability of problems in the field
of theoretical computer science with chronological backtracking as in Kris led to
performance problems for many applications. One of the main results of the Kris
project was that sound and complete inference algorithms are an important starting

306 R. Möller, V. Haarslev

point for research on optimized sound and complete algorithms for practical system
development.

Crack

One of the main research goals of the system Crack was to implement sound
and complete algorithms for dealing with inferences about individuals in concept
terms. Rather than providing a non-standard semantics as in Classic (individuals
are mapped onto sets of domain objects), in Crack, individuals are mapped to
elements of the domain. Thus, coreferences also have to be considered in concept
terms. Crack supports the description logic ALCRIFO [Bresciani et al., 1995].
The implementation of Crack is based on CommonLisp. Crack provided a web
interface.

In a similar way as in Kris, obvious information is exploited in the architecture
to some extent but, nevertheless, Crack is a direct implementation of the tableaux
rules of the underlying calculus. In the middle of the nineties it became clear that
sound and complete reasoning is needed for many applications but the employed
inference techniques which had been developed for (manually) deriving decidability
results, e.g., with tableaux algorithms, were not suited for direct implementation.
Thus, at the beginning of the nineties it became clear that there is a long way to
go from a decidability proof to a working system, which has good performance in
the average case.

Other systems

The list of systems we have discussed in this chapter is certainly incomplete. The
large number of projects involved in the development of knowledge representation
systems shows the importance of this area. Usually description logic systems are
built around a core engine which is a consistency checker. However, there are other
services to be supplied which are also important to make the systems usable in
larger application projects. We present an overview of some additional systems
with interesting features developed at the beginning of the nineties.

Among other points, the graphical manipulation of representations was inves-
tigated in the Sb-One project [Allgayer, 1990; Kobsa, 1991b; 1991a]. The im-
plementation language was CommonLisp. Techniques for graphical interfaces to
support knowledge base development with Sb-One are described in [Kalmes, 1988;
1990] (see also [Abrett and Burstein, 1987] for a description of the Kreme system).
Furthermore, in Sb-One the use of contexts (also called partitions) was explored
for user modeling applications in natural language generation.

Another important point for DL inference systems is persistence and transaction

Description Logics Systems 307

management. We have already discussed the Back approach [Schmiedel, 1993] (see
also [Borgida, 1995]). Additional investigations were also made with the K-Rep
system [Mays et al., 1991a; 1991b].

Summary: standard inference services of Description Logics systems

Before discussing successors of the second generation systems presented in this sec-
tion it is appropriate to summarize the main inference problems that are now as-
sumed as standard for DL systems. The inference services provided by DL systems
for concept consistency and TBox reasoning can be summarized as follows.

• Concept consistency (w.r.t. a TBox)
• Concept subsumption (w.r.t. a TBox)
• Another important inference service for practical knowledge representation is to

check whether a certain concept name is inconsistent w.r.t. a TBox. Usually,
inconsistent concept names are the consequence of modeling errors. Checking the
consistency of all concept names mentioned in a TBox without computing the
parents and children is called a TBox coherence check.

• The problem of computing the most-specific concept names mentioned in a TBox
that subsume a certain concept is known as computing the parents of a concept.
The children are the most-general concept names mentioned in a TBox that are
subsumed by a certain concept. We use the name concept ancestors (concept
descendants) for the transitive closure of the parents (children) relation. The
computation of the parents and children of every concept name is also called
classification of the TBox. This inference is needed to build a hierarchy of concept
names w.r.t. specificity and is known as TBox classification.

If a system supports ABox reasoning, the following inference services are provided:

• ABox consistency (w.r.t. a TBox)
• Instance test w.r.t. a TBox and an ABox
• The most-specific concept names mentioned in a TBox T of which an individual

is an instance are called the direct types of the individual w.r.t. a TBox and an
ABox.

• The retrieval inference problem is to find all individuals mentioned in an ABox
that are an instance of a given concept C w.r.t. a TBox.

• The set of fillers of a role R for an individual i w.r.t. a TBox T and an ABox A
is defined as {x | (T ,A) |= (i, x) : R} where (T ,A) |= ax means that all models
of T and A are also models of ax.

• The set of roles between two individuals i and j w.r.t. a knowledge base (T ,A)
is defined as {R | (T ,A) |= (i, x) : R}.

308 R. Möller, V. Haarslev

In many DL systems, there are some auxiliary queries supported: retrieval of the
concept names or individuals mentioned in a knowledge base, retrieval of the set of
roles, retrieval of the role parents and children (defined analogously to the concept
parents and children, see above), retrieval of the set of individuals in the domain
and in the range of a role, etc. As we have discussed in this section, DL systems of
the second generation offer more or less all or these inference services. An exception
is a language for specifying retrieval queries that goes beyond the simple retrieval
inference problem mentioned above (see e.g., the discussion about Loom).

8.4 The next generation: Fact , Dlp and Racer

The declarative nature of description logic modeling is even more important when
problems are treated for which languages are required that are no longer tractable.
Inspired by theoretical advances, e.g., for handling number restrictions, role con-
junctions, generalized concept inclusions as well as cyclic axioms with descriptive se-
mantics (ALCNR [Buchheit et al., 1993a]), transitive roles (ALCR+ [Sattler, 1996]),
role hierarchies and features (ALCHfR+ [Horrocks, 1998b]), as well as inverse roles,
qualified number restrictions, and role hierarchies (SHIQ [Horrocks et al., 1999]
also called ALCQHIR+ , pronounced ALC-choir), the development of another gen-
eration of sound and complete description logic systems was started at the end of
the nineties.

Fact

Initially, research on practical implementations of description logic systems for
expressive description logics started with a focus on concept and TBox reason-
ing. However, rather than directly implementing the tableaux calculus used for
the theoretical decidability proofs and complexity analyses, a rigorous investiga-
tion into methods for informed search was made for developing the next gener-
ation of description logic systems. In particular, average-case optimization tech-
niques have been investigated with the system Fact ([Horrocks, 1997a; 1998b;
Horrocks and Patel-Schneider, 1999] see also the subsequent chapter for details).
At the time of this writing, two versions of Fact are available. One version
supports TBox reasoning for the description logic ALCHfR+ [Horrocks, 1997a;
1998b]. Furthermore, a newer version of Fact also supports TBox reason-
ing with inverse roles and qualified number restrictions (SHIQ [Horrocks, 1999;
Horrocks et al., 1999]). At the time of this writing, Fact does not support ABoxes.

It was the Fact system that first demonstrated the usefulness of expressive de-
scription logics for developing practical applications. It was shown that, although
runtime behavior can be exponential in the worst case, in practical contexts, op-

Description Logics Systems 309

timization techniques can be found that prevent a DL system from running into
combinatorial explosion. Nevertheless, the algorithms are still sound and complete.
Indeed, after several years of experiences with less expressive systems such as Clas-
sic, research on Fact stimulated many research activities for developing optimized
DL system implementations for expressive description logics.

The system Fact is implemented in CommonLisp and can be downloaded with
source code for research purposes. A CORBA interface guarantees seamless inte-
gration into network-aware applications. Various input formats are supported by
Fact (e.g., for XML-based notations of TBoxes). The graphical interface OilEd
for developing TBoxes in the spirit of frame systems is described in [Bechhofer et
al., 2001b].

Dlp

Based on similar techniques as Fact, the system Dlp utilizes extended techniques
for optimizations [Horrocks and Patel-Schneider, 1998c; 1998d; Patel-Schneider,
1999]. Dlp supports concept consistency reasoning for the description logic
ALCN reg . From a modal logic perspective, ALCN reg can also be called Propo-
sitional Dynamic Logic (PDL) with a restricted form of graded modalities, i.e.,
simple number restrictions.

Dlp has succeeded in many performance competitions [Horrocks, 1998a; Horrocks
and Patel-Schneider, 1998c; Patel-Schneider, 1999]. It was shown that tableaux-
based approaches can be implemented such that the performance for satisfiability
testing for ALC or modal logic Km is comparable to traditional approaches used in
the community [Giunchiglia and Sebastiani, 1996b; Giunchiglia et al., 1999].

However, in the current version of Dlp TBox classification is not provided as an
inference service. In particular, no generalized concept inclusions and no TBoxes
with forward references are supported (i.e., algorithms for dealing with generalized
concept inclusions are not implemented in Dlp). ABoxes are not supported as well.
Dlp is implemented in SML.

Racer

For many applications, besides concept consistency and TBox reasoning, ABox rea-
soning is also important. Calculi for ABox consistency have been presented for
the above-mentioned representation constructs: ALCNR [Buchheit et al., 1993b],
ALCNHR+ [Haarslev and Möller, 2000], ALCQHIR+ (SHIQ) [Horrocks et al.,
2000c]. Based on theoretical results, a practical implementation of ABox calculi was
developed with the full TBox and ABox description logic system Racer [Haarslev
and Möller, 1999; 2001e]. Racer supports all optimization techniques that are

310 R. Möller, V. Haarslev

incorporated into Fact. Some new optimization techniques investigated with the
Racer system (e.g., for dealing with number restrictions and ABoxes) are men-
tioned in the next chapter. In Racer, the unique name assumption for ABox
individuals is imposed. In order to demonstrate the usefulness of DL systems for
practical applications, high performance reasoning for large TBoxes is discussed in
[Haarslev and Möller, 2001c].

Initial versions of the Racer system supported the logic ALCNHR+ . In later
versions reasoning was extended to ABox reasoning with the logic ALCQHIR+

(SHIQ). In addition, Racer supports concrete domains without so-called feature
chains (see [Baader and Hanschke, 1991a] and the discussion of the Kris system).
In particular, predicates representing linear inequalities about the reals are handled
by Racer (see [Haarslev et al., 2001; Haarslev and Möller, 2001b] for details).

Racer dynamically selects appropriate optimization techniques due to a static
analysis of input TBoxes, ABoxes and queries. As a distinguishing feature, which is
important for many applications, it should also be mentioned that Racer supports
multiple TBoxes and ABoxes (see also the Kris system). Assertions can be added
to ABoxes after queries have been answered. In addition, for instance, Racer also
provides support for retraction of assertions from ABoxes.

Racer can be downloaded for research purposes as a server program for standard
operating systems with no additional licenses. A socket-based network version with
Java interface is available. The implementation language of Racer is Common-
Lisp.

8.5 Lessons learned

Considering the evolving technology of description logic systems it becomes clear
that at the end of the nineties there is an enormous interest in description logic
reasoning systems. This is demonstrated by the quite large number of system im-
plementations. Currently, all modern DL systems are based on sound and complete
algorithms. Thus, system developers can really rely on all answers computed by a
DL system. This positive trend has been initiated by the development of optimiza-
tion techniques that ensure stable runtimes for average-case inputs for real-world
problems even if the worst-case complexity is exponential (see also below). The
trend has been initiated by the landmark system Fact.

The original idea of the tell and ask interface of Krypton is still realized in
modern systems. However, at the time of this writing, the systems support only
some kind of batch-oriented behavior. A knowledge base (TBox and ABox) is passed
to the systems (tell interface). Afterwards, queries can be answered (ask interface).
But, no incremental additions to the knowledge base are possible after the first
query is answered. The difficulty is that complex transformations on the knowledge

Description Logics Systems 311

bases are necessary in order to compute an internal representation that can be used
for relatively fast query answering (see the discussion on optimization techniques in
subsequent chapters). The price to pay is that algorithms for appropriately handling
incremental additions to a knowledge base are not yet known. Other features, e.g.,
explanation facilities, retraction, etc. still have to be developed for expressive DLs
as well.

As a second and quite important lesson one can see that description logics with
more expressiveness and sound and complete algorithms impose a different view in
modeling. Concept definitions as known from, for instance, Classic are no longer
the central modeling device if generalized concept inclusions (representing cyclic
implications or equalities) are available.1

A third lesson we can learn from considering description logic systems and their
development is that the implementation language is hardly important for the mag-
nitude of speed (compared to the expressiveness of the description logic). What
really counts is the set of optimization strategies, the implementation of index data
structures and the selection of clever heuristics. There are first attempts to provide
a distributed implementation of a description logic system. However, performance
problems in network communication lead to server-based solutions, i.e., a knowledge
base is being processed at a single workstation computer (but may be accessed from
different clients). Benchmark generators and standardized application knowledge
bases are used for metering system performance. Thus, different system implemen-
tations can be compared.

With Racer we have discussed a state-of-the-art description logic system that
also supports ABoxes and concrete domains. However, only simple query languages
are currently available. For description logics without inverse roles and number
restrictions (i.e., ALCHfR+), [Tessaris, 2001] developed the theoretical basis for
supporting so-called conjunctive in DL systems. However, for DLs as expressive as
SHIQ much less is known.

Another lesson is that the development of techniques for practically incorporating
facilities for the representation of space and time into description logics is still an
open issue. The necessity of a semantics-based integration of temporal and termi-
nological reasoning has been emphasized in first investigations in the Back project.
However, early approaches (e.g., [Schmiedel, 1990]) have been shown to be unde-
cidable [Halpern and Shoham, 1991; Schild, 1993]. In the context of planning, the
opportunities of an integrated environment combining temporal and terminologi-
cal reasoning were clearly demonstrated with the RHET system [Allen, 1991]. It
has been shown that spatial reasoning (e.g., about topological relations) induces
non-obvious subsumption relationships between concepts [Haarslev et al., 1998;
1 Nevertheless, description logics can still be called object-based representation formalisms, although there

are some approaches to deal with n-ary relations [Schmolze, 1989; Calvanese et al., 1998d] as well.

312 R. Möller, V. Haarslev

1999]. The work presented in [Artale et al., 2001] demonstrates that the decidability
barrier is achieved if temporal operators are integrated into expressive description
logics. Nevertheless, [Artale et al., 2001] identify a fragment that allows for a lim-
ited kind of practical modeling. Initial experiments concerning an implementation
of a description logic that supports operator for linear time temporal reasoning are
discussed in [Günsel and Wittmann, 2001].

